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Abstract. Given a cuspidal automorphic representation on 1/(2, 3), then its theta

lift to U(i, 0 is cuspidal if and only if its theta lift to £/(ί—1, /—I) is zero. Also, the

theta lift of a cuspidal generic representation from ί/(2, 3) to ί/(3, 3) is generic. The

theta lift of a cuspidal representation from ί/(2, 3) to t/(4, 4) or to C/(5, 5) is hypercuspidal.

In this paper we study the cuspidality and hypercuspidality of some automorphic
forms on the group U(ί, ί) for i=l to 5. These automorphic forms are "theta lifted"
from automorphic forms belonging to the space of a cuspidal representation π for the
group 1/(2, 3).

In Chapter 1 we study the tower of liftings θ\π, s) for /= 1 to 5 to find conditions
for the cuspidality of the lift 0f(π, s) in terms of the lift β * " 1 ^ s) More explicitly,
Theorem 1.1 states that θ\π, s) is cuspidal if and only if θ1'1^, s) is zero. Moreover,
05(π, s) is nonzero, so higher theta lifts cannot be cuspidal. Therefore we stop the tower
at /=5. These are well-known results for split groups (cf. [Ra]).

In Chapter 2 we generalize some results of [Wa], concerning the hypercuspidality
of such lifts. Theorem 2.1 states that the lift Θ3(π, s) is already nonzero for generic
representations π on C/(2, 3). Moreover, a Whittaker function of the lift can be expressed
in terms of a Whittaker function of π. Theorem 2.2 states that 04(π, s) and 05(π, s), if
cuspidal, are also hypercuspidal in the sense that all Whittaker functions disappear.

In the proof of Theorem 2.1 we use the Witt decomposition for the space of U(2, 3),
i.e., the existence of a maximal isotropic subspace of dimension two, and an anisotropic
subspace of dimension one. In general if π is a cuspidal generic representation of
U(n, n+1), then the « + l lift should also be generic. All theta lifts above this level
should be hypercuspidal.

We conclude by remarking that the "simpler" tower, C/(l, 2) to U(ί, ί)9 for /= 1 to
3 is computed in [Wa]. If π on C/(l, 2) is generic, then the lift to E/(2, 2) is also generic
[Wa, Theorem 4.3]. Using Theorem 2.2, it is easy to show that the theta lift of t/(l, 2)
to E/(3, 3) is hypercuspidal.
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Notation. Let K be a global field, and L a quadratic Galois extension of K. We

write L = K(i), and /"for the Galois involution on leL. If U is an algebraic group defin-

ed over K. We write Uκ for the group of its ^-rational points, and UAκ or UA for the

adele group.

Let W be a 5-dimensional vector space over L equipped with a Hermitian form

< , }w having the matrix

Q =

1

1

in the basis {w1? w2, w0, w_2, w-i}

Let Vt for /= 1 to 5 be a 2z-dimensional vector space equipped with a skew-Hermitian

form < , yVi having the matrix

r,

i n t h e b a s i s {el9 ...9ehel9..., e j .

Let U(29 3) (resp. U(ί9 i)) be the group of transformations in GL{S)L (resp. GL(2i)L)

preserving the form < , }w (resp. < , }v). Then £/(2, 3) and U(ί, i) are the groups of

ΛT-rational points of quasi-split algebraic groups defined over K, split over L. Also

H= t/(2, 3) = {geGL(5)L ^βflf = β}

Let Px be the maximal

) = RES|GL(1) x C/(2, 1),

(a) Description of parabolic subgroups of (7(2, 3).
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having the form

u{2, 1)1

1
•

•

•

•

α

1
•

•

•

b
•

1
•

•

c
•

•

1
•

z

— c

-b

— a

1



HYPERCUSPIDALITY FOR UNITARY GROUPS 149

where z— — {ac + bb + cά)\2 + is and s in K. Let N± be the unipotent radical of Px.

Recall RES ̂ GL(n) is the disconnected quasi-split algebraic group of type

An_1xΛn_1 formed by the restriction of scalars from L to K. Note that

RΈS^GL(n)κ = GL(n)L and RES^GL(n)L = GL(n)Lx GL(n)L (cf. [Ta]).

Let P2 be the maximal parabolic subgroup of U(2, 3) with Levi component

L(P2) = RES£GX(2) x U{\\ having the form

1 b 2χ Z 2

c z 3 -d_

1 — c —b

1

1

where

z2=-(bb)/2 + is, z3=-(cc)/2 + Jί' H i oj
for s, t in K. Let iV2be the unipotent radical of P2 (N2 fixes wx and w2).

Let N be the maximal unipotent subgroup of (7(2, 3). We can write N as Z 3 . ϋ, i.e.,

1 a b zx z 2 _

1 c z 3 —d

1 — c —b + άc

• 1 - ά
. . . . i

where

1 a b

• 1 c

• 1
-{cc)/2

— c
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•

1

Z 4

-d
•

•

1

Zl=d+aίt-cb + a(cc)/2 , z2 = -

z3 = - (cc)/2 + it, z4 = {ad- άd)β + is,

-b + ac){-b + ac)~\β + is ,

for 5, / in K.
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(b) Description of maximal parabolic subgroups of U(i, i). Let P\ denote the
maximal parabolic subgroup of U(i9 ί) having a Levi component L(Pj) = RES\GL(j) x
U(i—j, ί—j), unipotent radical UiJ, and of the form

}J z h

0

0

h-,

h

U) x U(i-j, i-j) Uψ

where geGL(j)L and Ϋι= Y. We decompose UiJ as

uψ

1. Theta liftings from U(29 3) to U(iJ). Denote by X the ^-vector space Vt ® W,
with its symplectic form < , > = Real« , >F. < , >^). Then Ar=(Ar

1)κ + (Z1)κ, where
(^I)JC = e1 W® " ®eiW, (X^x = *i ^ θ * θ ^ W. We also write Wj for β, ΪΓ and Ws

for β7 ϊ^. Let ψ be a nontrivial character of K\AK. Let MP^(Vi ® W^ be the metaplectic
group of Vi® W. Pick j , a splitting of 17(2, 3) x U(i, ί) in AfP^(Fi® W). Let ω^ be the
Weil representation of MP^F,® PF) (cf. [Ge-Ro-So] or [Ge-Ro]).

Let π be an automorphic cuspidal representation of U(2, 3), with Vπ as its vector
space. We use the Schrδdinger realization of ω^ in SdX^j), the Schwartz-Bruhat space
of (XX)A (cf. [Ra], [Ro], and [P.S.]). Then for / in Vπ, Φ in S&XJJ we write

Σ ωψ(s(g,h))Φ(x)f(h)dh

l/(2,3)κ\l/(2,3)i4

for the theta lift of / to U(i9 ί). We denote by θXπ, s) the space of such functions for
all / in Vπ9 Φ in S{{XX)^). It is well known that θ\π9 s) generates an irreducible
representation for U(i, i) if it is cuspidal (cf. [Ge-Ro-So]).

Suppose now J^® W= Uί ®U2 (orthogonal sum), and G = Gί x G2 is a subgroup
of U(Vi® W)9 the unitary group of F^® W. Suppose also G1 (resp. G2) acts on U1

(resp. U2). Then any splitting s of ί/(Ff® W) determines two splittings st of Gt into
MP+(Ui) for /=1,2. Also

where ωj, is the Weil representation of MP^iUi) for z= 1, 2.
Picking any one of the standard maximal parabolic subgroups P{ of U(i9 i), let U1
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be ^ Θ Θ ^ - Θ ^ i θ Θ ^ - , U2 be W^j+1®- φ Wt® Wi_j+ί® 0

Wt. Then U(i~j, ί-j) and H act on Ul9 where // (and ££(/)) act on U2. Therefore

there exists a splitting s\ of U(i—j, i—j) x // into MP*(Ui)9 and a splitting ŝ  of H into

MP*{U2). Also ω^ω^

THEOREM 1.1. (a) ^(π, s) is cuspidal if and only ifθ1'1^', s\) is zero, where y'

is a character of HK\HA defined by

and θ1'1^', s{) is the lift defined by ω\

(b) Θ5(π, s) is nonzero.

To prove the theorem we prove:

PROPOSITION 1.1. For j=\ to i-\

{θι

φ(π, s)f}(ng)dn

ωφ(s(g, h))Φ(xu ..., xt_}, 0 , . . . , Q)f(h)dh .

Hκ\HA

PROOF (cf. [Ra] or [Wa]). Write UίJ as JJ\3 x Uψ. First taking integration over

Ψ)^ we have

»φ(π, s)f}(u1g)du1

(U\'j)κ\(U\J)Λ

= Σ ωψ(s(u1g,h))Φ(xί,...,xi)f(h)du1dh.
J (Xi)κ J

Hκ\HΛ (U\'J)κ\(UΪJ)Λ

In writing this we have used a change in the order of integrations justified as in [Ra,

Appendix to Section 1]. Suppose

with [« t (] a matrix in MU(K\A). Then
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]r nk,k<xk, xk>w
2

Y\ ψ(Real(nkJ(xk, Xι}w)) Π

Therefore the integral over (Ui{j)κ\(Uί{j)A is zero unless

}J

Let (Y^K denote the subset of (Xχ)κ satisfying the above matrix equation. Then

Γ Γ ^
{Θι

φ(π, s)f}(uίg)du1 = 2^ <oψ(s(g9 h))Φ(xu . . . , x^)f{h)dh .
J . . J (Yί)κ(U\J)K\(U\J)A Hκ\HΛ

Let Sp{w} denote the L-vector space spanned by w. Then the following lemma is

easily proved using Witt's theorem.

LEMMA 1.1. There are three types of orbits of(Yί)κ under the left diagonal action

of Hκ and the right action of(Ulij)K:

(a) O, ξ) = (xu . ., Xi-j, ξP . . . , ξi)

where ξkeSp{wl9 w2} for k= 1 to j (not all in Sp{wt}9 i= 1, 2), i ,
0} for 1= 1 to

i—j, and (x, ξ) runs through a set of representatives of L(P2) orbits.

(b) (x9 ξ) = (xl9 . , Xi-p ζP . . . , ξi)

where ζkeSp{wί} for k=l to j , xιeSp{w2, w0, w_2} for 1=1 to i—j, and (x, ξ) runs

through a set of representatives o

(c) (x,

^) orbits.

We shall show now that integration over orbits of type (a) and (b) gives zero. The

kernel of the last integrals is:

(Yl)κ

ωφ(s(g, h))Φ(xl9 . . . 9 x d = ΣΣ
(X,ξ)

9 ξ)

where S^WXix, ζ)\(U2>%, δ2eHκ(x, ξ)\Hκ, and (Uψ)κ(x, ξ) (resp. Hκ(x, ξ)) is

the stabilizer of (JC, ξ) (resp. (x, ξ)(U2>
j)κ) in (Uψ)κ (resp. Hκ).

Suppose now (x, ξ) is of type (a). Then Hκ(x, ξ) is (N2)κ. By integrating over

2J)Λ this part of the sum becomes
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Σ Σ Σ coψ(s(δxu2g9 δ2h))Φ(x, ξ)du2
(a) δ2 . . J δι

(U2'
J)κ\(U2'

J)A

= Σ Σ coψ(s(u2g9 δ2h))Φ(x, ξ)du2 .
(a) δ2 . . J

(i/2)J)K(x^)\(^2'J)4

Next, we integrate this kernel against a cusp form / on HK\HA to get

Σ I I coψ(s(u2g, h))Φ(x, ξ)f{h)du2.
(a) J J

(N2)κ\HΛ (Vl2'J)κ(x,ξ)\{Ul2'J)ANote that the left action of N2 on (x, ξ) of type (a) can be written as a right action of
U2

J, so the inner integral is invariant under (N2)K\(N2)A. Then the last integral reads;

Σ I J ωψ(s(ug,h))Φ((x,ξ))du J
Ϊ J ί J

f(nh)dndh.

(N2)κ\(N2)A

Now / is a cusp form so this integral is zero, and we are done. For orbits of type (b)
replace N2 by Nt and use the same reasoning. This concludes the proof of Proposition 1.1.

We continue the proof of Theorem 1.1. If θι

φ(π,s)f is cuspidal, then we use
Proposition 1.1 for P\. We write then Φ{xu . . . , xi-ί, 0) as Φ{xu . . . , xI _1)Φ(0) and
define y'(h) to be {ω^'2(^(/0)Φ}(0). Conversely, we write the lift θfr^πγ'jDf as the
integral on the right hand side of Proposition 1.1. We consider this integral as a function
of U(i—l,i—l) imbeded in Pj. We compute its zero Fourier coefficients in the direction
of all standard maximal parabolic subgroups of U(i— 1, /— 1). Then these are all integrals

. . . , * „ ( ) , . . . , 0)f{h)dh ,
Wiχ-χWι)κ

Hκ\HΛ

where /= 1 to ί—\. But if all these are zero, then θι

φ(π, s)f is cuspidal. This concludes
the proof of Part (a) of Theorem 1.1. The proof of Part (b) is a standard argument (cf.
[Ra]).

2. Hypercuspidality. Let N (resp. U) denote the standard maximal unipotent
subgroup of (7(2, 3) (resp. C/(3, 3)). Let φξftJ (resp. φξtηtt) denote a nondegenerate character
of TV (resp. U) where ξ,ηφ0inL and tφO in K(cϊ. [Ge-Sh, p. 76]). For an automorphic
cuspidal form / on U(2, 3) (resp. C/(3, 3)) let W*f« (resp. W^*-"-') denote a ψξtη (resp.
φξfηtt) Fourier coefficient in the direction of TV (resp. ί/), i.e., a Whittaker function. We
write W(π, φξη) (resp. W(π, ψξ,η,t)) ft>Γ the space of all such Fourier coefficients, where
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π is a cuspidal representation of (7(2, 3) (resp. C/(3, 3)). We say that π is φξ>η (resp. φξttltt)

generic if W(π, ψξtη) (resp. W(π, Φξ,η,t)) is nonzero. We say π to be generic if π is φξ>η

(resp. φξftltt) generic for some ξ, η # 0 in L and / # 0 in K. If for all such £, 77 and t the

space W(π, i/r^) (resp. W(π, ψξ,η,t) is zero, then we say that π is hypercuspidal.

THEOREM 2.1. Tjf π is cuspidal generic on (7(2, 3), then its φ lift to (7(3, 3) is generic.

Moreover;

w
•Ψξ,η,-t/2_

θφ(n,s)f

0

1ωψ(s(g, h))Φ(otw0, w2,

if t is not a norm

if t is a norm ,

where oca = t.

PROOF. Write U=U1-U2 where

1

ά2

1 -c z

1 -a

1

with Λ1 5 α4, α 6 e i ^ a n d z — ac — b. Next we integrate the theta lift of/ over (Uί)κ\(Uί)A

against the character φξin,-{ti2){u^) — φ{i—tj2)a1). This integral is zero unless

\_\Xk,

t 0 0
0 0 0
0 0 0

Let (Y^K denote the subset of (X^K satisfying the above matrix equation. Then

Kit:>(;/2) = I I Σ ̂ MU^ A»*^I, ̂  xjfm^dudh.
J J (Yi)κ

HK\HΛ (U2)κ\(U2)A

The orbits of (Yi)κ under the diagonal action of Hκ can have the following re-

presentatives:
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if / is not a norm ,

if Ms a norm,

(a) (x9ξ)

(b) (x,ξ)

(c) (x,ξ)

(d) (x,ξ)

(e) (x,ξ) = (awo,lwl9w1)

(f) (*, f)

(g) (*, £)

where αά= ί and / in L. This is clear by using the action of {P^)κ and (P2)κ

 o n (^i)κ

For orbits of type (a), (c), (d) and (f), the action of (U2)κ\(U2)Λ gives an integration

of an additive character over L\AL. For orbits of type (b) and (e), observe that

ωψ(s(u2(a, b, c)g, h))Φ(x, lwl9 w\)φη(a)φξ(c)dadcdb

(U2)κ\(U2)A Hκ(x,ξ)\HA

ωψ(s(g, h))Φ{x + (cl+b)wu {l+a)wl9 wj

(U2)K\(U2)Λ Hκ(x,ξ)\HA

Next we change the variable c (if /T^O), SO we end with an integration of an additive

character over L\AL. As for orbits of type (g), write N as Z3U, and note that Uκ

stabilizes (αw0, w2, w^. Now the integral reads;

ωφ(s(u2g, h))Φ(ccw0, w2,

(U2)K\(U2)A UK\HΛ

Observe also that

ωφ(s(u2(a, b, c)g, h))Φ(ccwθ9 w29 w1) = Φ(ccw0 + cw2 + bw1, w2 + awl9 wx),

and

ωφ(s(g, z3h))Φ(aw0, w2, w1) = Φ(aw0 + acw2 + abwl9 w2 + awu w x ) .

By using the above equations and a change of variables, the last integral reads;

i i , zh))Φ(<xw09 w29

ωψ(s(g, h))Φ(ccw0, w2, wx) ψξatη(z)f(z- 1h)dzdh .

UA\HA UK\UA (Z3)κ\(Z3)A
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Note that the last integral cannot be zero for all Φ in SdXJJ (see also [Wa, Theorem

3.1]). So this concludes the proof of Theorem 2.1.

COROLLARY 2.1. Let π be a cuspidal representation of (7(2, 3). If θ\π, s) (resp.

Θ5(π, s)) is cuspidal, then π must be hyper cuspidal.

PROOF. If 04(π, s) (resp. 05(π, s)) is cuspidal then Θ5(πγ'9 s\) = 0 (resp. Θ3(πδ', sf) =

0) where /(/0 = ωJ 2(^(A))Φ(O) (resp. δf(h) = ω^2(s2

2(h))Φ(0, 0)) (cf. Proposition 1.1).

So πyf (resp. πδ') cannot be generic (cf. Theorem 2.1).

THEOREM 2.2. Let π be a cuspidal representation of C/(2, 3). Assume 04(π, s) (resp.

# 5(π, s)) is cuspidal. Then it is hyper cuspidal.

PROOF. Consider 04(7c, s). Write the maximal unipotent subgroup of (7(4, 4) as

U1 U2 (as done previously for (7(3, 3)). The integral of the theta lift over (Uί)κ\(U1)A

against φξ,ηiδ,-(t/2) is z e r o unless

\_\Xk, xl/

0 0

Let (Y^K denote the subset of (XΊ)K satisfying the above matrix equation. Then

g9 h))Φ(xu x29 χ3, x4;;(t/2> ( f f ) = I I Σ
J J (Yι)κ(U2)κ\(U2)A HK\HA

The orbits of (Y^K under the left diagonal action of Hκ can have the following

representatives:

(a) (x, ξu ξ29 ξ3) = (αw0, awί+bw29 wl9 w2)

(b) (x, ξl9 ξ29 ζ3) = ((xw0, wί9 awl9 bwx)

(c) (x, ξl9 ξ2, ξ3) = (w_2 + (t/2)w2, wl9 awl9 bwx)

(d) (x9ξl9ξ29ξ3) = (w-iHt/2)w2909090)9

where a, b in L, ocd = t9 and ξί9 ξ2, ξ3 can appear in any order. It is now left to show

that the integral corresponding to each of the above orbits vanishes. If ξt = 0 for some

/, then the conclusion is easy. Otherwise we end as we do in Theorem 2.1 for orbits of

type (b) and (e).

A similar argument holds for the theta lift # 5(π, s).
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