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Abstract. Given a cuspidal automorphic representation on U(2, 3), then its theta
lift to UG, i) is cuspidal if and only if its theta lift to U(i—1,i—1) is zero. Also, the
theta lift of a cuspidal generic representation from U(2, 3) to U(3, 3) is generic. The
theta lift of a cuspidal representation from U(2, 3) to U(4, 4) or to U(5, 5) is hypercuspidal.

In this paper we study the cuspidality and hypercuspidality of some automorphic
forms on the group U(, i) for i=1 to 5. These automorphic forms are “theta lifted”
from automorphic forms belonging to the space of a cuspidal representation = for the
group U(2, 3).

In Chapter 1 we study the tower of liftings 6(n, s) for i=1 to 5 to find conditions
for the cuspidality of the lift 8(x, s) in terms of the lift 8~ (=, s). More explicitly,
Theorem 1.1 states that 8i(, s) is cuspidal if and only if '~ !(n, 5) is zero. Moreover,
03(=, 5) is nonzero, so higher theta lifts cannot be cuspidal. Therefore we stop the tower
at i=5. These are well-known results for split groups (cf. [Ra]).

In Chapter 2 we generalize some results of [Wa], concerning the hypercuspidality
of such lifts. Theorem 2.1 states that the lift 83(n, s) is already nonzero for generic
representations 7 on U(2, 3). Moreover, a Whittaker function of the lift can be expressed
in terms of a Whittaker function of n. Theorem 2.2 states that 04(x, s) and 65(x, s), if
cuspidal, are also hypercuspidal in the sense that all Whittaker functions disappear.

In the proof of Theorem 2.1 we use the Witt decomposition for the space of U(2, 3),
i.e., the existence of a maximal isotropic subspace of dimension two, and an anisotropic
subspace of dimension one. In general if n is a cuspidal generic representation of
U(n,n+1), then the n+1 lift should also be generic. All theta lifts above this level
should be hypercuspidal.

We conclude by remarking that the “‘simpler” tower, U(1, 2) to U(, i), for i=1 to
3 is computed in [Wa]. If = on U(1, 2) is generic, then the lift to U(2, 2) is also generic
[Wa, Theorem 4.3]. Using Theorem 2.2, it is easy to show that the theta lift of U(1, 2)
to U(3, 3) is hypercuspidal.
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Notation. Let K be a global field, and L a quadratic Galois extension of K. We
write L= K(i), and 7 for the Galois involution on /e L. If U is an algebraic group defin-
ed over K. We write Uy for the group of its K-rational points, and U, or U, for the
adele group.

Let W be a 5-dimensional vector space over L equipped with a Hermitian form
<, >w having the matrix

in the basis {w, w,, wo, w_,, w_}.
Let V;fori=1to 5 be a 2i-dimensional vector space equipped with a skew-Hermitian
form { , },, having the matrix

in the basis {e, ..., e, é;, ..., é;}.

Let U(2, 3) (resp. U(i, i)) be the group of transformations in GL(S),, (resp. GL(2i),)
preserving the form < , >y (resp. { , Dy ). Then U(2, 3) and U(i, i) are the groups of
K-rational points of quasi-split algebraic groups defined over K, split over L. Also

H=U(_2,3)={geGL(5);3'Qg=0}
UG, i)={gEGL(2i)L ;g ig=Ji} .

(a) Description of parabolic subgroups of U(2,3). Let P, be the maximal
parabolic subgroup of U(2,3) with Levi component L(P,;)=RES%GL(1)x U(2, 1),
having the form

d 1 a b ¢ =z
S
P, = [U(Z, 1)} - -1 - =b |,
. . . 1 _d
d1 .. 1
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where z= —(a¢+bb+c@)/2 +is and s in K. Let N, be the unipotent radical of P;.
Recall RESEGL(n) is the disconnected quasi-split algebraic group of type
A,_{xA,., formed by the restriction of scalars from L to K. Note that
RESLGL(n)x = GL(n), and RESkGL(n), =GL(n), x GL(n),, (cf. [Ta]).
Let P, be the maximal parabolic subgroup of U(2,3) with Levi component
L(P,)=RESLXGL(2) x U(1), having the form

[g:l 1 * b Zl ZZ_
1l e zz —d
.. b

where
- . - ; 01
zy=—cb+d, z,=—bb)2+is, z3=—(Cc)/2+it, J=[1 0:|,

for s, ¢ in K. Let N, be the unipotent radical of P, (N, fixes w; and w,).
Let N be the maximal unipotent subgroup of U(2, 3). We can write N as Z,. U, i.e.,

1 a b 2z Z,
1 ¢ 2z, d
1 —¢ —b+ac
1 —a
. 1
1 a b a, a, 1 d z,
1 ¢ —(@)2 0 -1 it —d
= 1 —¢ —b+ac 1 ,
1 —a 1

where
zy=d+ait—b+a(Cc)2, z,=—[(ad+ad)+(—b+ac)(—b+ac)l)2+is,
z3=—(Ec)2+it, z,=(ad—ad)/2+is,
a;=—cb+a(ce))2, ay=—(—b+ac)(—b+ac)2,

for s, ¢t in K.
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(b) Description of maximal parabolic subgroups of U(i, i).

Let P{ denote the

maximal parabolic subgroup of U(i, i) having a Levi component L(P})=RESLGL(j) x
U(i—j, i—j), unipotent radical U™/, and of the form

i—j{

Yi—j

3

~ Y

RESLGL(j) x UGi—j, i—j) vy

where ge GL(j),, and Y'=Y. We decompose U™/ as Ui{/- U,

1. Theta liftings from U(2, 3) to U(i,j). Denote by X the K-vector space V;® W,
with its symplectic form ¢ , Y=Real({ , Dy,*<{ , dw)- Then X=(X))x+(X;)g, where
X)x=e, WD - @e,W, (X)g=é,W®D - @éW. We also write W; for e; W and Wj
for é;W. Let ¢ be a nontrivial character of K\Ay. Let MP¥(V;® W) be the metaplectic
group of V;® W. Pick s, a splitting of U(2, 3) x U(i, i) in MP¥(V;Q W). Let o, be the
Weil representation of MP¥(V;® W) (cf. [Ge-Ro-So] or [Ge-Ro]).

Let © be an automorphic cuspidal representation of U(2, 3), with V as its vector
space. We use the Schrédinger realization of w,, in S((X,),), the Schwartz-Bruhat space
of (X,), (cf. [Ra], [Ro], and [P.S.]). Then for f in V,, ® in S((X;),) we write

Oo(m, 5)f(9)= g{: ) wy(s(g, W)P(x)f (h)dh

U(2,3)x\U(2,3)4

for the theta lift of f to U(i,i). We denote by 0(x, 5) the space of such functions for
all £ in V,, ® in S((X,),). It is well known that 6%(r, s) generates an irreducible
representation for U(, i) if it is cuspidal (cf. [Ge-Ro-So]).

Suppose now V;® W=U, ® U, (orthogonal sum), and G=G, x G, is a subgroup
of U(V;® W), the unitary group of V;® W. Suppose also G; (resp. G,) acts on U,
(resp. U,). Then any splitting s of U(V;® W) determines two splittings s; of G; into
MPV(U;) for i=1, 2. Also

a)w(s(gb g2)) =co,,1,(s1(g1)) ® w./zl(sz(gz)) >

where w}, is the Weil representation of MP¥(U;) for i=1, 2.
Picking any one of the standard maximal parabolic subgroups P} of U(, i), let U,
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b? e oW, ;® e - @Wi—js Upybe Wi_j, 1@ - ®W,® Wi—j“@' @
W,. Then U(i—j,i—j) and H act on U,, where H (and GL(j)) act on U,. Therefore
there exists a splitting s' of U(i—j, i—j) x H into MP¥(U,), and a splitting s} of H into
MPY(U,). Also w,=0}'® wj?.

THEOREM 1.1. (a) 0O'(m, s) is cuspidal if and only if 0'~Y(ny’, s}) is zero, where y’
is a character of Hx\H , defined by

¥ () ={wy*(s3(h)2}(0) ,

and 0"~ '(my’, s1) is the lift defined by w,*.
(b) 03(m, s) is nonzero.

To prove the theorem we prove:

ProrposITION 1.1. For j=1 toi—1

{06(n, 9)f }(ng)dn
v\uy’

= j o “Z ,(s(g, N)D(xy, ..., x;-;, 0,...,0)f(h)dh.

* X Wt —))K .
Hx\Hy4 J

PrOOF (cf. [Ra] or [Wa]). Write U™ as U}’ x U3/, First taking integration over
(U)x\(UT)4, we have

{0a(m, 51 }(u,9)du,

UT)x\UT))4

= J (XZ J a)./;(s(ulga h)P(xy, ..., x)f(Wdudh .
Hx\Hy Vx WiHr\U)4

In writing this we have used a change in the order of integrations justified as in [Ra,
Appendix to Section 1]. Suppose

with [, ;] a matrix in M, (K\A4). Then
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y(s(u1g, N)P(xy, ..., x)=

[T ¥YReal(m <xp, x0w) |1 .//(%nk,kock, xk>W>'d5(x1,...,x,~).

izl>i-j ik>i—j
1>k

Therefore the integral over (UY)\(U%), is zero unless

(X XDwlicpaci= | oeeeeees .........
0:0 |}
T

Let (Y,)x denote the subset of (X,) satisfying the above matrix equation. Then

{efp(ﬂ:, S)f}(ulg)dul = f YE): (J),,,(S(g, h))¢(x1’ e xl)f(h)dh .
WiHr\U)4 HK\HA( e

Let Sp{w} denote the L-vector space spanned by w. Then the following lemma is
easily proved using Witt’s theorem.

LEMMA 1.1. There are three types of orbits of (Y,)x under the left diagonal action
of Hy and the right action of (U%)x:

(a) (x9 €)=(x15"'s~xi—ja €j9~‘-5£1)
where &, € Sp{wy, w,} for k=1 to j (not all in Sp{w,}, i=1,2), x,e Sp{w,} for I=1 to
i—J, and (x, &) runs through a set of representatives of L(P,) orbits.

(b) (xa €)=(x1’-'-,xi—js stu-a&l)
where &€ Sp{w,} for k=1 to j, x,€ Sp{w,, wo, w_,} for =1 to i—j, and (x, &) runs
through a set of representatives of L(P,) orbits.

(C) (x,f)=(x1,...,xi_j,O,...,O).

We shall show now that integration over orbits of type (a) and (b) gives zero. The
kernel of the last integrals is:

(YZ): ww(s(g, m)P(xy, ..., x)= (Zé);;ww(swlg, 0,M)P(x, &)
where 6, €(U3)(x, \(U)k, 62 € Hy(x, £)\H, and (Us)(x, ) (resp. Hy(x,?)) is
the stabilizer of (x, &) (resp. (x, E)U%Y)g) in (Us)g (resp. Hy).
Suppose now (x, &) is of type (a). Then Hy(x, &) is (N,)x. By integrating over
(UsH\(U%Y) 4 this part of the sum becomes
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(Z;‘;Z f azww(S(éluzg, 0,)P(x, &)du,
: P oWy

=22 f @y (s(ag, 6,)P(x, E)du, .

(@) o2 ,
U2k (x, O\UL") 4

Next, we integrate this kernel against a cusp form f on Hy\H, to get

g J J a)w(s(uzg, m)®(x, &) f(h)du, .
(NDK\Hg (US)x(x, ONUS) 4
Note that the left action of N, on (x, &) of type (a) can be written as a right action of

L, so the inner integral is invariant under (N,)g\(N,),. Then the last integral reads;

Y J f wy(s(ug, h))D((x, &))du f f(nh)dndh .
(a) - -

(N2)A\Hg (U )x(x, O\Us)4 (N2)Kx\(N2) 4
Now f is a cusp form so this integral is zero, and we are done. For orbits of type (b)
replace N, by N, and use the same reasoning. This concludes the proof of Proposition 1.1.

We continue the proof of Theorem 1.1. If 0%(n, s)f is cuspidal, then we use
Proposition 1.1 for P}. We write then &(x,, ..., x;_;,0) as &(x,, ..., x;_,)P(0) and
define y'(h) to be {w,*(s3(h))®}(0). Conversely, we write the lift 85 *(ny’,s1)f as the
integral on the right hand side of Proposition 1.1. We consider this integral as a function
of U(i—1, i—1) imbeded in P}. We compute its zero Fourier coefficients in the direction
of all standard maximal parabolic subgroups of U(i— 1, i—1). Then these are all integrals

f Z wl]l(s(g’ h))¢(x15 ey xla Oa LR O)f(h)dh 5
(WX xWpk
Hx\Hy
where /=1 to i— 1. But if all these are zero, then 0i(x, 5)f is cuspidal. This concludes
the proof of Part (a) of Theorem 1.1. The proof of Part (b) is a standard argument (cf.

[Ra]).

2. Hypercuspidality. Let N (resp. U) denote the standard maximal unipotent
subgroup of U(2, 3) (resp. U(3, 3)). Let Y, , (resp. ¥ , ) denote a nondegenerate character
of N (resp. U) where &, n#£0in L and ¢#0 in K (cf. [Ge-Sh, p. 76]). For an automorphic
cuspidal form f on U(2, 3) (resp. U(3, 3)) let W¥s (resp. WY%=n) denote a Y, (resp.
Y.,..) Fourier coefficient in the direction of N (resp. U), i.e., a Whittaker function. We
write W(m, Y ,) (resp. W(n, ¥, ,,)) for the space of all such Fourier coeflicients, where
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7 is a cuspidal representation of U(2, 3) (resp. U(3, 3)). We say that nis Y, , (resp. ¥, )
generic if W(n, ¥ ,) (resp. W(m, Y, , ) is nonzero. We say 7 to be generic if © is ¥, ,
(resp. Y, ,) generic for some £, n#0 in L and ¢#0 in K. If for all such &, n and ¢ the
space W(m, Y, ,) (resp. W(x, Y ,,) is zero, then we say that = is hypercuspidal.

THEOREM 2.1. If m is cuspidal generic on U(2, 3), then its Y lift to U(3, 3) is generic.
Moreover;
0 if tisnot anorm
W'Il;:,n, -2 _
Botmat 0y (s(g, W) P(awg, w,, W1)W}’g“’"(h)dh if tisanorm,
Ua\H4
where ad=t.
ProOF. Write U=U,* U, where
1 a, a, a, 1
a, a, as c
a, as as b
U= , Up=U,(a,b,c)= s
1 1 —¢ z
1 1 —a
1 1 i

with a,, a,, age K and Z=ac—b. Next we integrate the theta lift of f over (U )x\(U;)4
against the character Y, _2)(#;) =¥((—t/2)a,). This integral is zero unless

[{xe xDwli <k1<3=

S O o~
S O O
[ e i ]

Let (Y,)x denote the subset of (X,)x satisfying the above matrix equation. Then

Ve, n, - (£/2)
Woz,(n,S)f -

Hx\Hy4 (U2)x\(U2)4

2. y(s(ug, W)P(xy, Xz, x3) [ (W ,(W)dudh .

Yok

The orbits of (Y,)x under the diagonal action of Hy can have the following re-
presentatives:
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@ (x, O)=Ww_+ 2wz, wy, 0)
® &, H=(w_,+(/Dw,, Iw,, wy) if ¢ is not a norm ,
© (% )=w_,+(2)w,, 0, 0)
(d) (x, &)= (awo, wy, 0)
@ (x, &)=(awg, wy, wy)
®  (x, &)=(aw,, 0,0)
(8 (x, &)=(awg, wy, wy)
where ad=t and / in L. This is clear by using the action of (P,)g and (P,)x on (Y;)x.

For orbits of type (a), (c), (d) and (f), the action of (U,)x\(U,), gives an integration
of an additive character over L\A4,. For orbits of type (b) and (e), observe that

if 7 is a norm,

w,,,(s(u2(a, b> C)g, h))¢(xa lwl ’ Wl)wn(a)wé(c)dadCdb

(U2)x\(U2)g Hk(x,$)\H4

= J J @y(s(g, M)P(x+ (cl+b)wy, (I+aywy, w), ()Y (c)dadcdb .

(U2)x\(U2)4 Hx(x,§)\H4

Next we change the variable ¢ (if /#0), so we end with an integration of an additive
character over L\A4,. As for orbits of type (g), write N as Z,U, and note that Uy
stabilizes (aw,, w,, w;). Now the integral reads;

wy(s(uzg, h)P(oawo, wa, w )W e ,(u2) f(R)dhdu, .

(U)x\U2)4 Ux\Hyq
Observe also that
wy(s(uy(a, b, c)g, h))P(awg, Wy, wi)=D(awg +cw, +bwy, wy +awy, wy) ,
and
wy(5(g, 23h)P(OWq, Wy, i) =DP(awg +acw, +abw,, wy+awy, wy) .

By using the above equations and a change of variables, the last integral reads;

wy(s(g, zh))®(awgy, W, W1)'/’§a,q(z)f (h)dzdh

(Z3)x\(Z3)4 Ux\H 4

= J ,(s(g, h)@(awo, wy, wy) J f lﬂgu,n(z)f(z_lh)dzdh .

Uq\H4 Ux\U4 (Z3)x\(Z3)4
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Note that the last integral cannot be zero for all @ in S((X,),) (see also [Wa, Theorem
3.1]). So this concludes the proof of Theorem 2.1.

COROLLARY 2.1. Let © be a cuspidal representation of U(2,3). If 0*(r, s) (resp.
0°(m, 5)) is cuspidal, then = must be hypercuspidal.

PrOOF. If 0%(z, 5) (resp. 6°(z, 5)) is cuspidal then 65(ny’, s1)=0 (resp. 63(nd’, s3)=
0) where y'(h)=w;*(s3(R)P(0) (resp. 6'(h)=wy*(s5(h))P(0, 0)) (cf. Proposition 1.1).
So my’ (resp. md") cannot be generic (cf. Theorem 2.1).

THEOREM 2.2. Let 7 be a cuspidal representation of U(2, 3). Assume 0*(r, s) (resp.
0°(n, 5)) is cuspidal. Then it is hypercuspidal.

ProoF. Consider 6(x, s). Write the maximal unipotent subgroup of U(4, 4) as
U;- U, (as done previously for U(3, 3)). The integral of the theta lift over (U,)\(U,),
against Y, 5 _«2) 1S zero unless

[ xDwls <kJ<dT | eeeeeens ........
0:0 |}3
3

Let (Y,)g denote the subset of (X,)g satisfying the above matrix equation. Then

W:i’(:j)f_(t/n (g) = J‘ J (yz) w,,,(s(ug, h))¢(x1’ X2, X3, x4)f(h)w§,n,é(u)dudh .
(U2)x\(U2)4 Hx\H4q .

The orbits of (Y;)x under the left diagonal action of Hy can have the following
representatives:

@) (x, &, &y, E)=(awg, aw, +bw,, wi, wy)

®) (x, &y, &y, E)=(awqy, wy, aw,, bw;)

(©) (%, &1, &2, E3) =W +(t/2)wz, wy, awy, bwy)

(d) (x, 81,85, &)=W_2+(1/2)w,, 0,0,0),

where a, b in L, agd=t, and &,, &,, &; can appear in any order. It is now left to show
that the integral corresponding to each of the above orbits vanishes. If £;=0 for some
i, then the conclusion is easy. Otherwise we end as we do in Theorem 2.1 for orbits of
type (b) and (e).

A similar argument holds for the theta lift 65(r, s).
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