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Abstract. We are concerned with the qualitative theory of high codimension
foliations. In order to restrict the object of our study, we consider the actions of a
pseudogroup of local similarity transformations of a Euclidean space. For an orbit "with
bubbles" of such an action, we obtain analogs of the qualitative properties of codimension
one foliations.

1. Introduction. Let ^ be a codimension q foliation of a manifold. A foliation

^ is said to be transversely similar if all holonomy transition functions of ^ are local

similarity transformations of Rq. Therefore, if ^ is transversely similar, we obtain the

holonomy pseudogroup of 0 which consists of local similarity transformations of Rq.

Since there exists a correspondence between the terminology in the qualitative theory

of foliations and that of pseudogroups, we treat pseudogroups of local similarity

transformations of Rq instead of codimension q transversely similar foliations.

If q=\, then transversely similar foliations are well studied. In particular, these

foliations is said to be transversely affine foliations. Indeed, the qualitative theories of

codimension one C 2 foliations are studied by many people. Here, we recall a few

interesting theorems. Let 3F be a transversely orientable, codimension one foliation of

class C 2 on a closed smooth manifold M. A leaf Fof SF is semiproper if it is asymptotic

to itself from at most one side. Let F be a nonproper but semiproper leaf of #", that is,

a leaf which is asymptotic from exactly one side (which is called the nonproper side).

In this case, F is an exceptional leaf contained in a local minimal set Jί of exceptional

type (see [1]).

THEOREM A (cf. Sacksteder [9]). The local minimal set Jί=>F has a leaf with

linearly contracting holonomy.

THEOREM B (cf. Hector [4], Duminy (see Cantwell-Conlon [3])). F has a ger-

minal contracting holonomy on the nonproper side of F.

THEOREM C (cf. Cantwell-Conlon [2]). If the local minimal set Jί^>F is Markov,

that is, a local minimal set whose holonomy is modeled on symbolic dynamics, then Jί

contains at most finitely many semiproper exceptional leaves.
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THEOREM D (cf. Inaba [5]). Suppose that a foliation !F is transversely piecewise

linear. lf$F is topologically conjugate to a C2 foliation, then the local minimal set Jt^F

contains at most finitely many semiproper exceptional leaves.

On the other hand, in the case of q>2, interesting results have not been obtained

yet, because the asymptotic behaviors of leaves are very chaotic. For example, even the

types of minimal sets do not seem to have been completely characterized.

In order to restrict the object of the study, Nishimori formulated a concept of

"orbits with bubbles", which is a substitute for the concept of "semiproper orbits" in

the codimension one case. He obtained an analog of Sacksteder's theorem in [7]. In

the preceding paper [6], the first author of the present paper obtained a weak verison

of an analog of the theorem of Hector and Duminy. In this paper, we continue to

investigate the qualitative properties of the orbits with bubbles. In particular, we prove

analogs of Theorems B, C and D for codimension one foliations.

2. Similarity pseudogroups and the statement of the results. In this section, we

recall similarity pseudogroups and state our main results. For more information on

pseudogroups in our sense, see Nishimori [7] and [8].

Let Γ**™'* be the set of all local homeomorphisms h: U^V of Rq satisfying the

following two properties:

(1) The domain (/and the range Vofh are both non-empty, bounded and convex

open subsets of Rq. We denote D(h)=U and R(h)= V.

(2) There exists an orientation preserving similarity transformation h: Rq^Rq

such that R(D(h)) = R(h) and the restriction Tι\D{h) — h. Such h is determined uniquely by

A, and is called the extension of h.

Let Γ*£% = ΓJ*™'* u {idRq, id 0 } , where i d 0 is the unique transformation on the empty

set 0 .

DEFINITION 2.1. A subset Γ of Γj!" is called a pseudogroup if it satisfies the

following three conditions:

(1) idRqeΓ.

(2) If/, geΓ, then fogeΓ.

(3) I f/eΓ, t h e n / " 1 eΓ.

DEFINITION 2.2. Let Γo be a subset of Γs

q\ +'*.

(1) A subset Γ o is said to be symmetric if heΓ0 implies h~1eΓ0.

(2) Denote by <Γ0> the intersection of all the pseudogroups Γ^Γ*™ which

contain Γo. Then <Γ0> is also a pseudogroup and is called the pseudogroup generated

byΓ0.

Let Γo be a symmetric subset of Γ£f*, and Γ = (Γ0}. Denote by W{Γ0) the set

of all words with Γo as alphabet, that is, W(Γ0) = H^0(Γ0)
n, where (Γ0)

n means the

product of n copies of Γ o and (Γo)° the set consisting only of the empty word ( ). This
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set W(Γ0) is useful in treating the pseudogroup Γ, because the maps Φ : W(Γ0)-+Γ

defined by Φ(( )) = id R q for the empty word ( ) and by Φ(w) = hmo •• o Λ 1 f o r a word

w = (A m , . . . , hx) is surjective.

NOTATION 2.3. (1) For a word w e W(Γ0), we put gw = Φ(w).

(2) For words w = (A m , . . . , Ax), w' = (kn, . . . , fc^e W(Γ0), we denote the product

of w and w', and the inverse of w by

ww' = (A m , . . . , hx, kn9..., kx), w"* = ( A Γ x , . . . , A ~ x ) .

Note that gww> = gw°gw> and ^ 1 = ̂ W_1 = Φ ( W - 1 ) = AΓ1 ° oA" 1 .

DEFINITION 2.4. Let x e Rq. The T-orbit ofx is the set Γ(x) = {g(x) \ g e Γ, x e D(g)}.

DEFINITION 2.5. Let xeRq. The stabilizer pseudogroup of x is the set Stab(x) =

{geΓ\xeD(g) and g(x) = x}.

Here, we give some examples of similarity pseudogroups. For xeRq and r > 0 , we

denote by U(x; r) the r-neighbourhood of x.

EXAMPLE 2.6. Consider the case q = 2 and let x1 = (0, 0), x 2

 = θ> 0)

(1) Let Ux = C/((l/2, 0); 1/2 + ε) for some 1/2 > ε > 0. Define similarity transforma-

tions hu E2 of R2 by hί(x,y) = (xβ, yβ\ h2(x9y) = ((x + 2)/3,y/3) and let Λ£ = Λ1|Cfl.

Denote by Γ the pseudogroup generated by Γ 0 = {A1, A2, Af1, A2

 1}c=Γ2i|+*. Then

Γ ( X 1 ) = Γ(JC2) is the standard Cantor set in [0, 1] x {0} <=/?2. Note that Af for /= 1, 2 is

a contraction to xt which is the unique fixed point of h{.

(2) Let U2 = U((09 0); 1 + ε) for some small ε > 0. Take A to be the rotation around

(0, 0)eR2 by angle θ, and define h — h\υ2. Denote by Γ the pseudogroup generated by

Γ o = {A, h~x}. If 0/π is irrational, then Γ(x2) = S1czR2 and no element of Γ is a contrac-

tion to x2.

(3) We modify the first example. Let Uί be as in (1). Define similarity trans-

formations h'u h2 of R2 as follows: \ι\ is the rotation around (1/2, 0) by angle π while

hf

2 is the composite h\ oRί of h1 in Example (1) and h\. Let A^R} !^ . Denote by Γ'

the pseudogroup generated by Γ'0 = {h'l9 A2, A'f1, A ^ ^ c Γ 8 ^ * . Then Γ / ( X 1 ) = ^ /(Λ :2)

and /""(*!) is the standard Cantor set in [0, 1] x {0}c=/?2. Note that h\ (resp. A2) has

a unique fixed point (1/2, 0) (resp. (3/4, 0)), which are not contained in T\x^).

DEFINITION 2.7. The Γ-orbit Γ(x) of x e Rq is said to be proper if for every y e Γ(x),

Γ ( J C ) \ { J } does not contain y. Otherwise, Γ(x) is said to be nonproper.

In order to consider analogs of the theorems in the codimension one case, we have

to introduce a substitute for the concept of "semiproper Γ-orbits". As an attempt,

Nishimori introduced the concept of 'T-orbits with bubbles".

DEFINITION 2.8 (cf. [7, Definition 3.2]). Let x+ e Rq. We say that the Γ-orbit Γ(x*)

of x+ is with bubbles if for each X G Γ ( X ^ ) , there exists a non-empty, bounded and
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convex open subset Bx (called a bubble at x) o(Rq satisfying the following three properties:

(a) xedBx, where dBx denotes the boundary of Bx.

(b) If xί9 x2eΓ(jt*) and x1φx2, then BXi nBX 2 = 0.

(c) If h G Γ o and x e D{h) n Γ(x*) satisfy h(x) φ x, then h(Bx) = Bh(x), where /i is the

extension of h.

EXAMPLE 2.9. In Example 2.6, (1), the Γ-orbits Γ(xx) and Γ(x2) are with bubbles.

For example, take V° = £/((-1/2, 0); 1/2) as £ X l , Λ2(F°)= £/((l/2, 0); 1/6) as 5Λ 2 ( X l ),

A!θA2(K°)= l/((l/6,0); 1/18) as ΛΛlβJW3Cl), Ai(K°)=t/((5/6,0); 1/18) as B^Xι) and so

on. By the same construction, we can find bubbles of Γ(x2).

On the contrary, as we see later, Γ(x2) in Example 2.6, (2) and Γr(Xi) in (3) cannot

be with bubbles.

From now on, a finite, symmetric subset Γ Q C Γ J1™'*, Γ = (Γoy and x+eRq are

supposed to satisfy the following two properties:

(51) There exists a constant ε > 0 such that the distance dist(Γ(x^), \JheΓodD(h))

is greater than ε.

(52) The Γ-orbit Γ(xif) of x+ is nonproper and with bubbles {Bx}xeΓ{Xit).

In this situation, Nishimori obtained an analog of Sacksteder's theorem.

THEOREM 2.10 (cf. Nishimori [7, Theorem 3.3]). Assume that the pseudogroup Γ

generated by a finite, symmetric subset Γo of Γ̂ ™ * and x+ eRq satisfy (SI) and (S2).

Then there exist geΓ andzeΓ(x+) such that zeD(g), g(z) = z and that g is a contraction,

that is, the similitude ratio of g is less than 1.

The organization of the rest of this paper is as follows. In the next section, we

continue to list terminology and notation and find a common domain of generators of

holonomy of a Γ-orbit with bubbles. In the preceding paper [6], the first author proved

the existence of nontrivial holonomy for a Γ-orbit with bubbles, but could not specify

the existence of contracting holonomy. In Section 4, we prove the following theorems,

the first of which is a complete analog of the theorem of Hector-Duminy in this sense.

THEOREM 2.11. Assume that the pseudogroup Γ generated by a finite, symmetric

subset Γ o ofΓs

q

1™'* and x+eRq satisfy (SI) and (S2). Then there exists geΓ such that

x+ eD(g), g(xif) = xiκ and that the similitude ratio of g is less than 1, that is, g is a

contraction to x+.

THEOREM 2.12. The closure Γ(xif) of Γ(x+) contains at most finitely many non-

proper Γ-orbits with bubbles.

In the final section, we treat the case of q = 2 and prove the following:

THEOREM 2.13. Suppose that q = 2. Let xe Γ(x^) and let g e Stab(x) be a rotation
at x. Then there exists neNsuch that gn — idR2.
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THEOREM 2.14. Suppose that q = 2 and x e Γ(x+) so that Γ(x) is a nonproper Γ-orbit

with bubbles. Then the T-orbit Γ(x) of x has a compactly supported holonomy, that is,

there exists a compact subset K of Γ{x) such that gw = idR 2 for every z e Γ(x)\K and

every loop w = (hm,..., Λ^e W(Γ0) at z satisfying Λf° oΛ1(z)eΓ(Λ:)\^: (1 <i<m).

We refer the reader to Definition 3.2 below for the definition of loops.

3. Domains of generators of holonomy of Γ-orbit with bubbles. Assume that the

pseudogroup Γ generated by a finite, symmetric subset Γ o of Γ**™'* and x+eRq satisfy

(SI) and (S2). Let {Bx}xeΓ(Xit) be bubbles of Γ(x*). We continue to recall more notions

from Nishimori [7] and Matsuda [6].

DEFINITION 3.1. (1) For a word we W{Γ0), we denote by | w\ the word length

of w, that is, I w | = 0 for the empty word w = ( ) and | w \ = m for w = (hm,..., hλ).

(2) For x,yeRq with y e Γ(x\ put

dΓQ(x, y) = min{| w\\we W(Γ0% x e D(gw) and gw(x) =y} .

Then dΓo is a natural distance on the orbit Γ(x).

DEFINITION 3.2. Let x,yeRq. A word we W(Γ0) is called a chain at x to y if

xeD(gw) and gw(x)=y. Furthermore, if gw{x) — x, then w is called a loops at x.

NOTATION 3.3. For a chain w = (Am,..., AJe W(Γ0) at xeR9, denote gk =

hko - - o h! G Γ, go = idRq and xk = gk(x) for every fc = 0, 1, . . . , m. Note that gw = gm,x0 = x

and xkeZ)(Λk + 1) for λ: = 0, 1, . . . , m— 1.

DEFINITION 3.4. A word w = (Λm,..., h^e W(Γ0) is called a simple chain (resp.

simple loop) at xeRq if

(1) w is a chain at JC,

(2) XiΦXj for every 0<i<j<m (resp. x^Xj for every 0<i<j<m— 1 and

^ ( x ) = x).

Note that if w e W(Γ0) is a simple chain at x to y, then w " x is a simple chain at y to x.

DEFINITION 3.5. Let w = (hm,..., ht) e W{Γ0) (m> 1) be a chain at xe Rq.

(1) We define a sub-chain at xj.1 by wiJ = (A i,..., A,-) (1 <j<i<m).

(2) A sub-chain wo is a sub-loop at *,-_ x if x ^ X j . x.

(3) A sub-chain (resp. sub-loop) wtj at x ^ is called a proper sub-chain (resp.

proper sub-loop) of w if vt>l7 ^ w.

DEFINITION 3.6. Let w = (hm,..., A t)e W(Γ0) (m>\) be a chain at xeRq and

Wj y a sub-loop at Xj-i Then we can define a new chain w\w l V at x by

NOTATION 3.7. For geΓ^, we denote the similitude ratio of g by SR(#).
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The following lemma is obvious.

LEMMA 3.8. Let geΓ*£χ. If there exists xeD(g) and r>0 so that U(x; r)aD(g),

then g(U(x; r))=U(g(x); r SRfo)).

The next lemma is an easy consequence of the definition of bubbles and the

assumption (SI).

LEMMA 3.9. Let heΓ0 and xeDQi)nΓ(x^).

(1) U(x; ε) aD(h) and h(U(x; ε)) = U(h(x); ε SR(Λ)).

(2) // h(x) Φ x, then h(Bx) = Bh{x), hence SR(h) = dmm(Bh(x))ldmm(Bx).

Nishimori [7, Lemma 4.5] proved that the total volume and the diameters of all

bubbles are bounded.

Let δ = sup{diam(2?y) | y e Γ(.x*)}.

LEMMA 3.10. Let w = (hm,..., Ax)e W(Γ0) be a simple chain at xeZ>(0w)nΓ(x^).

Then gw is defined on U(x; ε dmm(Bx)lδ) and gw(Bx) = Bgyv(x), hence SR(#W) =

PROOF. Nishimori proved similar lemmas in [7, Lemmas 4.3, 4.7] for a short-cut

w at x, which is a simple chain at x with some auxiliary conditions. But in these proofs,

he used only the fact that w is a simple chain at x. So the same argument is applicable

to the proof of this lemma. •

LEMMA 3.11. Let w = (hm,..., hx)s W{Γ0) be a simple loop at xGD{gw)(\Γ{xi()

with | w | > 2 , that is, m>2. Then gw is defined on U(x;ε diam(Bx)/δ) and

gw(Bx) = BgUx)( = Bx\ hence SR(# J = 1.

PROOF. Put w/ = (Λm_ 1,..., hx) and w" = (Λm). Then w = w"wf and wf is a simple

chain at x to gw(x) and w" is a simple chain at gw(x) to gw(x) = x. By Lemma 3.10,

gw>(Bx) = Bgχvf{x), gw»(Bg^,{x)) = Bgχv,/{x) = Bx and

/ / diam(i?x)gw\ Upc ε
δ

Hence gw(Bx) = gw, o gw(Bx) = Bx, and

U ( x ; ε .

P u t M = s u p A e Γ o S R ( Λ ) e [ l , TO).

LEMMA 3.12. Let w = (h)eW(Γ0) be α simple loop at x e D ^ J n Γ ^ ) that is,

I w I = 1. Then gw is defined on U (x ε diam(BJ/(M δ)) and
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M δ

PROOF. Since gweΓ0, xeD{gw)nΓ{xi() and diam(2?x)/(M (5)<l, this is an easy

consequence of Lemma 3.9. •

DEFINITION 3.13. A word we W{Γ0) is called a basic loop at xeRq if there exist

ξ, η e W(Γ0) such that ξ is a simple chain at x, η is a simple loop at gξ{x) and

w = ξ~xηξ. We call ξ the simple chain part ofw and η the simple loop part ofw.

NOTATION 3.14. Unless otherwise stated, for a basic loop w at xeΓ{xir), we

denote the simple chain part of w by ξ and the simple loop part by η.

Note that for every basic loop w = ξ " 1ηξ at x, we have SR(gw) = SR{gξx) SR(gη)

LEMMA 3.15. Let w = ξ~1ηξeW(Γ0) be a basic loop at l e D ^ J n Γ ^ ) with

\η\>2. Then gw is defined on U(x\ ε diam(5x)/δ) and gw(Bx) = Bgxv(x)( = Bx), hence

PROOF. Note that ξ is a simple chain at x to gξ(x), η is a simple loop at ^(x)

with I η I > 2 and ξ'1 is a simple chain at gξ{x) to x. Therefore this lemma follows from

Lemmas 3.10 and 3.11. •

Similarly, using Lemmas 3.10 and 3.12, we obtain the following:

LEMMA 3.16. Let w = ξ~1ηξeW(Γ0) be a basic loop at xeD{gw)nΓ{xir) with

\η\ = \. Then gw is defined on U(x; ε diam(i?x)/(M δ)) and

M δ )) \ M δ

The next lemma follows from Lemma 3.15:

LEMMA 3.17. Let w^ξ^η^^ W(Γ0) (i= 1, . . . , m) be a basic loop at xeΓ(x+)

with \ηι\>2 for every / = l , . . . , m and w = wm w1. Then gw is defined on

U(x; ε diam(BJ/δ) and gw(Bx) = Bg^(x) ( = Bx), hence SR(gw) = 1.

By the above observations, we can find the domains of the generators of Stab(x^).

PROPOSITION 3.18. There exists a subset ΩH of W(Γ0) such that

(1) every weΩH is a basic loop at x+,

(2) for every loop ζ e W{ΓQ) at x+ {hence gζ e Stab(x*)), there exist wu . ,.,wmeΩH

such that gζ = gWm...Wί on D(gWm...Wι)9

(3) for every w e ΩH,
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PROOF. By a standard argument (for example, by the basic loop theorem [8,

Theorem 8.10]), there exists a subset ΩH of W(Γ0) satisfying the condition (1) and (2).

By Lemmas 3.15 and 3.16, for every basic loop w at x*,

U(Xi,;^ =--^)<=D(gJ.

4. Proof of Theorems 2.11 and 2.12.

PROOF OF THEOREM 2.11. Suppose on the contrary that for each #eStab(x*) we

have SR(#)= 1, that is, g is a rotation which fixes x+.

LEMMA 4.1. For every x e Γ(x^) and g e Stab(x), we have SR(g) = 1.

LEMMA 4.2. Let geΓ with D{g)nΓ{xit)Φ0. Then SR(g) = dia.m(Bgix))/dmm(Bx)

for every x e D(g) n Γ(x^ ).

PROOF. There exists w = (λ π , . . . , /zt)e W(Γ0) such that gw = g. We prove the

lemma by induction on n.

(I) For n=l,w = (h1) and g1 =hίeΓ0. If gx(x) = x, then gx e Stab(x). So by Lemma

4.1, SR(gf1) = l=diam(^ l ( ; c ) )/diam(^) . If g^ipήΦx, by the definition of bubbles,

gί(Bx) = Bgiix). Therefore SR(^1) = diam(^ί7l(JC))/diam(5:c).

(II) Assume that the assertion holds for n. Then

Without loss of generality, by the boundedness of the total volume of bub-

bles, we may assume that diam(2?xJ>diam(2?y) for every yeΓ(x+). Note that

diam(2?xJ = diam(i?y) for only finitely many yeΓix^). Since the orbit Γ(xif) is non-

proper, we can choose and fix a point z e ί/(x^ ε/3) n Γ(x^) so that diam(i?z) <

diam(Λ,J.

LEMMA 4.3. Let we W{Γ0) be a chain at x+ to z. Then U{x+\ ε/3)cDig' 1).

PROOF. Note that w is not the empty word.

We write w-χ={hm,..., hx) {\w~l\=m^\, A,eΓ0), and put w^=(hk,..., h,)

and gk = gw-i=g-*=hko ••• °AX for k= 1, 2 , . . . , m.
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We prove U{x+ ε/3) c D(gk) by induction on k.
(I) For k=l, note that g1=h1eΓ0. Since z e ^ J n f ^ ) , by Lemma 3.9 we

have U(z; ε)aD(g1). By the choice of z, we have £/(.**; ε/3)c U(z; ε)(^D(g1).
(II) Assume that the assertions hold for k. Then, by Lemma 4.2 and the choice

gfk) = diam(5gk(JCΛ))/diam(5JC# )< 1. Since ze £/(>*; ε/3)^D(gk), it follows that

Hence U(gk{x+)\ ε/3)c E/fok(z); ε). Since ft(z)eΓ(^)nl)(/ι4+1), we get U(gk(z);ε)
D(hk+1) by Lemma 3.9. Therefore gk(U(xi(;ε/3))ciD(hk + 1)9 that is,

In Lemma 4.3, if we take w to be a simple chain at x+ to z, then w * is a simple
chain at z to x* and by Lemma 3.10, g~ 1(BZ) = 5 ^ i(z) = ^ ^ . Furthermore, by the choice
of z, diam(2?2)<diam(i^). Hence

On the other hand, by Lemma 4.3 and the choice of JC*,

-

a contradiction.
Therefore there exists gf6Stab(x^) such that SR(#)<1. This completes the proof

of Theorem 2.11.

PROPOSITION 4.4. There exist heΓ0 andxeΓ(xiζ) such that h is a contraction to x.

PROOF. Let w be a loop at some point in Γ(x^) so that
(1) SRfow)#l,
(2) w has a minimal length among such loops.

We denote the base point of w b y i .

CLAIM 4.4.1. w is a simple loop at x.

PROOF. If w is not a simple loop at x, then w contains a proper sub-loop w'.
By the choice of w, we must have SR(gfw/)=l. Then we have SR(gfw\w,)#l. But
| w \ w ' | < | w | , a contradiction. •

If I w I > 2, we have SR(#J = 1 by Lemma 3.11. Hence we must have | w \ = 1, that
is, gweΓ0, and either gw or ^r"1 is a contraction to x. •
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REMARK. For this reason, Γ(x2) in Example 2.6 (2) and Γ'ζxJ in (3) cannot be
with bubbles, because Γo in (2) (resp. Γ'o in (3)) does not contain a contraction to some
point in Γ(x2) (resp. Γ^x^). Thus the concept of "with bubbles" depends on the choice
of the generating set.

PROOF OF THEOREM 2.12. For every nonproper Γ-orbit Γ(x) with bubbles, by
Proposition 4.4, there exist cxeΓ(x) and hxeΓ0 such that hx is a contraction to cx,
which is a unique fixed point of hx. We fix such cx and hx. Hence we obtain an injective
map

Ψ: {Γ(x) I Γ(x) is a nonproper Γ-orbit with bubbles in

by Ψ(Γ(x)) = hx. Since Γo is a finite set, Γ(xi() contains at most finitely many nonproper
Γ-orbits with bubbles. •

5. Two-dimensional case. Throughout this section, we suppose that q = 2, hence,
a finite, symmetric subset Γ Q C I Γ " ^ * , Γ = (Γ0} and x+eR2 satisfy the assumptions
(SI) and (S2).

The following two lemmas are elementary.

LEMMA 5.1. Let gsΓ with gΦidR2. Then g has at most one fixed point.

LEMMA 5.2. Let ge Γs

2

im+ and x e D(g). If g(x) = x and there exists z e D(g) n Γ(x+)

so that g(Bz) = Bz, then g = idR2.

LEMMA 5.3. Let xeΓ(x+) and let w = (hm, . . . , hx)e W(Γ0) be a chain at xeD(gw).
Then there exists β>0 such that U(x; β)cD(gw) and gw{Bz) = Bgyv(z) for every ze
U(x;β)nΓ(Xit)\{x}.

PROOF. By the induction on k, we show the existence of βk>0 such that
U(x; βk)^D(gk) and gk(Bz) = Bgk(z) for every ze U(x; Λ)nΓ(^)\{x} .

(I) For fe=l, we have gγ^=h1eΓ0.
Case 1. If g x (x) = x, then x is a unique fixed point of g ί. Hence g1(z)Φz for every

) . Therefore g1(Bz) = Bgι{z) for every z e % ) n Γ(x*)\{x}. Take βx >0 so

Case 2. If gfi(x)^x, since g1 has at most one fixed point, there exists βγ >0 such
that C/(JC; βJaDigJ and 0x(z)#z for every ze U(x; βx). Then gί(Bz) = Bgι(z) for every

(II) Assume that the assertion holds for k, that is, there exists βk>0 such that
U(x;βk)czD(gk) and gk(Bz) = Bgk(z) for every ze[/(x;/ί k )nΓ(i,)\W. Note that
gk(x)GD(hk + ι).

Case 1. If hk + ί(gk(x)) = gk(x), then gfk(jc) is a unique fixed point of hk + 1.
Hence hk + ί(z)φz for every z6/)(Ak+1)\{gfk(jc)}. Then hk+ί(Bz) = Bhk + ι(z) for every ze

} Therefore we can take βk+1>0 so that U(gk(x); JJk+1)a
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1) ngk(U(x\ βk)). Put βk + ί = ΪJk+1

Case 2. If hk+1(gk(x))φgk{x), since hk + 1 has at most one fixed point, we can

take Pk + ί>0 so that U(gk(x);Pk + ί)jzD(hk+1)ngk(U(x;βk)) and hk + i(z)Φz for every

zeU(gk(x);βk+1). Then put βk+1 = βk + 1

REMARK 5.4. In the above lemma, if xeΓ(x+) and if each gt(x) is not a fixed

point of Ai + 1 (/ = 0, 1, . . . , m-1), then gw(Bx) = Bgyvix).

PROOF OF THEOREM 2.13. There exists we W(Γ0) such that w is a loop at x and

Assume on the contrary that gΊ = gn ΦidR2 for all neN.

Since gweStab(x), by Lemma 5.3, there exists β>0 such that U(x; β)<^D(gw) and

gw(Bz) = BgUz) for all ze t/(x; j3)nΓ(x*)\{x}. Since x e % ) , we have £/(x;j3)n

Γ(x^)\{x}τ£0. Furthermore, since r̂ is a rotation at x, we have gw(U(x; β)) =

U(x\ β) and sC is defined on U(x; β) for all neN.

Take zet/(x;jS)nΓ(x*)\{x}. Note that gn

w(z)ΦgZ(z) for n>meN. Indeed, if

#£,(z) = #™(z), then #£,~m has two fixed points x and z, but by Lemma 5.1, this contra-

dicts the fact that gn

w~
mΦidR2.

Since gn

w(z)eU(x; β)nΓ(xi() for all neN, we have, by the choice of /?>0,

ίw(^(z)) = 5Λ+1(z) a n d ί w ( % ) ) ^ ί w ( % ) ) f o r w ^ w s i n c e 0w i s a rotation at x,
bubbles ^ ^ ( z ) are similar to each other, that is, there exist infinitely many bubbles on
a bounded set which are similar to each other, a contradiction.

Hence there exists neN such that ^ π = idR 2. •

REMARK 5.5. Let w^ξ^η&e W{Γ0) be a basic loop at xeΓ(x^) (/= 1,. . . , m)

and w = wm wx. If |f/f | > 2 for every /= 1,. . . , m, then by Lemma 3.17, gw(Bx) = Bgyv(x).

Thus by Lemma 5.2, ^ w = idR2. Hence if gwφidR2, there exists i such that 1^1 = 1 and

that gη. is either a contraction (i.e., SR(^.)< 1) or an expansion (i.e., SR(^.)> 1) or a

nontrivial rotation (i.e., SR(^.)=1 at the unique fixed point x of gη.eΓ0.

PROOF OF THEOREM 2.14. Since Γ o is a finite set,

7V=sup{dΓo(x, y) Iy is a nontrivial fixed point of some heΓ0}

is finite. Define a subset Kcz Γ(x) by

K={yeΓ(x)\dΓo(x,y)<N+l}.

Then ^satisfies the required property. Indeed, since each hi has no fixed point in R2\K,

we have gw(Bz) = Bgyv(z) = Bz by Remark 5.4. Then by Lemma 5.2, <7w = idΛ2. •
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