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Abstract. Liapunov's direct method has been used very effectively for a hundred
years on various types of differential equations. It has not, however, been used with
much success on non-differentiated equations. In this paper we construct a Liapunov
function for a nonlinear integral equation with an infinite delay which is nonconvolution
type. From that Liapunov function we deduce conditions for boundedness, stability,
and the existence of periodic solutions. The kernel of the integral equation is a
perturbation of a positive kernel and there are estimates showing how large the
perturbation can be. The advantage of the Liapunov approach over classical methods
for integral equations is the simplicity of analysis, once a Liapunov function is
constructed.

1. Introduction. Liapunov functions and functional have been used very
effectively on ordinary, functional, and partial differential equations, but have had little
application to nondifferentiated equations (cf. Miller [12; p. 337] and Gripenberg et al.
[5; p. 426]). The reason for this is simple. Given

x'=f(t,x), ' = d/dt,

and any differentiate scalar function

V(t, x),

• if x(ή is a solution, then V(t, x(t)) is a scalar function of t and we can compute

dV(t, x(t))/dt = gmd V-f+dV/dt.

That is, we can find the derivative of V along the solution directly from the differential
equation. If it turns out, for example, that dV/dt<0, then this may yield much
information about the behavior of the unknown solution.

By contrast, if

J - αo
x(t)=a(t)+\ g(t, s, x(s))ds ,

J - αo

it seems unclear how to relate the derivative of a scalar function V(t, x) to the unknown
solution. Indeed, Miller [12; p. 337] proceeds only under the assumption that the inte-
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gral equation can be differentiated. Gripenberg et al. [5; p. 426] dismiss Liapunov's
direct method out of hand saying that the analogues "for integral and functional
equations are of little practical interest."

Our thesis here is that the direct method of Liapunov is of great interest in
functional equations and we present examples to support that view.

It this paper we construct Liapunov functionals for equations of the form

= a(ή- Γ
J - c

(1) x(0 = a(ί) - D(t, s)g(s, x(s))ώ,
J — oo

which are closely releated to a combination of Liapunov functionals constructed by
Levin ([7], [8]) for variants of

Xt,s)g(x(s))ds
Jo

and by the author [1] for

x'{i) = Ax + B(t, s)x(s)ds .
Jo

These Liapunov functionals have properties in sharp contrast to those for differential
equations.

In the classical theory of Liapunov's direct method for a functional differential
equation of the form

x' = F(t,xt)

(see Lakshmikantham and Leela [6] or Yoshizawa [14] for standard theory and
explanation of notation), one seeks a functional V(t, φ) with at least the property that

W(\Φ(0)\)<V(t,φ), K(ί,0) = 0,

where W is a strictly increasing function. Thus, if V'(t, xt)<0, then the zero solution
is stable. Such functions W are prominently missing for integral equations and one is
forced to other methods. The interesting part is that one can frequently derive the
required W along solutions; and that is all that is needed to prove the classical relations.

Equations of this sort are often written as

(F) x{t) = Λ{t)-[ D(t9 s)g(s, x(s))ds ,
Jo

where Λ(t) now contains both a(t) and j ^ D(t, s)g($, φ(s))ds, and where φ is a given
initial function. Conditions commonly required on D will ensure that A{t)eL\0, oo)
for a bounded initial function φ.

Much has been written about this equation when D is of convolution type, often
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using the theory of positive, kernels. A selection may be found in Levin [9], London

[10], MacCamy [11], and Staffans [13]. Physical problems described by such equations

are found in Gripenberg et al. [5; pp. 4-13], MacCamy [11; pp. 570-574], and Miller

[12; pp. 62-73], for example.

2. A scalar integral equation. Let D: R x R^R with both D and J'_ J D(t, s) \ ds

being continuous, let a: R^R be continuous, and let g: RxR^R and gt: R-+R all be

continuous with xg(t,x)>0 if x / 0 , \g1(x)\<\g(t, x)\<\g2(x)\, *0i(*)>O if x / 0 .

Consider the equation

= α(0- P
J — c

(1) x(ί)=a(t)-\ D«,s)g(s,x(S))ds.
J - o o

If φ: (—oo, to~}->R is a given bounded and continuous initial function, then there is a

continuous solution x(t, t0, φ) defined on an interval [ί0, α) and satisfying (1) on that

interval, while agreeing with φ on (— oo, / 0 ] , provided that φ is chosen so that (1) is

an identity at t = t0 (see, [12] and [5; p. 538]). If the solution remains bounded then

it can be continued for all future time. It is always assumed that φ is chosen so that

the solution is continuous.

We suppose that there are continuous functions B, Q: RxR-+R with

(2) B(t,s) = D(

(3) Bs(t,s)>0, Bst(t,s)<0,

(4) [| B(t9 s) I + Bs(t, s)(t -s)2 + \ Bst(t, s)\ + \ Q(t, s) |] ds continuous ,
J - o o

(5) lim (t-s)B(t,s) = O for fixed t,

(6)
Λoo Γt Λoo

\Q(u + t,t)\du+\ \Q(u + s,s)\duds exists for t> 0.
Jo J - oo Jt-s

Much can be deduced from the following result. We shall give a few possibilities.

THEOREM 1. If x(ή is a solution of (I) on [/0? α), then the functional

(7) F(ί,x( ) ) = Γ B^siΐ g{υ,x(υ))d^\ ds + k\* [°° | Q(u + s, s)\dug\s,x(s))ds
J - oo \Js / J -oo Jt-s

satisfies

(8) [α(0-*(/) + J ' Q{t, s)g{s, x(s))dsj< V(t, x(-))B(t, t)

and
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J — c
(9) K('1)(ί,x( ))<2^(ί,x(ί))W0-40]-(A:-l) \Q(t,s)\g\s,x(s))ds

J

+ ΓΓ |β(/

PROOF. We apply Schwarz's inequality to (7) and have

V(t, x( )) > ( f' 2?s(ί, s) f' tfp, φ))dDds)21B{t, t).
\J -oo Js / /

Integrate by parts and use (5), together with the fact that there is a bounded initial
function to obtain

V(t, x( ))B(t, t)>\β(U s) [%g{Ό, x(v))dv + Γ B(t,s)g(vXv))dvϊ .
I— J S S= — 00 v — 00 -J

sΊ

The first term on the right is zero. When B is separated as in (2) and (1) is used, we have

V(t, x( ))B(t, ί ) > L - x ( 0 + Γ Q(t, s)g(s, x(s))dsΊ

so that (8) holds.

Denote the last term in V by Z(t) and compute

V\U *('))= [' BJt, s)( [giv, x(v))dv)2ds
J -oo \Js /

\i)

Γ Bj&svϊ'givMv
J -oo Js

0)\Bit,s) \ g{υ, x(v))dv +\ Bit, s)g(s, xis))ds \ + Z'<
L Js s = — oo J — oo J

Γ Γ Γf Ί
= 2gf(ί, x(t))\ D(t, s)g(s, x(s))ds + Q(t, s)g(s, x(s))ds + Z'(0

L J — oo J — oo J

< 20(ί, χ(0) [Λ(0 - 4 0 ] + g\t, χ(ή) I ρ(ί, s) \ ds
J -oo

+ I β(^ *)Ig2(s, x(s))ds + k\ I Q(u +t,t)\dug2(t, x(t))
J -oo J o

\Qit,s)\g2is,xis))ds
- 0 0
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= 2g(t, x(t)) [α(0 - x(m + g\t, x(/))Γ Γ I Qit, s) I ds + k ί °° I Q(u +t, t) \ du\

\Q(t,s)\g2(s,x(s))ds,

as required.

Many interesting consequences can be derived from (8) and (9). We begin with
two extreme cases.

COROLLARY 1. If a(t) = Q(t, s) = 0 and i/ Jί. „ Ds(t, s)ds< \\M for some M, then
along any solution x(t) we have

Mx\t)<V(t9x( ))

and

V\t, x{ ))< -2g(t, x(t))x(ί)<-2gi(x(t))x(ή.

Thus, x(t) is bounded, x=0 is stable, and

r gi(x(t))x(ήdt<co.

We later give three kinds of conditions to ensure that x(t)-+0 as ί->oo when α = 0.

REMARK. Notice that Cor. 1 has no growth condition on g, but there will be in
Cor. 2 and 3 when Q(t, s)φθ. In effect, Q is a "perturbation term" and the bounds on
Q offer a measure of how far D can deviate from the conditions on B. In addition,
Condition (10) will itself be a growth condition on g when Q φ 0. To start the completion
of Cor. 1, examine Cor. 4 and note that when β = 0, then no growth condition on g is
required to conclude that x(/)-»0. Cor. 5 asks that g satisfy a local Lipschitz condition
in order to conclude that x(t)^0. Compare this with the discussion of MacCamy [11;
pp. 556-7] who surveys convolution counterparts of our problems. In those result,
Q(t, s) = 0 and growth conditions on g are required of the form | g(u) \ < M(\ + j£ g(ξ)dξ)
and, sometimes, lim supM_0#(w)/M< oo.

COROLLARY 2. Ifk=l, B(t, s) = a(t) = 0 (so that Q(t, s)=- D(t, s)), and if there is
a β<2 with

βxg(t, x)>\ Γ \D(t, s)\ds+Γ\D(u + t, t)\du\g2(t, x),

then J00 x(t)g(t, x(t))dt< oo holds for any solution x(t) on [ί0, oo).

There are many possible variants of the next lemma. It is the natural extension of



212 T. A. BURTON

the statement that the convolution of an L1-function with a function tending to zero,

itself tends to zero.

LEMMA 1. Let h: 10, oo)->[0, oo) with $oh(s)ds<oo and let C.RxR^R be

continuous with | C(t, s) \<KifO<s<t for some K>0. Suppose also that for each P>0

we have lim s u p ^ 0 < s < P I C(t, s)\ = 0. Then \ι

0C{t, s)h(s)ds-^0 as /->oo.

PROOF. Let ε>0 be given and choose P > 0 so that $pKh(t)dt<ε/2. Then

I C(t, s) \h(s)ds < I C(t, s) \h(s)ds + K h(s)ds
Jo Jo Jp

< sup \C(t, s)\\ h(s)ds-\-ε/2.
0<s<P Jo

The next lemma will be used repeatedly.

LEMMA 2. Let xg(t,x)>0 if xφO, g be continuous and bounded for x bounded,

I a(t) \< A/2 for some A>0 and all t, and let cx >0. Then there is an M>0 with

-2Clxg(t, x) + 2\ g(t, x) \ \ a(t) \ < -c.xgit, x) + M\ a(ή \.

PROOF. We have

K(t, x):=-2Clxg(t, x) + 2\g(t, x)a(t)\

If \x\>2A/Cl, then -c1\x\ + 2\a(t)\< -2A + A<0. If \x\<2A/cu then 2\g(t,x)\<M

for some M>0, and the proof is complete.

COROLLARY 3. Suppose there is a k>\ and a β<2 such that

(10) βxg(t, x)>Γ Γ I Q(t, s)\ds + kΓ\Q(u + t,t)\duλg\t, x)

and that a{i) is both bounded and L1 [0, oo). Then for any solution x{i) of(\) on \_t0, oo)

we have J * x(t)g(t, x(t))dt < oo. If in addition, {'_ ^ Ds(t, s)ds is bounded, \ g(t, x) \ < J\ x \

for some J>0, ifγlj D(t, s) \ds^0 as t-^oo, ifγtQ \ D(t, s)\ds is bounded, and if for each

P>0 we have lim sup,^OO0<S<PI D(U ̂ ) I = 0, then x(t)^a(t) as t^co.

PROOF. By (9), (10), and Lemma 2 we have V\t, x( ))< -c^iήgψ, x(t)) + M\ a(t) |.

Since V>0, the first conclusion holds. Next, if φ is the bounded initial function on

( - oo, /0] with g* > I g(t, φ(ή) | on ( - oo, f0], then
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(*) I Γ D(t,s)g(s,x(s))ds < Γ J W , s ) | * (^D{t9s)\g\s,x(s))dsΊ/2

+ I D(t
J-oo

Since | g(t, x) \ <J\ x |, it follows that J® g2(s, x(s))ds<oo because J* x(s)g(s, x(s))ds<oo.
Thus, by Lemma 1, (*) tends to zero as /-•oo and the conclusion follows from (1).

A classical results for a finite delay equation x' = F(t, xt) states (see [14; p. 191])
that if there is a V(t, φ) and increasing function Wt with

(ii) V\t,xt)<
(iii) I F(t, φ) I is bounded for φ bounded,

then JC = O is uniformly asymptotically stable. Condition (iii) assures us that a bounded
solution is Lipschitz; hence, J00 W3(\x(t)\)dt<co implies that x(t) must tend to zero.
The following result is a counterpart for integral equations and ii leads us to a priori
bounds for periodic solutions.

COROLLARY 4. LetaζήeL^O, oo), α(/)->0 as ί->oo, and either Q(t,s) = Q or
I g(t, x)\<J\x\ for some J> 0. Also, for each toeR and each P > 0 let both

I Q(t, s) I ds^O as /-• oo and lim sup β(/, s) = 0 .
0 f->αo 0 < s < P

Finally, suppose there are k>\ and β<2 such that (10) holds and an M>0 SMC/I /Λαί

J:(Π) |Z>(ί1,s)-Z)(ί2,s)|<fc<:Λ/|ί1-ί2| for 0<t1<t2<oo
J -oo

and \t1 — t2\ small. Then every solution x(t) is defined on [ί0, oo) and x(t)->0 as t->co.

PROOF. By the proof of Cor. 3 we have V bounded and J£ x(t)g(t, x(t))dt< oo.
By assumption | g x(x) \ < \ g(t, x)\<\ g2(x) I where xg x(x) > 0 if x Φ 0. If cίO-̂ O, then there
is an ε>0 and a sequence {ίπ}T°o with \x(tn)\>ε. Since V is bounded, if β = 0, then
from (8) and a(t)^O, we have x(t) bounded. If QφO, then \g(t,x)\<J\x\ so

/, x(t))dt<oo yields J00 #2(ί, x(t))dt< oo; and this implies that

20, j ) ^ , x(s))ds < °
J — oo J —

s\' \Q(t,s)\ds\ \Q(t,s)\g2(s,x(s))dsT2
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and this tends to zero. By (8), again, x(t) is bounded and so, in any case, |g(t, x(t))\<L

for some L > 0 .

From the boundedness of x(t) and J ^ x g ^ d t < oo, we can suppose that | x(tn) | = ε

and choose another sequence {sn}|oo with |x(s n) | = ε/2 and ε>|x(t) \>ε/2 for tn<t<sn.

Thus,

£l2<\x{tn)-x{sn)\<\a{tn)-a{sn)\

D(tn, s)g(s, x(s))ds - I D(sn, s)g(s, x(s))ds

\D(sn,s)g(s,
Jsn

-Γ
J - O C

Γ
D(sn, s)g(s, x(s))ds - D(sn, s)g(s, x(s))ds

J - 0 0

\D(tn,s)-D(sn9s)\ds

where §s

t"\D(sn, s)\ds<B. This yields \tn — sn\>δ for some <5>0, contradicting

J while |;c(0l>ε/2 on [/„, J J . This completes the proof.

There is a third way to drive x(t) to zero.

COROLLARY 5. Let Q(t, s) = 0, 0(O->O ast^oo, a(ί) eL1 [0, oo), andf_ ^Ds{t9 s)ds

be bounded. Suppose also that for each P>0 we have ^^DXt^Xt — sΫds^O as ί->oo

and that there is an M independent of P with γpDs(t, s)(t—s)ds<M. If, in addition, for

each K>0 there is a J>0 such that \x\<Kimplies \g(t, x) \<J\x|, then x(t)^O as /->oo.

PROOF. From (8), if V{t, x(-))^>0, so does x(t). Since x(ή is bounded by (8) and

the fact that Fis bounded, we have J°°02(A x(t))dt < oo. By Schwarz's inequality we obtain

V(t, *(•))< Γ Ds(t, s)(t-s) ί'g'iv, x(v))dvds
J — oo J s

£ \ Ds(t,s)(t-s) \ g\v,x(vj)dvds+ \'D^s^ί-s) \ g2(υ,x(v))dvds
J-oo Js JP JP

< J 2 J P Ds(t, s)(t-s)2ds + (Γ g\v, x(v))dv \ [*Ds{t, s){t-s)ds .

The last integral is bounded by M, while its coefficient tends to zero as P-+oo. This

completes the proof.

REMARK. In the next result, notice that the a priori bound does not require V to

be positive, as in [3]. The a priori bound comes from V alone.
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COROLLARY 6. Let (10) hold and suppose there is a T>0 with a(t+T) =

a(t), g(t + Γ, x) = g(t, x\ D(t +T,s+T) = D(t, s), and Bs(t + Γ, s + T) = Bs(t, s). Suppose,

in addition, that X01(x)-»oo as |x|->>oo, and that there is an M>0 with

\g(t,x)\<M\x\9sup0<t<τ$
t_JD(t,s)\ds<M,\a(tί)-a(t2)\<M\t1-t2\,\g(t,x1)

-g(t,x2)\<M\x1-x2\, and that ^JD(t1,s)-D(t2,s)\ds<M\t1-t2\ for 0<t,<

t2<T. Then there is a K>0 such that if x(t) in any T-periodic solution of (1), then
suPo<ί<rl *(01 = : IMI ^ ^ and there is a T-periodic solution.

PROOF. Let 0<λ< 1 and write (1) as

(1A) x(t) = λa(ή- Γ D(t,s)λg(s,x(s))ds

J
so that if

then we obtain

V(t, x( ))= Γ BS{U s)( ί" λg(v, x(v))dvjds ,

< -cxx(t)λg(t, x(t)) + Mλ\a(t)\.

We now show that there is an a priori bound on any Γ-periodic solution x(t) of (lλ).

If A = 0, then | |x| |=0. If λ>0, since V is also Γ-periodic, 0= V(T,x( ))- V(0, x(-))<

— cί^x{s)λg(s,x(s))ds-{ Gλ where G = MT\\a\\; thus, λ divides out and we have

jlx(s)g(s, xis^ds^G/c^ Next, let 0<t1<t2<T, \x(t1)\ = \\x\\, and consider (recalling

f"
J-00 U S h ' S β S ' X S C

Γ " Γ'2

D(t2,s)g(s,x(s))ds-\ D(t2,s)g(s,x(s))ds
J — 00 J — 00

t2+M /x-^lllxll+MllxHj^ I D(t2,s) \ds

for | i ) ( ί 2 , i ) |<5i f 0<5^Γand some/>0. If J\t1-t2\<\/2, then |x^) |-1x(t 2 )\<

is an a priori bound. If | |x| |>2, then | |x | |<l+2|x(? 2) |<| |x | |/2 + 2|x(ί2)| or

2| x(t2) I so that I x(/2) | > ||x||/4 if 11, -12 \ < 1/2/. But

Γx(t)gi(x(t))dt< Γx(t)g(t,x(t))dt<G/Cl

Jo Jo
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and xg^OO-xx) as |x|-*oo, while \x(t2)\> ||*||/4 if \t1 — t2\<l/2J. Thus, the required
bound on || x || exists for 0<λ<\.

Next, let (P, || ||) be the Banach space of continuous Γ-periodic functions with the
supremum norm. For 0<λ< 1 we define a mapping Hλ: P^P by φeP implies that

s^.(12) Hλ(φ)(t) = λ^a(t)-^ D(t,s)g(s,φ(s))ds

The degree-theoretic work of Granas [4], as discussed in [2] and [3], will show that
(1) has a Γ-periodic solution provided we can show that:

(a) Hλ:P-+P;
(b) For fixed A, Hλ maps bounded subsets of P into compact subsets of P;
(c) Hλ is jointly continuous in (λ, φ); and
(d) There is a number B such that any Γ-periodic solution x of (1 λ) satisfies ||x|| < B.
We have already shown (d). To show (a) we compute

Hλ(φ)(t+T) = λ\a(t+T)- \t+TD(ί+ T, s)g(s, φ(s))ds]

= λϊa(t)- Γ D(t + T, u + T)g(u + T, φ{u + T))du\

= λ ϊa(t) - Γ D(t, u)g(u, φ(u))du\ = Hλ(φ)(t),

whenever φeP.Ύo show that Hλ(φ) is continuous in t and lies in a compact set we let
φeP with ||φ\\ <K, where K is an arbitrary positive number. Then

I HάφXtJ - Hλ(φ)(t2) \<λ\\ α ( ί j -a{t 2 ) \ + Γ [_D(tu s) - D(ί2, s)M*, Φ(s))ds

" D2D(t2,s)g(s,φ(s))ds

where i>* = supO s s<T O< ( 2 S T |Z)(/ 2, s)|. Hence, Hλ(φ) is equicontinuous and bounded
by a function of K. This establishes both (a) and (b). To show that H(λ, φ) is jointly
continuous in λ and φ, for fixed t and for ψ,eP we have

Γ
•/ — oo

Γ
J — oo

J — oo
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\D(t,s)\ds
0

<U\\φ1-φ2\\ for some U>0 .

Hence, H is continuous in φ for fixed λ, uniformly continuous in λ for fixed φ9 and so
is jointly continuous in (λ, φ). This completes the proof.

REMARK. When B(t, s) = 0, a more flexible Liapunov functional is

Γ Γ00

H(t,x( )) = k \D(u + s, s)\du\g(s, x(s))\ds
J -oo Jt-s

with

if U x( )) < - δ I g(t, x) I + I C(/, jfcCs, X(J)) IΛ +1 α(01
L J-oo J

with δ>0. From this we conclude that if aeL1, then \g(t, x)| and |x | are L1. In the
previous corollaries we did not yet use the term — (k— l)f_ J C(t, s)g(s, x(s))\ds in the
derivative of V. But here it can be used effectively and we see that under suitable
assumptions relating D to one of its integrals we can obtain

and

μl\x\-\a(t)n<H(t,x( )), μ>0.

Other uses of the (k— l)-term are illustrated in Burton [1].

3. A linear vector equation. Let D be a continuous nxn matrix with
f_ J D(t, s)\ds continuous, a: R-*Rn be continuous, and consider the equation

(13) x(t) = a(ή-\ D(t,s)x(s)ds.
J — oo

It turns out that all of the work in Section 2 can be done for (13) except that we have
been unable to obtain a counterpart of (8). Thus, we readily prove that solutions are L2,
that they converge to a(ή, and that there are periodic solutions. But we must rely on
techniques independent of (8) to show boundedness. Formal counterparts of (2)-(6) are
needed. The symbol | | will denote absolute value as well as compatible vector and
matrix norms.

Suppose there are continuous matrix functions B and Q with

(14) B{t, s) = D(t, s) + Q(t, s), Bτ(t, s) = B(t, s),
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(15) xτBs(t, s)x>0, xTBst(t, s)x<0,

(16) [| B(t, s) I +1 Bs(t, s) \(t-s)2 +1 Bst(t, s)\ + \ Q(t, s) \]ds continuous ,
J -oo

(17) lim | ί-ί | |Λ(/, j) | = O forfixedί,
S-»-oo

Γ 0 0 Γ Γ 0 0

v*°) I β(w + ί, O M W + I Q(u+s, s) I duds exists for t>0 .
Jθ J-ooJr-s

THEOREM 2. If x(t) is a solution o/(13) on [ί0, oo), /Λ̂ n the functional

(19) *U*(0)

J -oo Jr-s
s,s)\du\x(s)\2ds

J -oo Jr-s

(20)

PROOF. We have

V'(t, x( ))< 1' 2xτ(t)Bs(t, s) Ϊ'xiq]
J -oo J s

c °°
+ k\ 1 Q(M + /, i)\du\λ

Jo

= 2xΓ(ί)^(ί,J)J'x(?)^

<OI 2 -*Γ \Q{t,s)\\x{s)\2ds
J — oo

s = ί p i ~1

s = — oo J — oo J

= 2xΓ(/)Γfl(0 - x(ί) + J ' Q{t, s)x{s)dλ

+ kΓ\Q(u+t,t)\du\x(t)\2-k[' \Q(t,s)\\x(s)\2ds
J θ J — oo
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ί
J - c

\Q{t,s)\ds

+ P I Q(ί, s) 11 x(s) \2ds+k f " I Q(u +1, i)\du\ x(t) \2

J -oo J o

J -
Q(t,s)\\x(s)\2ds

-Γ2-Γ \Q(t,s)\ds-kΓ\Q(u+t,t)\du\\x(t)\2-kΓ\Q(u+t,t)\du\\

as required.
At this point we do not have a lower bound parallel to (8); but for linear systems

this is not so cruciaj since solutions can always be defined for all future time. We can
prove results for the system parallel to the ones for (1) as follows. In Cor. 1 and 2 we
conclude only that xeL2[0, oo). Cor. 3 and 5 say little about the system. Cor. 4 and
Cor. 6 hold exactly as they did for (1).
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