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Abstract. We show that bounded solutions of an initial(-boundary) value problem
for certain semilinear heat equations always come from the corresponding ordinary
differential equations. As a consequence we immediately get a theorem of Kneser's type
which was showed by Ballotti and Kikuchi in different methods.

1. Introduction. Kneser's theorem [5] is a famous result on ordinary differential

equations concerning the structure of the set of all solutions for an initial value problem.

Recently Ballotti [1] and Kikuchi [4] established a theorem of Kneser's type for the

initial(-boundary) value problem of a semilinear heat equation

y/ in Ω x ( O J ) ,

w| ί = 0 = 0 in Ωx{0},

~ = 0 on dΩx(0, T) if
dv

Here Ω is a bounded domain with smooth boundary, or Rn. When ΩφRn, v denotes

a unit outer normal vector of dΩ. Let LP(Ω) be the usual Lebesgue space, and BC(Ω)

the set of bounded continuous functions on Ώ. Their result is as follows:

THEOREM 1.1 (Kneser's theorem, cf. [1], [4]). Let X=LP(Ω) (1</?<OO) when

ΩφRn, and X=BC(Rn) when Ω = Rn. Then the set of {mild) solutions in C([0, Γ]; X)

is compact and connected in the class. Hence the cross-section of (mild) solutions in

C([0, T]; X) is compact and connected in X.

Their proofs are based on arguments on evolution equations or partial differential

equations. The theorem for partial differential equations, however, easily follows from

the corresponding theorem for ordinary differential equations, if we can prove that all

solutions belonging to C([0, T]; X) are independent of the space variables. In this

article we show that it is in fact the case for X=BC(Ω), which is the same setting as

in [4] when Ω = Rn. Our method is applicable to the following problem:
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ut = Au+f(u) in β χ ( 0 , Γ m a x ),

. «lt=o = 0 in Ωx{0},

^ = 0 on dΩx(0, Tmax) 'ύdΩΦ0.
dv

Here Tmax=Tmax(u) is the life span of w, i.e., (0, Tmax) is the maximal interval of existence

for u. We assume that/is a continuous function on [0, oo) satisfying

(1-2)

(1.3) /(w)>0 for w>0,

(u)= Γ - * -
Jo f(v)

(1.4) _ . ,
)o /OO

(1.5) /(w) is non-decreasing.

A typical example is/(w) = wα (0<α< 1). Let

Γ 0 0 * ,Λ
Jo W

00].

It is easy to see that the function g has the non-decreasing inverse function g x defined

on [0, 7^). We define g'\t) = O for t<0, and then g~1eC1(-oo, T^).

Our theorem is as follows:

THEOREM 1.2. Any solution to (1.1) which is α BC(Ω)-vαlued continuous function

comes from the initial value problem of the ordinary differential equation

~=f(u) on (0,Γm a x),

In other words, there exists τ e [0, co~\ such that

where we interpret u = 0 when τ= oo.

The theorem of Kneser's type immediately follows from this results.

Our result does not exclude that of Ballotti or Kikuchi. Indeed, Ballotti's result is

merely an example of his main result for a more general setting. Moreover, the author

does not know whether any mild solution in C([0, Γ]; LP(Ω)) is independent of the

space variables. Kikuchi's method is possibly applicable to more general f(u) with or

without modification. Actually he said that "for a continuous function f(u) we can

similarly treat the general equation with the suitable initial and boundary conditions",

though he did not mention the assumption precisely.
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2. The proof. Let U(x, y, t) be the fundamental solution to the initial(-boundary)

value problem of the heat equation (with the Neumann boundary condition when

dΩφ0). The properties

(2.1) U(x,y, ΐ)>0 for (χ,y, ήeΩ x Ωx(0, oo),

(2.2) ί U(x9y9t)dy=l
JΩ

are well-known. A solution weC([0, T]; BC(Ω)) has an expression

(2.3) u(x, t)=\ U(x, y9 t-τ)f(u(y, τ))dydτ for (JC, t)eΩx (0, T)
Jo Jβ

(see [2, Chapter 1] and [3, Chapter 2, §§8-9]).

LEMMA 2.1. We have

0<u(xfή<g-1(ή.

PROOF. It is convenient to define f(u) = 0 for w<0. Since/is non-negative, the

lower estimate comes from (2.1) and (2.3). The upper one is derived from (2.2) and the

Bihari inequality [6, Theorem 1.9.2], [7, Lemma 1.5]. More precisely, see [4, Lemma 1],

where the assertion is shown for/(w) = y/ u . The proof is similar in the general case,.

D

We define a subset P of [0, Γmax) and a non-negative number t0 by

P = {t e [0, Γmax) I u(x, t) > 0 for some xeΩ} ,

They are well-defined unless u = 0. In what follows we assume uφO. By the continuity

of w, we have u(x, ί0) = 0 as a function of x.

LEMMA 2.2. Let txeP. Then u(x, t)>0 for all xeΏ and all t>tί.

PROOF. Since f(u(x, t1))>0 for some xeΩ, the assertion is an easy consequence

of (2.1) and (2.3). •

COROLLARY. We have

w(x, /) = 0 for 0<t<to,

u(x, t)>0 for t>t0 .

By virtue of this fact one can reduce the proof of Theorem 1.2 to the next theorem.
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THEOREM 2.1. u(x, t) = g~1(t) is a unique solution of

(2.4)

ut = Au+f(u) in Ωx(0, Γ m a x ) ,

M > 0 on Ωx(0, Γ m a x ) ,

M | , = 0 = 0 in Ωx{0} ,

on ifdΩΦ0,

Γ m a x = Γ G 0 .

To show this we need to prove the following technical lemma:

LEMMA 2.3. Let f be a function satisfying (1.2)—(1.5), and define {fk}k>2 by

0 for w = 0,

Then fk e C[0, oo) n C\0, oo) and satisfies

(2.5) Λ(w)>0 for w > 0 ,

(2.6) fk(u)<f(u) and lim fk{ύ) =f(u) for M > 0 ,

Jo
< oo and lim gk{u) = g(ύ) for u > 0 ,

k-αo
(2.7)

(2.8)

It follows from (1.3) and (1.5) that for w>0

f(u)dv=f(u)-+0 as M | 0 .

/fc(w)>0 for w > 0 .

PROOF. It is easy to see that/fceC^O, oo). First we show its continuity at w = 0.

Hence fk e C[0, oo) n C^O, oo), (2.5) and the former part of (2.6) are proved. Since fk{u)

is the mean o f / o n the interval [(1 — l/k)u, u] and since/is continuous, we have the

latter part of (2.6). (1.5) gives for w>0

Combining this with (1.4) and (2.5), we get

0 <
/*(«)

, oo) .
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Hence gk(u) < oo. Moreover, taking (2.6) into consideration we obtain limk_+oo gk(u) = g{ύ)
by the dominated convergence theorem. Thus (2.7) is shown. It remains to prove (2.8).
We have already proved the differentiability of fk on (0, oo). To deduce the proof from
its non-decreasing property, we rewrite the expression for fk as

fk(M) = k\ f(uw)dw.
J 1-1/k

We easily see from this and (1.5) that/fc is non-decreasing. •

PROOF OF THEOREM 2.1. From the first equation of (2.4) we get

ut>Au+fk(u),

where fk is the function in Lemma 2.3. We divide both sides of this and the fourth
equation of (2.4) by/fc(w)>0. The division is possible because of the second condition
w>0 of (2.4). The result is

gk(μ\ > Agk(u) + ψ-j- \ Vu \2 + 1 > Agk{u) +1 in ί2x(0, Γm a x),

gk(u)\t=o = 0 in Ωx{0},

^P- = 0 on δΩx(0,Γmax) i f 5 Ω # 0 .
δv

It follows from the comparison theorem that gk(ύ)>t. Passing to the limit as k-+co,
we get g(u)>ί. Taking Lemma 2.1 into consideration, we find u(x, ή^g'1^). •
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