CHARACTERIZING A CLASS OF TOTALLY REAL SUBMANIFOLDS OF S⁶ BY THEIR SECTIONAL CURVATURES

BANG-YEN CHEN, FRANKI DILLEN, LEOPOLD VERSTRAELEN AND LUC VRANCKEN

(Received November 19, 1993, revised August 22, 1994)

Abstract. The first author introduced in a previous paper an important Riemannian invariant for a Riemannian manifold, namely take the scalar curvature function and subtract at each point the smallest sectional curvature at that point. He also proved a sharp inequality for this invariant for submanifolds of real space forms. In this paper we study totally real submanifolds in the nearly Kähler six-sphere that realize the equality in that inequality. In this way we characterize a class of totally real warped product immersions by one equality involving their sectional curvatures.

1. Introduction. In [C], the first author gives a general best possible inequality between the main intrinsic invariants of a submanifold M^n in a Riemannian space form $\tilde{M}^m(c)$, namely its sectional curvature function K and its scalar curvature function τ , and the main extrinsic invariant, namely its mean curvature function $\|H\|$, H being the mean curvature vector field of M in \tilde{M} . It is convenient to define a Riemannian invariant δ_M of M^n by

$$\delta_M(p) = \tau(p) - \inf K(p)$$

where inf K is the function assigning to each $p \in M^n$ the infimum of $K(\pi)$, where π runs over all planes in T_pM and τ is defined by $\tau = \sum_{i < j} K(e_i \wedge e_j)$. The inequality can be written as follows.

(1.1)
$$\delta_{M} \leq \frac{n^{2}(n-2)}{2(n-1)} \|H\|^{2} + \frac{1}{2}(n+1)(n-2)c.$$

He then started to investigate those submanifolds, with dimension $n \ge 3$, for which the above inequality actually becomes an equality, i.e. submanifolds which satisfy

(1.2)
$$\delta_{M} = \frac{n^{2}(n-2)}{2(n-1)} \|H\|^{2} + \frac{1}{2} (n+1)(n-2)c.$$

For such submanifolds, a distribution can be defined by

$$\mathcal{D}(p) = \left\{ X \in T_p M \mid (n-1)h(X, Y) = n \langle X, Y \rangle H, \forall Y \in T_p M \right\}.$$

¹⁹⁹¹ Mathematics Subject Classification. 53C40.

The second and fourth author are Senior Research Assistant of the National Fund for Scientific Research (Belgium).

If the dimension of $\mathcal{D}(p)$ is constant, it is shown in [C] that the distribution \mathcal{D} is completely integrable.

In this paper, we investigate 3-dimensional totally real submanifolds in the nearly Kähler 6-sphere $S^6(1)$. Since such a submanifold is always minimal (cf. [E3]), we get

$$\delta_{\mathbf{M}} \leq 2.$$

When M has constant scalar curvature (τ is constant), a complete classification of submanifolds satisfying the equality in (1.3) has been obtained in [CDVV1]. Here, we will investigate those totally real 3-dimensional submanifolds in $S^6(1)$ which satisfy:

- (1) $\delta_{M}=2$,
- (2) the dimension of the distribution \mathcal{D} is constant (and hence it is a completely integrable distribution),
 - (3) the distribution \mathcal{D}^{\perp} is also integrable.

We will relate submanifolds satisfying the above conditions to minimal (non-totally geodesic) totally real immersions of surfaces N^2 into $S^6(1)$ whose ellipse of curvature is a circle. The ellipse of curvature of a surface at a point p is the set $\{h(u,u) \mid u \in T_p M, \|u\| = 1\}$ in the normal space, where h is the second fundamental form. It is shown in [BVW] that every such immersion is linearly full in a totally geodesic S^5 . An alternative proof of this will be given in Section 5. Other characterizations will be given below. The Main Theorem we prove here is:

MAIN THEOREM. Let $f: M^2 \to S^6(1)$ be a minimal (non-totally geodesic) totally real immersion in $S^6(1)$ whose ellipse of curvature is a circle. Then M^2 is linearly full in a totally geodesic S^5 . Let N be a unit vector perpendicular to this S^5 . Then

(1.4)
$$x: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times M^2 \to S^6(1), (t, p) \mapsto \sin(t)N + \cos(t)f(p)$$

is a totally real immersion which satisfies the equality in (1.3). Conversely, every totally real (non-totally geodesic) immersion of M^3 into $S^6(1)$ satisfying

- (1) $\delta_{M} = 2$,
- (2) the dimension of \mathcal{D} is constant,
- (3) \mathcal{D}^{\perp} is an integrable distribution, can be locally obtained in this way.
- 2. The nearly Kähler structure on $S^6(1)$. We give a brief explanation of how the standard nearly Kähler structure on $S^6(1)$ arises in a natural manner from Cayley multiplication. For elementary facts about the Cayley numbers and their automorphism group G_2 , we refer the reader to Section 4 of [W] and to [HL].

The multiplication on the Cayley numbers \mathcal{O} may be used to define a vector crossproduct on the purely imaginary Cayley numbers \mathbb{R}^7 using the formula

$$(2.1) u \times v = \frac{1}{2} (uv - vu),$$

while the standard inner product on R^7 is given by

$$\langle u, v \rangle = -\frac{1}{2} (uv + vu) .$$

It is now elementary to show that

$$(2.3) u \times (v \times w) + (u \times v) \times w = 2\langle u, w \rangle v - \langle u, v \rangle w - \langle w, v \rangle u,$$

and that the triple scalar product $\langle u \times v, w \rangle$ is skew symmetric in u, v, w.

Conversely, Cayley multiplication of θ is given in terms of the vector crossproduct and the inner product by

$$(2.4) (r+u)(s+v) = rs - (u,v) + rv + su + (u \times v), r, s \in \operatorname{Re} \mathcal{O}, u, v \in \operatorname{Im} \mathcal{O}.$$

In view of (2.1), (2.2) and (2.4), it is clear that the group G_2 of automorphisms of \mathcal{O} is precisely the group of isometries of \mathbb{R}^7 which preserve the vector crossproduct.

An ordered orthonormal basis $\{e_1, \ldots, e_7\}$ of \mathbb{R}^7 is said to be *canonical* if

$$(2.5) e_3 = e_1 \times e_2, e_5 = e_1 \times e_4, e_6 = e_2 \times e_4, e_7 = e_3 \times e_4.$$

For example, the standard basis of \mathbb{R}^7 is canonical. Moreover, if e_1, e_2, e_4 are mutually orthogonal unit vectors with e_4 orthogonal to $e_1 \times e_2$, then e_1, e_2, e_4 determine a unique canonical basis $\{e_1, \ldots, e_7\}$ and (\mathbb{R}^7, \times) is generated by e_1, e_2, e_4 subject to the relations

$$(2.6) e_i \times (e_i \times e_k) + (e_i \times e_j) \times e_k = 2\delta_{ik}e_i - \delta_{ij}e_k - \delta_{ik}e_j.$$

Given any two canonical bases $\{e_1, \ldots, e_7\}$ and $\{f_1, \ldots, f_7\}$ of \mathbb{R}^7 , there is a unique element $g \in G_2$ such that $ge_i = f_i$; and thus g is uniquely determined by ge_1, ge_2, ge_4 .

Let J be the automorphism of the tangent bundle $TS^6(1)$ of $S^6(1)$ defined by

$$Ju = x \times u$$
, $u \in T_{-}S^{6}(1)$, $x \in S^{6}(1)$.

It is clear that J is an almost complex structure on $S^6(1)$ and in fact J is a nearly Kähler structure on $S^6(1)$ in the sense that $(\tilde{\nabla}_u J)u = 0$, for any vector u tangent to $S^6(1)$, where $\tilde{\nabla}$ is the Levi-Civita connection of $S^6(1)$. We define by

$$G(X, Y) = (\widetilde{\nabla}_X J)(Y)$$
,

the corresponding skew-symmetric (2,1)-tensor field. From [S], we know that this tensor field has the following properties:

(2.7)
$$G(X, JY) + JG(X, Y) = 0$$
,

(2.8)
$$(\tilde{\nabla}G)(X, Y, Z) = \langle Y, JZ \rangle X + \langle X, Z \rangle JY - \langle X, Y \rangle JZ ,$$

$$\langle G(X, Y), Z \rangle + \langle G(X, Z), Y \rangle = 0,$$

(2.10)
$$\langle G(X, Y), G(Z, W) \rangle = \langle X, Z \rangle \langle Y, W \rangle - \langle X, W \rangle \langle Z, Y \rangle + \langle JX, Z \rangle \langle Y, JW \rangle - \langle JX, W \rangle \langle Y, JZ \rangle ,$$

$$(2.11) G(X, Y) = X \times Y + \langle X, JY \rangle x.$$

It is clear from the above that G_2 acts transitively on $S^6(1)$ and that the stabilizer of the point (1, 0, ..., 0) is SU(3). It follows that G_2 , a connected subgroup of SO(7) of dimension 14, is the group of automorphisms of the nearly Kähler structure J.

3. Warped product immersions. Let M_0, \ldots, M_k be Riemannian manifolds, M their product $M_0 \times \cdots \times M_k$, and let $\pi_i : M \to M_i$ denote the canonical projection. If $\rho_1, \ldots, \rho_k : M_0 \to R_+$ are positive-valued functions, then

$$\langle X, Y \rangle := \langle \pi_{0*}X, \pi_{0*}Y \rangle + \sum_{i=1}^{k} (\rho_i \circ \pi_0)^2 \langle \pi_{i*}X, \pi_{i*}Y \rangle, \qquad X, Y \in \Gamma(TM)$$

defines a Riemannian metric on M. We call $(M; \langle \cdot, \cdot \rangle)$ the warped product $M_0 \times_{\rho_1} M_1 \times \cdots \times_{\rho_k} M_k$ of M_0, \ldots, M_k , and ρ_1, \ldots, ρ_k the warping functions.

Let $f_i: N_i \to M_i$, i = 0, ..., k be isometric immersions, and define $\sigma_i := \rho_i \circ f_0: N_0 \to \mathbb{R}_+$ for i = 1, ..., k. Then the map $f: N_0 \times_{\sigma_1} N_1 \times \cdots \times_{\sigma_k} N_k \to M_0 \times_{\rho_1} M_1 \times \cdots \times_{\rho_k} M_k$ given by $f(p_0, ..., p_k) := (f_0(p_0), f_1(p_1), ..., f_k(p_k))$ is an isometric immersion, and is called a warped product immersion.

The decomposition of an immersion into warped product immersions is in particular a very powerful tool when applied to immersions into Euclidean spaces, spheres or hyperbolic spaces. In this respect, the main result from [N] can be stated as follows. Let $f: N_0 \times_{\sigma_1} N_1 \times \cdots \times_{\sigma_k} N_k \to M(c)$ be an isometric immersion into a space of constant curvature c. If h is the second fundamental form of f and $h(X_i, X_j) = 0$, for all vector fields X_i and X_j , tangent to N_i and N_j respectively, with $i \neq j$, then, locally, M is a warped product immersion. The problem of how M(c) can be decomposed into a warped product is solved in [N], see also [DN] for the statement.

Using warped product immersions, we can give a class of examples of minimal submanifolds in a unit sphere which satisfy the equality (1.2). Let $S_+^{n-2}(1) = \{x \in \mathbb{R}^{n-1} \mid ||x|| = 1 \text{ and } x_1 > 0\}$ be an open hemisphere and let $S_+^{m-n+2}(1)$ be the unit hypersphere of \mathbb{R}^{m-n+3} . Then $\psi: S_+^{n-2}(1) \times_{x_1} S_+^{m-n+2}(1) \to S_+^{m}(1)$, $(x, y) \mapsto (x_1 y, x_2, \ldots, x_{n-1})$ is an isometry onto an open dense subset of $S_+^{m}(1)$. This can be considered as a warped product decomposition of $S_+^{m}(1)$. Now if $S_+^{m}(1)$ is any minimal surface in $S_+^{m-n+2}(1)$, immersed by $S_+^{m}(1)$, then the immersion $S_+^{m}(1) \times_{x_1} S_+^{m}(1) \times_{x_1} S_+^{m}(1)$, $S_+^{m}(1) \times_{x_1} S_+^{m}(1)$ is an isometric immersion satisfying the equality (1.2). This follows trivially since the dimension of the distribution $S_+^{m}(1)$ is a special case of this family. We now focus on (1.4).

We consider a totally geodesic $S^{5}(1)$ in $S^{6}(1)$. Let N denote the unit vector

orthogonal to the hyperplane containing $S^5(1)$. We parametrize the half circle $S^1_+(1)$ by $(-\pi/2, \pi/2) \rightarrow S^1_+(1)$, $t \mapsto (\cos(t), \sin(t))$. Then the isometry ψ of the previous paragraph can also be written as $S^1_+(1) \times_{\cos(t)} S^5(1) \rightarrow S^6(1)$, $(t, p) \mapsto \sin(t) N + \cos(t) p$. Let $f: M^2 \rightarrow S^5(1)$ be an immersion of a surface into $S^5(1)$. Then the associated warped product immersion is given by

(3.1)
$$x: (-\pi/2, \pi/2) \times_{\cos(t)} M^2 \to S^6(1), (t, p) \mapsto \sin(t) N + \cos(t) f(p)$$
.

We will determine in Section 5 for which immersions f, the warped product immersion x is totally real.

4. Totally real submanifolds in $S^6(1)$. A submanifold M in $S^6(1)$ is called totally real if for any vector field X, tangent to M, JX is a normal vector field.

The dimension of M can be 2 or 3. Totally real surfaces in $S^6(1)$ were first studied in [DOVV]. Totally real 3-dimensional submanifolds were first studied in Ejiri [E3], who proved that a 3-dimensional totally real submanifold of $S^6(1)$ is orientable and minimal. In both cases it can be proved that G(X, Y) is orthogonal to M, for tangent vectors X and Y.

We denote the Levi-Civita connection of M by ∇ . The formulas of Gauss and Weingarten are respectively given by

$$(4.1) D_X Y = \nabla_X Y + h(X, Y),$$

$$(4.2) D_{\mathbf{X}}\xi = -A_{\varepsilon}X + \nabla_{\mathbf{X}}^{\perp}\xi ,$$

for tangent vector fields X and Y and normal vector fields ξ . The second fundamental form h is related to A_{ξ} by

$$\langle h(X, Y), \xi \rangle = \langle A_{\varepsilon}X, Y \rangle$$
.

From (4.1) and (4.2), we find that

(4.3)
$$\nabla_X^{\perp} J Y = J \nabla_X Y + G(X, Y) + (Jh(X, Y))^n,$$

$$(4.4) A_{JY}X = -(Jh(X, Y))^{t},$$

where $(Jh(X, Y))^n$ and $(Jh(X, Y))^t$ denote the normal and tangential parts of Jh(X, Y). Obviously, if dim M = 3, then Jh(X, Y) is tangent.

The above formulas immediately imply that $\langle h(X, Y), JZ \rangle$ is totally symmetric. If we denote the curvature tensors of ∇ and ∇^{\perp} by R and R^{\perp} , respectively, then the equations of Gauss, Codazzi and Ricci are given by

$$(4.5) R(X, Y)Z = \langle Y, Z \rangle X - \langle X, Z \rangle Y + A_{h(Y, Z)}X - A_{h(X, Z)}Y,$$

$$(4.6) \qquad (\nabla h)(X, Y, Z) = (\nabla h)(Y, X, Z),$$

$$\langle R^{\perp}(X, Y)\xi, \eta \rangle = \langle [A_{\xi}, A_{\eta}]X, Y \rangle,$$

where X, Y, Z (respectively, η and ξ) are tangent (respectively, normal) vector fields to M and ∇h is defined by

$$(\nabla h)(X, Y, Z) = \nabla_X^{\perp} h(Y, Z) - h(\nabla_X Y, Z) - h(Y, \nabla_X Z)$$
.

5. Totally real surfaces in $S^6(1)$. We now continue to investigate the immersion (3.1).

Let X denote a vector field tangent to M^2 . Then

$$x_{\star}(\partial/\partial t) = \cos(t)N - \sin(t)f(p)$$
, $x_{\star}(X) = \cos(t)f_{\star}(X)$,

and

$$Jx_{\star}(\partial/\partial t) = N \times f(p)$$
, $Jx_{\star}(X) = \cos(t)\sin(t)N \times f_{\star}(X) + \sin^2(t)Jf_{\star}(X)$.

From this it is easy to check that x is totally real if and only if

$$\langle N \times f(p), f_{\star}(X) \rangle = 0,$$

$$\langle N \times f_{\bullet}(X), f_{\bullet}(Y) \rangle = 0,$$

$$\langle Jf_{\star}(X), f_{\star}(Y)\rangle = 0,$$

for all tangent vector fields X and Y to M. Now (5.3) simply says f has to be totally real; from (2.11), we obtain that (5.2) is equivalent to $\langle G(f_*(X), f_*(Y)), N \rangle = 0$; (5.1) is equivalent to $\langle Jf_*(X), N \rangle = 0$. We have reduced the condition that X is totally real to conditions depending only on f. From now on, for simplicity, we identify f with f(M), so we do not write f if there is no confusion.

Differentiating (5.1) gives us

$$(5.4) \qquad \langle N \times Y, X \rangle + \langle N \times p, h(X, Y) \rangle = 0.$$

Since the first term in (5.4) is skew symmetric and the second is symmetric, both terms have to be zero. Therefore (5.1) implies (5.2). Now take any orthonormal basis $\{e_1, e_2\}$ of T_pM . From the properties of G, we obtain that $G(e_1, e_2)$ is orthogonal to e_1, e_2 , Je_1, Je_2 and p; (5.2) implies that $G(e_1, e_2)$ is also orthogonal to N. On the other hand, (5.1) implies that $N \times p$ is orthogonal to e_1 and e_2 ; clearly $N \times p$ is orthogonal to e_1 and e_2 . Therefore $G(e_1, e_2) = \pm p \times N$. After changing the sign of e_1 , if necessary, we can make sure that $e_1 \times e_2 = JN$. This implies that $e_1 \times N = -Je_2, e_2 \times N = Je_1$. Note that the normal space of e_1 is spanned by e_2 and e_2 and e_3 .

Differentiating (5.2), we obtain

$$\langle N \times h(Y,Z), X \rangle + \langle N \times Y, h(X,Z) \rangle = 0,$$

for all tangent vector fields X, Y and Z to M. Putting $X=e_1$ and $Y=e_2$, we obtain that

$$0 = \langle Je_2, h(e_2, Z) \rangle + \langle Je_1, h(e_1, Z) \rangle = \langle h(e_2, e_2), JZ \rangle + \langle h(e_1, e_1), JZ \rangle,$$

such that the mean curvature vector H of M in $S^5(1)$ is orthogonal to Je_1 and Je_2 ; from (5.4) we obtain that H is orthogonal to JN. Therefore H can only be zero. Then (5.4) immediately implies that h is of the form

$$h(e_1, e_1) = \alpha J e_1 + \beta J e_2$$
, $h(e_1, e_2) = \beta J e_1 - \alpha J e_2$, $h(e_2, e_2) = -\alpha J e_1 - \beta J e_2$,

such that the ellipse of curvature of M at p is a circle (possibly a point).

Conversely, let M^2 be a minimal, totally real surface of $S^6(1)$ whose ellipse of curvature is a circle. Then we can use exactly the same computations as in the proof of [DOVV, Lemma] to obtain that h(X, Y) is contained in J(TM). Let $\{E_1, E_2\}$ be any local orthonormal basis of TM. Then $G(E_1, E_2)$ does not depend on the choice of $\{E_1, E_2\}$ up to sign. Hence we can define a subbundle B of the normal bundle by $B(p) = J(T_pM) \oplus \langle G(E_1, E_2) \rangle$. From (4.3), (2.8) and the minimality of M, we obtain that B is ∇^{\perp} -parallel. Hence by the Erbacher theorem, M lies in a 5-dimensional totally geodesic hypersphere of $S^6(1)$. Let N be a unit vector orthogonal to this $S^5(1)$. By construction, JX is tangent to $S^5(1)$ and hence orthogonal to N for all X tangent to M. Therefore (5.1) is satisfied; (5.2) follows from (5.1) and (5.3) is true since M is totally real. Even if M is totally geodesic, this 5-dimensional unit sphere is uniquely determined as follows: take any point p in M. Then $S^5(1)$ is the unique great hypersphere of $S^6(1)$ through p, tangent to the $T_pM \oplus B(p)$. If M is not totally geodesic, it follows again as in [DOVV] that M is not contained in a totally geodesic 4-sphere. Hence we have proved the following theorem.

- THEOREM 5.1. (1) Let $f: M^2 \to S^6(1)$ be a minimal non-totally geodesic totally real immersion in $S^6(1)$ whose ellipse of curvature is a circle. Then M^2 is contained in a unique totally geodesic S^5 and the warped product immersion (3.1) is totally real.
- (2) Let f and x as in Section 3. Then x is totally real if and only if f is totally real and $J(f_*X)$ is tangent to $S^5(1)$ for all X tangent to M.
- (3) Let f and x as in Section 3. If x is totally real, then f is totally real, minimal and has ellipse of curvature a circle.

Other examples of totally real 3-dimensional submanifolds in S^6 were constructed by Ejiri in [E1] in the following way. Let $f: M^2 \to S^6$ be a linearly full superminimal (in the sense of [BVW]) almost complex immersion. Let U and V be local orthonormal vector fields, defined on a neighborhood W, which span the second normal bundle. Then for any real number γ ($0 < \gamma < \pi$) we can define the tube of radius γ in the direction of the second normal bundle by

$$F_{\gamma}: W \times S^1 \to S^6, (x, \theta) \mapsto \cos \gamma f(x) + \sin \gamma (\cos \theta U + \sin \theta V)$$
.

Then F_{γ} defines a totally real immersion if and only if either $\cos \gamma = 0$ or $\tan^2 \gamma = 4/5$. A similar construction of totally real submanifolds of CP^3 can be found in [E2].

A straightforward computation shows that all tubes of radius $\pi/2$ satisfy the equality in (3.1). In particular, starting from the Veronese immersion $f: S^2(1/6) \rightarrow S^6$ one obtains a 3-dimensional totally real submanifold with constant scalar curvature, which corresponds to Example 3.1 of [CDVV1]. It is also possible to show that for this class of tubes $F_{\pi/2}$ the distribution \mathcal{D}^{\perp} is never integrable. As for the second possibility $(\tan^2 \gamma = 4/5)$, one can show that the equality is never realized.

We now elaborate some more on totally real minimal surfaces whose ellipse of curvature is a circle. For simplicity, assume that $N=e_4$. We denote by π the Hopf map from S^5 to $\mathbb{C}P^2$ given by

$$\pi(x_1, x_2, x_3, 0, x_5, x_6, x_7) = [x_1 + ix_5, x_2 + ix_6, x_3 + ix_7].$$

Then the following theorem from [BVW] gives a relation between minimal totally real surfaces in $S^6(1)$ whose ellipse of curvature is a circle and minimal totally real surfaces in $\mathbb{C}P^2$.

THEOREM 5.2 (cf. [BVW]). If $f: M^2 \to S^5 \subset S^6(1)$ is a minimal totally real isometric immersion, not totally geodesic, whose ellipse of curvature is a circle, then $\pi(f): M^2 \to \mathbb{C}P^2$ is a totally real, not totally geodesic, minimal isometric immersion of M^2 into $\mathbb{C}P^2$. Conversely, if M^2 is simply connected and if $\psi: M^2 \to \mathbb{C}P^2$ is a totally real, not totally geodesic, weakly conformal harmonic map, then there is a minimal totally real immersion $f: M^2 \to S^5$ whose ellipse of curvature is a circle such that $\psi = \pi(f)$.

In this respect Theorem 5.1 should be compared with [BVW, Theorem 7.1]. In its turn, minimal totally real immersions of a surface in $\mathbb{C}P^2$ can be characterized as follows:

THEOREM 5.3. Let $(M^2, \langle \cdot, \cdot \rangle)$ be a simply connected surface with Gaussian curvature K satisfying K<1. Then the following two conditions are equivalent:

- (1) $\Delta \log(1-K) = 6K$;
- (2) there exists a totally real minimal immersion $f: M^2 \rightarrow CP^2(4)$.

PROOF. The fact that (2) implies (1) follows from a straightforward computation, in view of the basic formulas for a totally real submanifold in $\mathbb{C}P^2(4)$ from [CO].

Let us now prove the converse. We take isothermal coordinates on M^2 . So, we have a local non-zero function E such that $\langle \partial/\partial u, \partial/\partial u \rangle = E^2 = \langle \partial/\partial v, \partial/\partial v \rangle$ and $\langle \partial/\partial u, \partial/\partial v \rangle = 0$. Then $K = -\Delta \log E$. We now define a function ϕ by

$$\phi^2 = \frac{E^6}{2} (1 - K) \ .$$

Then, by the assumption of the theorem, we get that

$$\Delta \log \phi = \frac{1}{2} \Delta \log \phi^{2} = \frac{1}{2} \Delta \log \frac{E^{6}}{2} (1 - K)$$

$$= 3\Delta \log E + \frac{1}{2} \Delta \log (1 - K) = -3K + 3K = 0.$$

Hence there exist a function

$$\psi(u, v) = F(u, v) - iG(u, v),$$

holomorphic in z = u + iv such that $F^2 + G^2 = \phi^2$. Put

$$f(u, v) = \frac{F(u, v)}{E^2(u, v)}, \quad g(u, v) = \frac{G(u, v)}{E^2(u, v)},$$

and define $\alpha: TM^2 \times TM^2 \rightarrow TM^2$ by

$$\alpha(\partial/\partial u, \partial/\partial u) = f(u, v)\partial/\partial u + g(u, v)\partial/\partial v,$$

$$\alpha(\partial/\partial u, \partial/\partial v) = \alpha(\partial/\partial v, \partial/\partial u) = g(u, v)\partial/\partial u - f(u, v)\partial/\partial v,$$

$$\alpha(\partial/\partial v, \partial/\partial v) = -f(u, v)\partial/\partial u - g(u, v)\partial/\partial v.$$

Then

$$\begin{split} &(\nabla\alpha)(\partial/\partial u,\,\partial/\partial u,\,\partial/\partial v) = \left(g_u - 3f\frac{E_v}{E} - g\frac{E_u}{E}\right)\partial/\partial u - \left(f_u + 3g\frac{E_v}{E} - f\frac{E_u}{E}\right)\partial/\partial v\;,\\ &(\nabla\alpha)(\partial/\partial v,\,\partial/\partial u,\,\partial/\partial u) = \left(f_v - f\frac{E_v}{E} - 3g\frac{E_u}{E}\right)\partial/\partial u + \left(g_v - g\frac{E_v}{E} + 3f\frac{E_u}{E}\right)\partial/\partial v\;,\\ &(\nabla\alpha)(\partial/\partial v,\,\partial/\partial u,\,\partial/\partial v) = \left(g_v - 3f\frac{E_u}{E} - g\frac{E_v}{E}\right)\partial/\partial u + \left(-f_v + 3g\frac{E_u}{E} + f\frac{E_v}{E}\right)\partial/\partial v\;,\\ &(\nabla\alpha)(\partial/\partial u,\,\partial/\partial v,\,\partial/\partial v) = \left(-f_u + f\frac{E_u}{E} - 3g\frac{E_v}{E}\right)\partial/\partial u + \left(-g_u + 3f\frac{E_v}{E} + g\frac{E_u}{E}\right)\partial/\partial v\;, \end{split}$$

showing that $\nabla \alpha$ is totally symmetric if and only if

$$f_{u}+g_{v}=-2\left(f\frac{E_{u}}{E}+g\frac{E_{v}}{E}\right), \quad f_{v}-g_{u}=2\left(g\frac{E_{u}}{E}-f\frac{E_{v}}{E}\right),$$

which by the definition of f and g is satisfied indeed. Since

$$\frac{E^2}{2}(1-K) = \frac{\phi}{E^4}, \quad \phi^2 = F^2 + K^2 = E^4(f^2 + g^2),$$

we get that

$$R(X, Y)Z = \langle Y, Z \rangle X - \langle X, Z \rangle Y + \alpha(\alpha(Y, Z), X) - \alpha(\alpha(X, Z), Y)$$
.

Applying the basic existence theorem (cf. [CDVV2]) then completes the proof of the theorem.

6. Proof of the main theorem. We first recall some results of [CDVV1] for 3-dimensional totally real (and therefore minimal) submanifolds of $S^6(1)$.

LEMMA 6.1. Let M be a 3-dimensional totally real submanifold of $S^6(1)$. Then

$$\delta_{M} \leq 2$$
.

Equality holds at a point p of M if there exists a tangent basis $\{e_1, e_2, e_3\}$ of T_pM such that

$$h(e_1, e_1) = \lambda J e_1$$
, $h(e_1, e_3) = 0$,
 $h(e_1, e_2) = -\lambda J e_2$, $h(e_2, e_3) = 0$,
 $h(e_2, e_2) = -\lambda J e_1$, $h(e_3, e_3) = 0$,

where λ is a positive number determined by the scalar curvature τ according to

$$2\lambda^2 = 3 - \tau(p) .$$

So if we define a distribution \mathcal{D} by

$$\mathcal{D}(p) = \{ X \in T_p M \mid h(X, Y) = 0, \forall Y \in T_p M \},$$

we see that $\mathcal{D}(p)$ is either 3-dimensional, in which case p is a totally geodesic point, or 1-dimensional. From now on, we assume that the dimension of $\mathcal{D}(p)$ is constant on M. Then, exactly as in Lemma 5.3 of [CDVV1], we obtain:

LEMMA 6.2. Let M^3 be a totally real submanifold of $S^6(1)$ satisfying the equality in (1.3). Assume also that the dimension of the distribution \mathcal{D} is constantly equal to 1 and let $p \in M$. Then, there exists local orthonormal vector fields E_1 , E_2 , E_3 on a neighborhood of p such that

$$h(E_1, E_1) = \lambda J E_1$$
, $h(E_1, E_3) = 0$,
 $h(E_1, E_2) = -\lambda J E_2$, $h(E_2, E_3) = 0$,
 $h(E_2, E_2) = -\lambda J E_1$, $h(E_3, E_3) = 0$,

where λ is a non-zero local function determined by the scalar curvature by $2\lambda^2 = 3 - \tau$.

Let us take the basis from the previous lemma. By (2.7) and (2.9), we see that $G(E_1, E_2)$ is in the direction of JE_3 . From (2.10), we obtain that $G(E_1, E_2)$ is a unit vector. Replacing E_3 by $-E_3$ if necessary, we may assume

$$G(E_1, E_2) = JE_3$$
, $G(E_2, E_3) = JE_1$, $G(E_3, E_1) = JE_2$.

From now on, assume that we take this choice of orthonormal basis.

Throughout this section, M^3 is assumed to be a (non-totally geodesic) totally real submanifold in $S^6(1)$ which at every point p of M satisfies the equality in (1.3). We also assume that

- (1) the dimension of \mathcal{D} is constant on M,
- (2) the distribution \mathcal{D}^{\perp} is integrable.

Since M is assumed to be non-totally geodesic, we have that dim $\mathcal{D}=1$. Let $p \in M$. We introduce local functions γ_{ij}^k by

$$\gamma_{ij}^{k} = \langle \nabla_{E_i} E_i, E_k \rangle$$
.

Since $\{E_1, E_2, E_3\}$ is an orthonormal basis, $\gamma_{ij}^k + \gamma_{ik}^j = 0$. Then, we have the following lemma.

LEMMA 6.3. We have

$$\gamma_{33}^1 = \gamma_{33}^2 = 0 ,$$

$$\gamma_{11}^3 = \gamma_{22}^3 \; ,$$

$$y_{12}^3 = -y_{21}^3,$$

(4)
$$\gamma_{31}^2 = -\frac{1}{3}(\gamma_{12}^3 + 1).$$

Moreover, the function λ satisfies the following system of differential equations.

$$(5) E_1(\lambda) = -3\lambda \gamma_{21}^2,$$

$$(6) E_2(\lambda) = 3\lambda \gamma_{11}^2,$$

(7)
$$E_3(\lambda) = -\lambda \gamma_{13}^1.$$

PROOF. Since

$$(\nabla h)(E_1, E_3, E_3) = \nabla_{E_3}^{\perp} h(E_3, E_3) - 2h(\nabla_{E_3} E_3, E_3) = 0$$

and

$$(\nabla h)(E_3, E_1, E_3) = \nabla^{\perp}_{E_3} h(E_1, E_3) - h(\nabla_{E_3} E_1, E_3) - h(E_1, \nabla_{E_3} E_3) = -h(E_1, \nabla_{E_3} E_3),$$

Codazzi's equation yields $\nabla_{E_3}E_3=0$. Next we compute

$$\begin{split} (\nabla h)(E_3, E_1, E_1) &= \nabla_{E_3}^{\perp} h(E_1, E_1) - 2h(\nabla_{E_3} E_1, E_1) \\ &= E_3(\lambda) J E_1 + \lambda J \nabla_{E_3} E_1 + \lambda J E_2 + 2 \langle \nabla_{E_3} E_1, E_2 \rangle \lambda J E_2 \end{split}$$

and

$$\begin{split} (\nabla h)(E_1, E_3, E_1) &= \nabla_{E_1}^{\perp} h(E_3, E_1) - h(\nabla_{E_1} E_3, E_1) - h(E_3, \nabla_{E_1} E_1) \\ &= - \langle \nabla_{E_1} E_3, E_1 \rangle \lambda J E_1 + \langle \nabla_{E_1} E_3, E_2 \rangle \lambda J E_2 \;. \end{split}$$

Since $\langle \nabla_{E_3} E_3, E_1 \rangle = 0$, by comparing components, we get that

(6.1)
$$E_3(\lambda) = \lambda \langle \nabla_{E_1} E_1, E_3 \rangle = \lambda \gamma_{11}^3, \quad 3 \langle \nabla_{E_3} E_1, E_2 \rangle = -\langle \nabla_{E_1} E_2, E_3 \rangle - 1.$$

This proves (4) and (7). Similarly, from $(\nabla h)(E_3, E_2, E_2) = (\nabla h)(E_2, E_3, E_2)$ we obtain

$$(6.2) \gamma_{22}^3 = \gamma_{11}^3.$$

Finally, we have

$$(\nabla h)(E_2, E_1, E_1) = \nabla_{E_2}^{\perp} h(E_1, E_1) - 2h(\nabla_{E_2} E_1, E_1)$$

= $E_2(\lambda)JE_1 + \lambda J\nabla_{E_2} E_1 - \lambda JE_3 + 2\langle \nabla_{E_2} E_1, E_2 \rangle \lambda JE_2$

and

$$\begin{split} (\nabla h)(E_1, E_2, E_1) &= \nabla_{E_1}^{\perp} h(E_2, E_1) - h(\nabla_{E_1} E_2, E_1) - h(E_2, \nabla_{E_1} E_1) \\ &= -E_1(\lambda) J E_2 - \lambda J \nabla_{E_1} E_2 - \lambda J E_3 - \langle \nabla_{E_1} E_2, E_1 \rangle \lambda J E_1 + \langle \nabla_{E_1} E_1, E_2 \rangle \lambda J E_1 \\ &= -\lambda J \nabla_{E_1} E_2 - \lambda J E_3 + 2\lambda \langle \nabla_{E_1} E_1, E_2 \rangle J E_1 \;. \end{split}$$

So, by comparing components, we get

$$\langle \nabla_{E_1} E_1 + \nabla_{E_1} E_2, E_3 \rangle = 0$$
, $E_2(\lambda) = 3\lambda \langle \nabla_{E_1} E_1, E_2 \rangle$, $E_1(\lambda) = -3\lambda \langle \nabla_{E_2} E_2, E_1 \rangle$.

This completes the proof of the lemma.

In order to simplify the notation, we introduce local functions a, b, c and d by

$$a = \gamma_{11}^3$$
, $b = \gamma_{12}^3$, $c = \gamma_{11}^2$, $d = \gamma_{21}^2$.

Then Lemma 6.3 implies that

$$\begin{split} &\nabla_{E_1} E_1 = c E_2 + a E_3 \;, \qquad \nabla_{E_1} E_2 = -c E_1 + b E_3 \;, \quad \nabla_{E_1} E_3 = -a E_1 - b E_2 \;, \\ &\nabla_{E_2} E_1 = d E_2 - b E_3 \;, \qquad \nabla_{E_2} E_2 = -d E_1 + a E_3 \;, \quad \nabla_{E_2} E_3 = b E_1 - a E_2 \;, \\ &\nabla_{E_3} E_1 = -\frac{1}{3} (b+1) E_2 \;, \quad \nabla_{E_3} E_2 = \frac{1}{3} (b+1) E_1 \;, \quad \nabla_{E_3} E_3 = 0 \;, \end{split}$$

and

$$E_1(\lambda) = -3\lambda d$$
, $E_2(\lambda) = 3\lambda c$, $E_3(\lambda) = \lambda a$.

Let us now use the assumption that the distribution \mathcal{D}^{\perp} , which is locally spanned by the vector fields E_1 and E_2 is an integrable distribution. Then, the above formulas imply that b=0. Then, we have:

LEMMA 6.4. The local function a, under the assumptions made above, satisfies the following system of differential equations:

$$E_1(a) = 0$$
, $E_2(a) = 0$, $E_3(a) = 1 + a^2$.

PROOF. Using the Gauss equation, we find that

$$\begin{split} 0 &= \langle R(E_1, E_2) E_1, E_3 \rangle = \langle \nabla_{E_1} \nabla_{E_2} E_1 - \nabla_{E_2} \nabla_{E_1} E_1 - \nabla_{\nabla_{E_1} E_2 - \nabla_{E_2} E_1} E_1, E_3 \rangle \\ &= -ca - E_2(a) + ca = -E_2(a) \,. \end{split}$$

Similarly, it follows from the Gauss equation $0 = \langle R(E_2, E_1)E_2, E_3 \rangle$ that $E_1(a) = 0$. Finally, in order to prove that $E_3(a) = 1 + a^2$, we use again the Gauss equation. We have

$$1 = \langle R(E_1, E_3)E_3, E_1 \rangle = \langle \nabla_{E_1}\nabla_{E_3}E_3 - \nabla_{E_3}\nabla_{E_1}E_3 - \nabla_{\nabla_{E_1}E_3 - \nabla_{E_3}E_1}E_3, E_1 \rangle = E_3(a) - a^2.$$

LEMMA 6.5. Let M be as above and let $p \in M$. Then, in a neighborhood of the point p, M is warped product of an interval $(-\varepsilon, \varepsilon)$ and N^2 , the leaf of the distribution \mathcal{D}^{\perp} through p.

PROOF. We check Hiepko's condition [H], using the formalism of [N, §3]. In particular, we have to check that \mathcal{D} is totally geodesic and that \mathcal{D}^{\perp} is spherical. Since $\nabla_{E_3}E_3=0$, the first assumption is trivially satisfied. For the second assertion, we first have for $i,j\in\{1,2\}$ that

$$\langle \nabla_{E_i} E_i, E_3 \rangle = \delta_{ij} a E_3$$
,

which shows that \mathcal{D}^{\perp} is totally umbilical in M with mean curvature vector $\eta = aE_3$. Since, by the previous lemma, $E_1(a) = E_2(a) = 0$, the mean curvature vector is parallel. So, we get that \mathcal{D}^{\perp} is spherical.

The warping function can be determined from Lemma 6.4, but we do not need an explicit expression. Now we can finish the proof. Indeed, we know that M is locally a warped product and that the distributions on M, determined by the product structure, coincide with \mathcal{D} and \mathcal{D}^{\perp} . Moreover, since $h(\mathcal{D}, \mathcal{D}^{\perp}) = 0$, we obtain that M^3 (locally) is immersed as a warped product; further, the first factor is totally geodesic, and therefore we can assume that the first factor of the corresponding warped product decomposition of $S^6(1)$ is 1-dimensional. Since the decomposition of $S^6(1)$ into a warped product whose first factor is 1-dimensional is unique up to isometries, we obtain that M^3 is immersed as described by (3.1).

REFERENCES

- [BVW] J. BOLTON, L. VRANCKEN AND L. M. WOODWARD, On almost complex curves in the nearly Kähler 6-sphere, Quart. J. Math. Oxford Ser. (2) 45 (1994), 407-427.
- [C] B.-Y. Chen, Some pinching and classification theorems for minimal submanifolds, Archiv Math. 60 (1993), 568-578.
- [CO] B.-Y. CHEN AND K. OGIUE, On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1974), 257–266.
- [CDVV1] B.-Y. CHEN, F. DILLEN, L. VERSTRAELEN AND L. VRANCKEN, Two equivariant totally real immersions into the nearly Kähler 6-sphere and their characterization, Japanese J. Math.

(to appear).

[CDVV2] B.-Y. CHEN, F. DILLEN, L. VERSTRAELEN AND L. VRANCKEN, An exotic totally real minimal immersion of S³ in CP³ and its characterization, Proc. Roy. Soc. Edinburgh Sect. A, to appear.

[DN] F. DILLEN AND S. NÖLKER, Semi-parallelity, multi-rotation surfaces and the helix-property, J. Reine. Angew. Math. 435 (1993), 33–63.

[DOVV] F. DILLEN, B. OPOZDA, L. VERSTRAELEN AND L. VRANCKEN, On totally real surfaces in the nearly Kaehler 6-sphere, Geom. Dedicata 27 (1988), 325–334.

[E1] N. EJIRI, Equivariant minimal immersions of S^2 into S^{2m} , Trans. Amer. Math. Soc. 297 (1986), 105–124.

[E2] N. EJIRI, Calabi lifting and surface geometry in S⁴, Tokyo J. Math. 9 (1986), 297–324.

[E3] N. EJIRI, Totally real submanifolds in a 6-sphere, Proc. Amer. Math. Soc. 83 (1981), 759-763.
[H] S. HIEPKO, Eine innere Kennzeichung der verzerrten Produkte, Math. Ann. 241 (1979), 209-215.

[HL] R. HARVEY AND H. B. LAWSON, Calibrated geometries, Acta Math. 148 (1982), 47-157.

[N] S. NÖLKER, Isometric immersions of warped products, Diff. Geom. and Appl. (to appear).

[S] K. Sekigawa, Almost complex submanifolds of a 6-dimensional sphere, Kodai Math. J. 6 (1983), 174-185

[W] R. M. W. Wood, Framing the exceptional Lie group G_2 , Topology 15 (1976), 303–320.

B.-Y. CHEN

DEPARTMENT OF MATHEMATICS MICHIGAN STATE UNIVERSITY

East Lansing, Michigan 48824-1027

USA

F. DILLEN, L. VERSTRAELEN AND L. VRANCKEN

K. U. LEUVEN

DEPARTEMENT WISKUNDE CELESTIJNENLAAN 200B B-3001 LEUVEN

BELGIUM