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Abstract. The first author introduced in a previous paper an important Riemannian
invariant for a Riemannian manifold, namely take the scalar curvature function and
subtract at each point the smallest sectional curvature at that point. He also proved a
sharp inequality for this invariant for submanifolds of real space forms. In this paper
we study totally real submanifolds in the nearly Kéhler six-sphere that realize the equality
in that inequality. In this way we characterize a class of totally real warped product
immersions by one equality involving their sectional curvatures.

1. Introduction. In [C], the first author gives a general best possible inequality
between the main intrinsic invariants of a submanifold M" in a Riemannian space form
M™(c), namely its sectional curvature function K and its scalar curvature function t,
and the main extrinsic invariant, namely its mean curvature function ||H ||, H being the
mean curvature vector field of M in M. It is convenient to define a Riemannian
invariant é,, of M" by

op(p)=1(p)—inf K(p),

where inf K is the function assigning to each pe M" the infimum of K(r), where 7 runs
over all planes in 7,M and 7 is defined by t=) K(e; A ej). The inequality can be

. i<j
written as follows.

< n*(n—2)

(L.1) M—m

||H||2+';—(n+1)(n—2)c.

He then started to investigate those submanifolds, with dimension n> 3, for which the
above inequality actually becomes an equality, i.e. submanifolds which satisfy
_ n*(n—2)

(1.2) 5"‘"2—(;1—'1')—

HH||2+%(n+ D(n—2)c.

For such submanifolds, a distribution can be defined by

2(p)={XeT,M|(n—Dh(X, Y)=n{X, Y)H VYeT,M} .

1991 Mathematics Subject Classification. 53C40.
The second and fourth author are Senior Research Assistant of the National Fund for Scientific Research
(Belgium).



186 B.-Y. CHEN, F. DILLEN, L. VERSTRAELEN AND L. VRANCKEN

If the dimension of 2(p) is constant, it is shown in [C] that the distribution 2 is
completely integrable.

In this paper, we investigate 3-dimensional totally real submanifolds in the nearly
Kaihler 6-sphere S°(1). Since such a submanifold is always minimal (cf. [E3]), we get

(1.3) oyu<2.

When M has constant scalar curvature (7 is constant), a complete classification of
submanifolds satisfying the equality in (1.3) has been obtained in [CDVV1]. Here, we
will investigate those totally real 3-dimensional submanifolds in S¢(1) which satisfy:

(1) om=2,

(2) the dimension of the distribution 2 is constant (and hence it is a completely
integrable distribution),

(3) the distribution 2+ is also integrable.

We will relate submanifolds satisfying the above conditions to minimal (non-totally
geodesic) totally real immersions of surfaces N2 into S®(1) whose ellipse of curvature
is a circle. The ellipse of curvature of a surface at a point p is the set {h(u, u)|ue
T,M, |u|=1} in the normal space, where 4 is the second fundamental form. It is
shown in [BVW] that every such immersion is linearly full in a totally geodesic S°.
An alternative proof of this will be given in Section 5. Other characterizations will be
given below. The Main Theorem we prove here is:

MAIN THEOREM. Let f: M?—S%(1) be a minimal (non-totally geodesic) totally real
immersion in S8(1) whose ellipse of curvature is a circle. Then M? is linearly full in a
totally geodesic S°. Let N be a unit vector perpendicular to this S°. Then

(1.4) x: (—% %) x M?—S85(1), (£, p) — sin(f)N +cos(?) £ ()

is a totally real immersion which satisfies the equality in (1.3). Conversely, every totally
real (non-totally geodesic) immersion of M3 into S®(1) satisfying

(1) 5M =2,

(2) the dimension of 9 is constant,

(3) 92* is an integrable distribution,
can be locally obtained in this way.

2. The nearly Kiihler structure on S®(1). We give a brief explanation of how the
standard nearly Kéhler structure on S°(1) arises in a natural manner from Cayley
multiplication. For elementary facts about the Cayley numbers and their automorphism
group G,, we refer the reader to Section 4 of [W] and to [HL].

The multiplication on the Cayley numbers ¢ may be used to define a vector
crossproduct on the purely imaginary Cayley numbers R’ using the formula
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1
2.1 uxv=7(uv-—vu),
while the standard inner product on R” is given by
1
2.2) {u,v) = —~2—(uv+vu).

It is now elementary to show that
2.3) ux(xw)+uxv)yxw=2{u, wyv—<u, v)w—{w, vdu,

and that the triple scalar product (u x v, w) is skew symmetric in u, v, w.
Conversely, Cayley multiplication of @ is given in terms of the vector crossproduct
and the inner product by

2.4 (r+u)(s+v)=rs—(u, v)+ro+su+uxv), r,seRe O, u,velm0.

In view of (2.1), (2.2) and (2.4), it is clear that the group G, of automorphisms of
0 is precisely the group of isometries of R” which preserve the vector crossproduct.
An ordered orthonormal basis {e,, ..., e;} of R” is said to be canonical if

2.5) e;=e;Xe,, es=e;Xe,, €c=€,Xe,, e;=e3Xe,.

For example, the standard basis of R” is canonical. Moreover, if e, e,, e, are
mutually orthogonal unit vectors with e, orthogonal to e, x e,, then e, e,, e, determine

a unique canonical basis {ey, ..., e,;} and (R’, x) is generated by e,, e,, e, subject to the
relations

(2.6) e;x(ejxe)+(e;xe;)xe,=20,e;—0;;e,—dye; .

Given any two canonical bases {e,,...,e;} and {f, ..., f;} of R, there is a unique
element g€ G, such that ge;=f;; and thus g is uniquely determined by ge,, ge,, ge,.
Let J be the automorphism of the tangent bundle TS%(1) of Sé(1) defined by

Ju=xxu, ueT, S%1), xeS%(1).

It is clear that J is an almost complex structure on S®(1) and in fact J is a nearly Kéhler
structure on S°(1) in the sense that (V,J)u=0, for any vector u tangent to S %(1), where
¥V is the Levi-Civita connection of S°(1). We define by

GX, V)=(VxJ)Y),

the corresponding skew-symmetric (2,1)-tensor field. From [S], we know that this tensor
field has the following properties:

Q2.7 G(X,JY)+JG(X, Y)=0,
(2.8) VG)X, Y, Z)=(Y,JZYX+LX, ZYIY—LX, YYJIZ ,
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(2.9) (G(X,Y), Z)+{G(X, Z), Y>=0,
(2.10) (G(X, Y), G(Z, W)>=(X, ZYY, WY—(X, WXZ, ¥

+{JX, ZXY, JIW>S—{JX, WY, JZ>,
@.11) G(X, Y)=Xx Y+{X,JY>x.

It is clear from the above that G, acts transitively on S®(1) and that the stabilizer of
the point (1,0, ..., 0) is SU(3). It follows that G,, a connected subgroup of SO(7) of
dimension 14, is the group of automorphisms of the nearly Kéhler structure J.

3. Warped product immersions. Let M, ..., M, be Riemannian manifolds, M
their product M, x - - - x M;, and letw;: M—M,; denote the canonical projection. If
Prs .-, P Mog— R, are positive-valued functions, then

k
X, YD) =T X, Mo YD+ 3, (010 To) My X, M YD X, YeI'(TM)
i=1

defines a Riemannian metric on M. We call (M; -, *)) the warped product M, x ,,
M;x - x, M of My, ..., My, and p,, ..., p; the warping functions.

Let f;: Ni>M,, i=0, ..., k be isometric immersions, and define o;:=p;ofy: Nyo—
R, for i=1,..., k. Then the map f: Nox, Ny X = Xo Ny=>Mox, My x -+ X, M
given by f(po, - -5 P) i =Fo(Po), f1(P1)s -- -, [i(Pr)) is an isometric immersion, and is
called a warped product immersion.

The decomposition of an immersion into warped product immersions is in partic-
ular a very powerful tool when applied to immersions into Euclidean spaces, spheres or
hyperbolic spaces. In this respect, the main result from [N] can be stated as follows.
Let f:Ng x4 Ny X"+ X, N—M(c) be an isometric immersion into a space of constant
curvature c. If A is the second fundamental form of f and h(X;, X;)=0, for all vector
fields X; and X}, tangent to N; and N; respectively, with i#j, then, locally, M is a warped
product immersion. The problem of how M(c) can be decomposed into a warped product
is solved in [N], see also [DN] for the statement.

Using warped product immersions, we can give a class of examples of mini-
mal submanifolds in a unit sphere which satisfy the equality (1.2). Let S %(1)=
{xeR""!||lx||=1 and x, >0} be an open hemisphere and let S™ "*2(1) be the unit
hypersphere of R™~"*3. Then y: S%72 (1) x ., S™ "*2(1)>S™(1), (x, y) > (x19, X35 - - -,
X,-1) is an isometry onto an open dense subset of S™(1). This can be considered
as a warped product decomposition of S™(1). Now if N2 is any minimal surface in
S™~"*2(1), immersed by f;, then the immersion f: S%"%(1) x,,N2>S™(1), (x, p)—>
V(x, f1(p)) is an isometric immersion satisfying the equality (1.2). This follows trivially
since the dimension of the distribution 92 is n—2. It is easy to see that the immersion
(1.4) is a special case of this family. We now focus on (1.4).

We consider a totally geodesic S3(1) in S®(1). Let N denote the unit vector
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orthogonal to the hyperplane containing S°(1). We parametrize the half circle S (1)
by (—n/2,7/2)-»S%(1), 1 (cos(?), sin(¢)). Then the isometry  of the previous
paragraph can also be written as S (1) X o5 S°(1)=>S°(1), (2, p) > sin(?)N +cos()p.
Let f: M?—S3(1) be an immersion of a surface into $3(1). Then the associated warped
product immersion is given by

3.1 X1 (=72, T[2) X oqy M > > S8(1), (2, p) > sin(t)N +cos(?) f(p) .

We will determine in Section 5 for which immersions f, the warped product immersion
x is totally real.

4. Totally real submanifolds in S®(1). A submanifold M in Sé(1) is called totally
real if for any vector field X, tangent to M, JX is a normal vector field.

The dimension of M can be 2 or 3. Totally real surfaces in S6(1) were first studied
in [DOVV]. Totally real 3-dimensional submanifolds were first studied in Ejiri [E3],
who proved that a 3-dimensional totally real submanifold of S$%(1) is orientable and
minimal. In both cases it can be proved that G(X, Y) is orthogonal to M, for tangent
vectors X and Y.

We denote the Levi-Civita connection of M by V. The formulas of Gauss and
Weingarten are respectively given by

@.1) DyY=V,Y+h(X,Y),
4.2) Dyé=—AX+ViE,

for tangent vector fields X and Y and normal vector fields &. The second fundamental
form 4 is related to 4, by

Ch(X, Y), ) =CAX, Y) .
From (4.1) and (4.2), we find that
4.3) ViJY=JVyY+G(X, Y)+(Jh(X, Y)),
4.4 Ay X=—-hX, Y)),

where (Jh(X, Y))" and (JA(X, Y))* denote the normal and tangential parts of JA(X, Y).
Obviously, if dim M =3, then JA(X, Y) is tangent.

The above formulas immediately imply that {A(X, Y), JZ) is totally symmetric. If
we denote the curvature tensors of V and V! by R and R*, respectively, then the
equations of Gauss, Codazzi and Ricci are given by

(4.5) R(X, V)Z=<Y, Z)X— (X, Z)Y + Apy, 1, X — Ayx. 2, Y ,
(4.6) (VIXX, Y, Z)=(Vh)(Y, X, Z),
(4.7) CRYX, V)&, ) ={[4pA4,1X, Y,
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where X, Y, Z (respectively, n and &) are tangent (respectively, normal) vector fields to
M and Vh is defined by

(Vh)(X, Y, Z)=Vxh(Y, Z)—h(Vy Y, Z)—h(Y,VxZ) .

5. Totally real surfaces in S°(1). We now continue to investigate the immersion

3.1).
Let X denote a vector field tangent to M 2. Then

X, (0/0t)=cos())N—sin(?) f(p) , x,(X)=cos(t)f(X),
and
Ix, (000 =Nx f(p), Jx,(X)=cos(?)sin(t)N x f,(X)+sin*(2)Jf(X) .

From this it is easy to check that x is totally real if and only if

(.1 (N xf(p), £(X)>=0,
(5:2) CNXf(X), £(Y))=0,
(53) I (X), [(Y)5=0,

for all tangent vector fields X and Y to M. Now (5.3) simply says f has to be totally
real; from (2.11), we obtain that (5.2) is equivalent to {(G(f(X), f,(Y)), N>=0; (5.1)
is equivalent to {Jf,(X), N)=0. We have reduced the condition that x is totally real
to conditions depending only on f. From now on, for simplicity, we identify M with
f(M), so we do not write f, if there is no confusion.

Differentiating (5.1) gives us

(5.4) (Nx Y, X>+{Nxp, h(X, Y)>=0.

Since the first term in (5.4) is skew symmetric and the second is symmetric, both terms
have to be zero. Therefore (5.1) implies (5.2). Now take any orthonormal basis- {e, e,}
of T,M. From the properties of G, we obtain that G(e,,e,) is orthogonal to e,, e,
Je,, Je, and p; (5.2) implies that G(e,, e,) is also orthogonal to N. On the other hand,
(5.1) implies that N x p is orthogonal to e, and e,; clearly N x p is orthogonal to p and
N, and a straightforward calculation shows that N x p is orthogonal to Je, and Je,.
Therefore G(e,, e,)= +p x N. After changing the sign of e,, if necessary, we can make
sure thate, x e, =JN. Thisimplies that e; x N= —Je,, e, x N=Je,. Note that the normal
space of M in S°(1) at p is spanned by Je,, Je, and JN.
Differentiating (5.2), we obtain

(5.5) (NXK(Y, Z), X>+{Nx Y, h(X, Z)>=0,

for all tangent vector fields X, Y and Z to M. Putting X=e, and Y=e,, we obtain
that
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0= <Je2, h(e2’ Z)> + <Jels h(el’ Z)> = <h(€2, 62), JZ> + <h(€1, 81)9 JZ> )

such that the mean curvature vector H of M in S°(1) is orthogonal to Je, and Je,;
from (5.4) we obtain that H is orthogonal to JN. Therefore H can only be zero. Then
(5.4) immediately implies that A4 is of the form

h(ey, e))=ale; +pJe,, h(ey, e;)=PpJe;—ale,, h(e,, e;)=—ale,—pJe,,

such that the ellipse of curvature of M at p is a circle (possibly a point).

Conversely, let M? be a minimal, totally real surface of $°(1) whose ellipse of
curvature is a circle. Then we can use exactly the same computations as in the proof of
[DOVYV, Lemma] to obtain that h(X, Y) is contained in J(TM). Let {E,, E,} be any
local orthonormal basis of TM. Then G(E,, E,) does not depend on the choice of
{E,, E,} up to sign. Hence we can define a subbundle B of the normal bundle by
B(p)=JT,M)DLG(E}, E,)). From (4.3), (2.8) and the minimality of M, we obtain
that B is V+-parallel. Hence by the Erbacher theorem, M lies in a 5-dimensional totally
geodesic hypersphere of S®(1). Let N be a unit vector orthogonal to this S3(1). By
construction, JX is tangent to S°(1) and hence orthogonal to N for all X tangent to
M. Therefore (5.1) is satisfied; (5.2) follows from (5.1) and (5.3) is true since M is totally
real. Even if M is totally geodesic, this 5-dimensional unit sphere is uniquely determined
as follows: take any point p in M. Then S>(1) is the unique great hypersphere of S°(1)
through p, tangent to the 7,M® B(p). If M is not totally geodesic, it follows again as
in [DOVV] that M is not contained in a totally geodesic 4-sphere. Hence we have
proved the following theorem.

THEOREM 5.1. (1) Letf: M?*—S5(1) be a minimal non-totally geodesic totally real
immersion in S®(1) whose ellipse of curvature is a circle. Then M? is contained in a unique
totally geodesic S° and the warped product immersion (3.1) is totally real.

(2) Let f and x as in Section 3. Then x is totally real if and only if f is totally real
and J(f,X) is tangent to S°(1) for all X tangent to M.

(3) Let fand x as in Section 3. If x is totally real, then f is totally real, minimal and
has ellipse of curvature a circle.

Other examples of totally real 3-dimensional submanifolds in §° were constructed
by Ejiri in [E1] in the following way. Let f: M2—S° be a linearly full superminimal
(in the sense of [BVW]) almost complex immersion. Let U and V be local orthonormal
vector fields, defined on a neighborhood W, which span the second normal bundle.
Then for any real number y (0 <y <) we can define the tube of radius y in the direction
of the second normal bundle by

F,: WxS'>S8¢, (x, ) cosyf(x)+siny(cos QU +sin V) .

Then F, defines a totally real immersion if and only if either cos y=0 or tan?y=4/5.
A similar construction of totally real submanifolds of CP? can be found in [E2].



192 B.-Y. CHEN, F. DILLEN, L. VERSTRAELEN AND L. VRANCKEN

A straightforward computation shows that all tubes of radius =/2 satisfy the
equality in (3.1). In particular, starting from the Veronese immersion f: $2(1/6)—S®
one obtains a 3-dimensional totally real submanifold with constant scalar curvature,
which corresponds to Example 3.1 of [CDVV1]. It is also possible to show that for
this class of tubes F,, the distribution 2* is never integrable. As for the second
possibility (tan?y=4/5), one can show that the equality is never realized.

We now elaborate some more on totally real minimal surfaces whose ellipse of
curvature is a circle. For simplicity, assume that N=e,. We denote by n the Hopf map
from S3 to CP? given by

(X1, X535 X3, 0, X5, Xg, X7) =[x, +ix5, X5+ iXg, X3+ix7] .

Then the following theorem from [BVW] gives a relation between minimal totally real
surfaces in S®(1) whose ellipse of curvature is a circle and minimal totally real surfaces
in CP2,

THEOREM 5.2 (cf. [BVW]). If f: M*>S5<S5(1) is a minimal totally real iso-
metric immersion, not totally geodesic, whose ellipse of curvature is a circle, then
n(f): M*—>CP? is a totally real, not totally geodesic, minimal isometric immersion of
M? into CP2. Conversely, if M? is simply connected and if : M*—CP? is a totally
real, not totally geodesic, weakly conformal harmonic niap, then there is a minimal totally
real immersion f: M*—S3 whose ellipse of curvature is a circle such that Y =n(f).

In this respect Theorem 5.1 should be compared with [BVW, Theorem 7.1]. In its
turn, minimal totally real immersions of a surface in CP? can be characterized as
follows:

THEOREM 5.3. Let (M2, (-, *)) be a simply connected surface with Gaussian cur-
vature K satisfying K<1. Then the following two conditions are equivalent:

(1) Alog(1-K)=6K;

(2) there exists a totally real minimal immersion f: M?—CP*(4).

ProoF. The fact that (2) implies (1) follows from a straightforward computation,
in view of the basic formulas for a totally real submanifold in CP?(4) from [CO].

Let us now prove the converse. We take isothermal coordinates on M?2. So, we
have a local non-zero function E such that {8/du, d/ouy=E?=<{0/dv, d/dvy and
{0/0u, 0/0v)=0. Then K= — Alog E. We now define a function ¢ by

6
#="(1-K).

Then, by the assumption of the theorem, we get that
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6

1 1 E
Alog ¢=7Alog¢2=?Alog —2——(1 —K)

1
=3Alog E+— Alog(1—K)=—3K+3K=0.

Hence there exist a function
'P(U, U) =F(ua l)) - lG(u U) )
holomorphic in z=u+ iv such that F?>+ G?*=¢2. Put

F(u, v) (0, v)= G(u, v)
Ewo)” 0 Euv)

and define a: TM?2 x TM?>—>TM? by
o(0/0u, 8/0u)=f(u, v)8/0u+ g(u, v)d/dv ,
o(0/0u, 0/0v)=o(d/0v, 0/0u)=g(u, v)d/0u—f(u, v)d/ov ,
a(0/0v, 0/0v)= — f(u, v)0/0u—g(u, v)d/dv .

—gi“)a/au (fu )3/30

(Va)(0/0v, 0/0u, 0/0u)= <f,, —fb;’ — 3g%)6/6u+ (g,, i Ew )6/60

>8/6v,
E

“ Vo/ov,
9E>/v

f(us v)=

Then

S

(Va)(0/0u, d/0u, 0/0v)= (gu —3f i'f

(Va)(8/v, 8/du, 0/dv)= <g,,— 3fi'j —g EE )6/6u+< f

(Va)(0/0u, 8/0v, 0/0v)= ( —/fu +f115; —3g 12’ )6/6u + < —9u

showing that Va is totally symmetric if and only if

which by the definition of f and g is satisfied indeed. Since

E? 9
S 1-K)=—r,

E,,)
E b

¢P>=F*+K*=E*(f*+4%),

we get that
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RX, Y)Z=(Y,Z)X—LX, ZYY+o((Y, Z), X)—a(u(X, Z), Y).
Applying the basic existence theorem (cf. [CDVV2]) then completes the proof of the
theorem.
6. Proof of the main theorem. We first recall some results of [CDVV1] for
3-dimensional totally real (and therefore minimal) submanifolds of S¢(1).
LEMMA 6.1. Let M be a 3-dimensional totally real submanifold of S6(1). Then
ou<2.
Equality holds at a point p of M if there exists a tangent basis {e,, e,, es} of T,M such that
h(e,, e,)=AJe,, h(e,, e3)=0,
h(e,, e;)=—AJe,, h(e,, e3)=0,
h(e,, e;)=—AJe,, h(es, e3)=0,
where A is a positive number determined by the scalar curvature Tt according to
242=3—1(p).
So if we define a distribution 2 by
2(p)={XeT,M|h(X, Y)=0,VYeT,M},

we see that 2(p) is either 3-dimensional, in which case p is a totally geodesic point, or
1-dimensional. From now on, we assume that the dimension of 9(p) is constant on M.
Then, exactly as in Lemma 5.3 of [CDVV1], we obtain:

LEMMA 6.2. Let M3 be a totally real submanifold of S®(1) satisfying the equality
in (1.3). Assume also that the dimension of the distribution 9 is constantly equal to 1 and
let pe M. Then, there exists local orthonormal vector fields E,, E,, E5 on a neighborhood
of p such that

h(E,, E\)=AJE,, h(E,, E;)=0,
WE,, E))=—AME,, hE,, E;})=0,
h(E,, E))=—AE,, h(Es, E;)=0,
where A is a non-zero local function determined by the scalar curvature by 2A*=3—1.

Let us take the basis from the previous lemma. By (2.7) and (2.9), we see that
G(E,, E,) is in the direction of JE,. From (2.10), we obtain that G(E,, E,) is a unit
vector. Replacing E; by — Ej; if necessary, we may assume

G(En E2)=JE3 , G(E,, E3)=JE,, G(E; E,)=JE,.
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From now on, assume that we take this choice of orthonormal basis.

Throughout this section, M3 is assumed to be a (non-totally geodesic) totally real
submanifold in Sé(1) which at every point p of M satisfies the equality in (1.3). We
also assume that

(1) the dimension of 2 is constant on M,

(2) the distribution 2+ is integrable.

Since M is assumed to be non-totally geodesic, we have that dim2=1. Let pe M.
We introduce local functions y%; by

’Y:"j= <VE.-Ej’ E> .

Since {E,, E,, E;} is an orthonormal basis, y§;+p}=0. Then, we have the following
lemma.

LEMMA 6.3. We have

ey ¥33=733=0,

)] P11=732,

3 Yiz=—V31,

@ =0+

Moreover, the function A satisfies the following system of differential equations.
(% E\ (D)= —31y3,,

(6 E,(D)=3M01,,

M Ey(A)=—Myis.

PrROOF. Since
(Vh)(E,, E3, E3)=V3g h(E;3, E3)—2h(Vg,E,, E;)=0

and

(Vh)(Es, Ey, E3)=Vig h(Ey, E3)—h(Vg,E,, E;)—h(E,, Vg, E3)= —h(E,, Vg,E3),
Codazzi’s equation yields Vg, E;=0. Next we compute

(VhX(Es, E,, E\)=V3,h(E,, E\)—2h(Vg,E,, E,)
=E3;(A)JE, + AJVg E\+AJE, +2{V E,, E,)AJE,
and
(Vh)(E,, Es, E\)=V3g,h(Es, E\)—h(Vg,E;3, E\)—h(Es3, Vg, E;)
= —(Vg,E;3, E\)AJE, +{Vg,E;, E;)AJE, .
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Since {Vg,E3, E;» =0, by comparing components, we get that

(6.1) Es(A)=MVg,Ey, Es>=4y31, 3HKVg,E;, Eyp=—{VgEy E3p—1.
This proves (4) and (7). Similarly, from (VA)(E,, E,, E,;)=(Vh)(E,, E, E,) we obtain
(6.2) Y32="11 -

Finally, we have
(Vh)(E,, E;, E1)=V,L;2h(E1, Ey)—2h(Vg,E,, E,)
=E)(A)JE{+AJV,E| —AJE;+2{Vg,E,, E;»AJE,
and
(Vh)(E,, E,, E\)=V3g,IE,, E\)—h(Vg,E,, E\)—h(E,, Vg, E;)
=—E\(AWJE,—AJVg E; —AE3—{Vg,E,, E\)AJE; +{Vg,E,, E;>AJE,
=—AJVg E;,—AJE;+2){Vg E,, E;)JE, .
So, by comparing components, we get
(Vg,Ei+Vg,Ey), Es)=0, E,(A)=3AVgE,E;>, E(A)=-3KVgE, E;).
This completes the proof of the lemma.
In order to simplify the notation, we introduce local functions a, b, ¢ and d by
a=y3}, b=vi,, c=yi,, d=v5.
Then Lemma 6.3 implies that
Ve, Ey=cE,+akE;, Vg E,=—cE,+bE;, Vg E,=—aE,—bE,,
Vg, Ei=dE,—bE,, Ve,E;=—dE +aE;, Vp,E;=bE,—akE,,

1 1
VEaE1=—?(b+1)E2 9 VE3E2=?(b+1)E1 s VE3E3=0,

and
E(A)=-3Md, E,(A)=3Aic, E;(A)=A4a.
Let us now use the assumption that the distribution 2+, which is locally spanned by

the vector fields E, and E, is an integrable distribution. Then, the above formulas imply
that 5=0. Then, we have:

LEMMA 6.4. The local function a, under the assumptions made above, satisfies the
Sfollowing system of differential equations: '

Ei(@)=0, E)(@)=0, Ej@=1+a*.
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Proor. Using the Gauss equation, we find that
0=<R(E,, E5)E, E3)=(Vg,VE,E, — Vg, Vg, E; —VvElEz—vszElEb Es)
=—ca—E,(a)+ca=—E,(a).

Similarly, it follows from the Gauss equation 0=<R(E,, E|)E,, E;) that E (a)=0.
Finally, in order to prove that E;(a)=1+ a2, we use again the Gauss equation. We have

1=(R(Ey, E3)E3, E )=V, Vg, E3—Vp Vg Es—Vy, 5, vy 5,E3 EiD =E;(@)—a’.
O

LEMMA 6.5. Let M be as above and let pe M. Then, in a neighborhood of the point

p, M is warped product of an interval (—¢, €) and N2, the leaf of the distribution 2+
through p.

Proor. We check Hiepko’s condition [H], using the formalism of [N, §3]. In
particular, we have to check that 2 is totally geodesic and that 2+ is spherical. Since
Ve, E3=0, the first assumption is trivially satisfied. For the second assertion, we first
have for i,je {1, 2} that

<VE,E,', E;)= 5ijaE3 >

which shows that 2* is totally umbilical in M with mean curvatuve vector n=akE,.
Since, by the previous lemma, E,(a)= E,(a)=0, the mean curvature vector is parallel.
So, we get that 2" is spherical. O

The warping function can be determined from Lemma 6.4, but we do not need an
explicit expression. Now we can finish the proof. Indeed, we know that M is locally a
warped product and that the distributions on M, determined by the product structure,
coincide with 2 and 2*. Moreover, since (%, 2*)=0, we obtain that M> (locally) is
immersed as a warped product; further, the first factor is totally geodesic, and therefore
we can assume that the first factor of the corresponding warped product decomposition
of S(1) is 1-dimensional. Since the decomposition of S®(1) into a warped product
whose first factor is 1-dimensional is unique up to isometries, we obtain that M3 is
immersed as described by (3.1).
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