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Abstract. The first author introduced in a previous paper an important Riemannian
invariant for a Riemannian manifold, namely take the scalar curvature function and
subtract at each point the smallest sectional curvature at that point. He also proved a
sharp inequality for this invariant for submanifolds of real space forms. In this paper
we study totally real submanifolds in the nearly Kahler six-sphere that realize the equality
in that inequality. In this way we characterize a class of totally real warped product
immersions by one equality involving their sectional curvatures.

1. Introduction. In [C], the first author gives a general best possible inequality

between the main intrinsic invariants of a submanifold Mn in a Riemannian space form

Mm(c), namely its sectional curvature function K and its scalar curvature function τ,

and the main extrinsic invariant, namely its mean curvature function \\H\\, H being the

mean curvature vector field of M in M. It is convenient to define a Riemannian

invariant δM of Mn by

= τ(p)-mfK(p),

where inf K is the function assigning to each peMn the infimum of K(π), where π runs

over all planes in TpM and τ is defined by τ = Σi<jK(eiΛej). The inequality can be

written as follows.

(1.1) δM< n^~V \\H\\2+±(n+l)(n-2)c .

He then started to investigate those submanifolds, with dimension «>3, for which the

above inequality actually becomes an equality, i.e. submanifolds which satisfy

(12) δM= * 2

(

( * ~ ^ \\H\\*+±-(n+lXn-2)c.

For such submanifolds, a distribution can be defined by

\ ) = n(X, Y>H,VYeTpM} .
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If the dimension of 3){p) is constant, it is shown in [C] that the distribution 3l is

completely integrable.

In this paper, we investigate 3-dimensional totally real submanifolds in the nearly

Kahler 6-sphere S6(l). Since such a submanifold is always minimal (cf. [E3]), we get

(1.3) δM<2.

When M has constant scalar curvature (τ is constant), a complete classification of

submanifolds satisfying the equality in (1.3) has been obtained in [ C D W 1 ] . Here, we

will investigate those totally real 3-dimensional submanifolds in S6{\) which satisfy:

(1) δM = 2,

(2) the dimension of the distribution 2 is constant (and hence it is a completely

integrable distribution),

(3) the distribution Q)L is also integrable.

We will relate submanifolds satisfying the above conditions to minimal (non-totally

geodesic) totally real immersions of surfaces N2 into S6(l) whose ellipse of curvature

is a circle. The ellipse of curvature of a surface at a point p is the set {h{u,u)\ue

TpM, ||w|| = l} in the normal space, where h is the second fundamental form. It is

shown in [BVW] that every such immersion is linearly full in a totally geodesic S5.

An alternative proof of this will be given in Section 5. Other characterizations will be

given below. The Main Theorem we prove here is:

MAIN THEOREM. Letf: M2-+S6(l) be a minimal {non-totally geodesic) totally real

immersion in S6{\) whose ellipse of curvature is a circle. Then M2 is linearly full in a

totally geodesic S5. Let N be a unit vector perpendicular to this S5. Then

(1.4) x: (~, y ) x M2^S6(\), (t,p)^sm(t)N+cos(t)f(p)

is a totally real immersion which satisfies the equality in (1.3). Conversely, every totally

real {non-totally geodesic) immersion of M 3 into S6{\) satisfying

0 ) <5M = 2 ,

(2) the dimension of' 3f is constant,

(3) $)L is an integrable distribution,

can be locally obtained in this way.

2. The nearly Kahler structure on 56(1). We give a brief explanation of how the

standard nearly Kahler structure on S 6 ( l) arises in a natural manner from Cayley

multiplication. For elementary facts about the Cayley numbers and their automorphism

group G2, we refer the reader to Section 4 of [W] and to [HL].

The multiplication on the Cayley numbers 0 may be used to define a vector

crossproduct on the purely imaginary Cayley numbers Rη using the formula
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(2.1) uxυ = — (uv — vu),

while the standard inner product on Rη is given by

_ 1

2

It is now elementary to show that

(2.3) u x (v x w) + (w x v) x w = 2<w, w>i; — <w, ι?>w — <w, v)u ,

and that the triple scalar product <M X V, W} is skew symmetric in M, U, W.

Conversely, Cayley multiplication of 0 is given in terms of the vector crossproduct

and the inner product by

(2.4) {r + u){s + v) = rs-{u, v) + rv + su + (uxv), r, SERGΘ , u,velmθ .

In view of (2.1), (2.2) and (2.4), it is clear that the group G2 of automorphisms of

Θ is precisely the group of isometries of RΊ which preserve the vector crossproduct.

An ordered orthonormal basis {eί9..., eΊ} of R1 is said to be canonical if

(2.5) e3 = e1xe2, e5 =

For example, the standard basis of RΊ is canonical. Moreover, if eί,e2, e^ are

mutually orthogonal unit vectors with e 4 orthogonal to ex x e2, then el9 e2, e4 determine

a unique canonical basis {eu . . . , eΊ} and (RΊ, x ) is generated by eu e2, eA subject to the

relations

(2.6) et x (βj xe k ) + fex βj) xek = 2δike} - δi}ek - δ^ .

Given any two canonical bases {eu ...,eΊ} and {fu . . . ,/7} of RΊ, there is a unique

element geG2 such that ge—fc and thus g is uniquely determined by geu ge2, ge^.

Let J be the automorphism of the tangent bundle TS6{\) of S6(l) defined by

Ju = xxu, ueTxS
6(l), xeS6(l).

It is clear that / is an almost complex structure on S6(l) and in fact / is a nearly Kahler

structure on *S6(1) in the sense that (VuJ)u = 0, for any vector u tangent to 5'6(1), where

V is the Levi-Civita connection of S6(l). We define by

the corresponding skew-symmetric (2,l)-tensor field. From [S], we know that this tensor

field has the following properties:

(2.7) G(X, JY) + JG(X, Y) = 0,

(2.8) (VGX*, Y, z)=< γ9 jzyx+ <z, zyjY- <z, Y}JZ ,
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(2.9) (G{X, Y)9 Z> + <β{X9 Z), 7> = 0,

(2.10) <G(JT, Y), G(Z, WY> = (X, Z>< Y, W} - <*, W>(Z, Y}

+<jχ,zχγ,jwy-<jχ,wχγ9jz>9

(2.ii) G(x9 Y)=xχ r + < * , / * > .

It is clear from the above that G2 acts transitively on S6(X) and that the stabilizer of

the point (1, 0,.. ., 0) is SU(3). It follows that G2, a connected subgroup of SO{1) of

dimension 14, is the group of automorphisms of the nearly Kahler structure /.

3. Warped product immersions. Let Mθ9..., Mk be Riemannian manifolds, M

their product Mo x xMk, and letπ,-: M^M{ denote the canonical projection. If

Pi,..., pk: M0-*R+ are positive-valued functions, then

<*, Y>: = <π0tX9π0tY>+Σ(Piθ*o)2<*imX,πt*Y> , *> YeΓ(TM)

defines a Riemannian metric on M. We call (M; < , •>) the warped product Moxpι

Mx x xpkMk of M o , . . . , Mk, and pί9..., pk the warping functions.

Let yj: Ni—tMi, i=0,..., k be isometric immersions, and define σt : = Pi °/0: No—>

R+ for /= 1,..., A:. Then the map / : NoxσiN1 x xσkNk-+M0'xpιMί x xPkMk

given by /(/> 0 , . . . , pk) : = (fo(po)9 fi(Pι),... ,Λ(^)) is an isometric immersion, and is

called a warped product immersion.

The decomposition of an immersion into warped product immersions is in partic-

ular a very powerful tool when applied to immersions into Euclidean spaces, spheres or

hyperbolic spaces. In this respect, the main result from [N] can be stated as follows.

Let f:Nox σιNί x x σkNk->M(c) be an isometric immersion into a space of constant

curvature c. If h is the second fundamental form of/and h(Xh Xj) = 0, for all vector

fields X{ and Xj9 tangent to Nt and Nj respectively, with iΦj, then, locally, M is a warped

product immersion. The problem of how M(c) can be decomposed into a warped product

is solved in [N], see also [DN] for the statement.

Using warped product immersions, we can give a class of examples of mini-

mal submanifolds in a unit sphere which satisfy the equality (1.2). Let S+~2(l) =

{xeRn~1\ ||x|| = l and xί>0} be an open hemisphere and let Sm~n+2(\) be the unit

hypersphere of Rm~n+\ Then φ: Sn

+~2 (\)xXιS
m-n + 2(l)^Sm(\), (x9y)^(xίy, JC2, . . . ,

xn-i) is an isometry onto an open dense subset of S^l). This can be considered

as a warped product decomposition of *Sm(l). Now if N2 is any minimal surface in

Sm~»+2(l)9 immersed by/ l 9 then the immersion / : Sn

+~2(l) xXiN
2-+Sm(l), (x,p)^

ψ(x, fx{p)) is an isometric immersion satisfying the equality (1.2). This follows trivially

since the dimension of the distribution 3f is n — 2. It is easy to see that the immersion

(1.4) is a special case of this family. We now focus on (1.4).

We consider a totally geodesic S5(l) in 56(1). Let N denote the unit vector
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orthogonal to the hyperplane containing S5(l). We parametrize the half circle S +(1)
by (-π/2,π/2)-»S+(l), n->(cos(/), sin(/)). Then the isometry ψ of the previous
paragraph can also be written as 5f!l.(l)xcos(t)ίS

r5(l)->5ί6(l), (t, p)\-*sin(t)N+cos(t)p.
Let / : M2^S5{\) be an immersion of a surface into Ss(l). Then the associated warped
product immersion is given by

(3.1) x: (-π/2, π/2) x c o s ( ί )M
2-*S 6(l), (t,p)^sin(t)N+cos(t)f(p).

We will determine in Section 5 for which immersions/, the warped product immersion
x is totally real.

4. Totally real submanifolds in S6(l). A submanifold M in 5f6(l) is called totally
real if for any vector field X, tangent to M, JX is a normal vector field.

The dimension of M can be 2 or 3. Totally real surfaces in S6(l) were first studied
in [DOW]. Totally real 3-dimensional submanifolds were first studied in Ejiri [E3],
who proved that a 3-dimensional totally real submanifold of S6(l) is orientable and
minimal. In both cases it can be proved that G(X, Y) is orthogonal to M, for tangent
vectors X and Y.

We denote the Levi-Civita connection of M by V. The formulas of Gauss and
Weingarten are respectively given by

(4.1) DxY=VxY+h(X, Y),

(4.2) Dxξ=-AξX+Vxξ9

for tangent vector fields X and Y and normal vector fields ξ. The second fundamental
form h is related to A ξ by

From (4.1) and (4.2), we find that

(4.3) VXJY = JVX Y + G(X, Y) + (Jh(X, Y))n,

(4.4) AJYX=-(Jh(X,Y)γ,

where (Jh(X, Y))n and (Jh(X, Y))* denote the normal and tangential parts of Jh(X, Y).
Obviously, if dim M= 3, then Jh(X, Y) is tangent.

The above formulas immediately imply that <Λ(X Y), JZ} is totally symmetric. If
we denote the curvature tensors of V and V1 by R and R1, respectively, then the
equations of Gauss, Codazzi and Ricci are given by

(4.5) R(X, Y)Z=<Y, Z>X-(X, ZyY+AhiY,Z)X-Ah{X,z)Y,

(4.6) (VA)(JT, Y, Z) = (VAX 7, X, Z),

(4.7) <Λ-L(JΓ, γ)ξ9 ηy=
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where X, Y, Z (respectively, η and ξ) are tangent (respectively, normal) vector fields to
M and VΛ is defined by

(VAX*, Y, Z) = V^A(Γ, Z)-h(VxY, Z)-h(Y, VXZ).

5. Totally real surfaces in 5ί6(l). We now continue to investigate the immersion
(3.1).

Let X denote a vector field tangent to M2. Then

)=cos(t)N- sin(/)/(/>), x^X)=cos(ί)/

and

Jxt(d/dt) = Nx f(p), Jx^X)=cos(0sin(t)Nxf^X) + s

From this it is easy to check that x is totally real if and only if

(5.1)

(5.2)

(5.3)

for all tangent vector fields X and Y to M. Now (5.3) simply says/has to be totally
real; from (2.11), we obtain that (5.2) is equivalent to <β{f^(X\ fJJ)\ N} = 0; (5.1)
is equivalent to <J/+(Λr), JV> = 0. We have reduced the condition that x is totally real
to conditions depending only on /. From now on, for simplicity, we identify M with
/(M), so we do not write /^ if there is no confusion.

Differentiating (5.1) gives us

(5.4) <7VxF,X> + <7Vx/7,Λ(Z, r)> = 0.

Since the first term in (5.4) is skew symmetric and the second is symmetric, both terms
have to be zero. Therefore (5.1) implies (5.2). Now take any orthonormal basis {eu e2}
of TpM. From the properties of G, we obtain that G(e1,e2) is orthogonal to eί9 e2,
Jel9 Je2 and p; (5.2) implies that G(eu e2) is also orthogonal to N. On the other hand,
(5.1) implies that Nxp is orthogonal to ex and e2\ clearly Nxpis orthogonal to p and
N9 and a straightforward calculation shows that Nxp is orthogonal to Jeγ and Je2.
Therefore G(el9 e2)= ±p x N. After changing the sign of eί9 if necessary, we can make
sure that eγ x e2 = JN. This implies that exxN= — Je2, e2xN=Je1. Note that the normal
space of M in 5'5(1) at p is spanned by Jel9 Je2 and JN.

Differentiating (5.2), we obtain

(5.5) (Nxh(Y, Z),X} + (Nx Y, h(X, Z)> = 0 ,

for all tangent vector fields X, Y and Z to M. Putting X=ex and Y=e2, we obtain
that
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0 = <Λ2, h(e2, Z)> + <Λ l s h(eu Z)> = <Λ(e2, e2), JZ> + <A(els ex

such that the mean curvature vector H of Af in 5'5(1) is orthogonal to / ^ and Je2;
from (5.4) we obtain that H is orthogonal to JN. Therefore H can only be zero. Then
(5.4) immediately implies that h is of the form

Keu e2) = βJei - ocJe2 , h(e2, e2) = - ocJeί - βJe2 ,

such that the ellipse of curvature of M at p is a circle (possibly a point).
Conversely, let M2 be a minimal, totally real surface of S6{\) whose ellipse of

curvature is a circle. Then we can use exactly the same computations as in the proof of
[DOW, Lemma] to obtain that h(X, Y) is contained in J(TM). Let [El9 E2) be any
local orthonormal basis of TM. Then G(EX, E2) does not depend on the choice of
{Eu E2) up to sign. Hence we can define a subbundle B of the normal bundle by
B(p) = J(TpM)®(G(E1,E2)}. From (4.3), (2.8) and the minimality of M, we obtain
that B is V1-parallel. Hence by the Erbacher theorem, M lies in a 5-dimensional totally
geodesic hypersphere of 56(1). Let N be a unit vector orthogonal to this 55(1). By
construction, JX is tangent to S5{\) and hence orthogonal to N for all X tangent to
M. Therefore (5.1) is satisfied; (5.2) follows from (5.1) and (5.3) is true since M is totally
real. Even if Mis totally geodesic, this 5-dimensional unit sphere is uniquely determined
as follows: take any point p in M. Then S5(l) is the unique great hypersphere of S6(l)
through /?, tangent to the TpM®B(p). If M is not totally geodesic, it follows again as
in [DOW] that M is not contained in a totally geodesic 4-sphere. Hence we have
proved the following theorem.

THEOREM 5.1. (1) Letf: M2^S6{\) be a minimal non-totally geodesic totally real
immersion in 56(1) whose ellipse of curvature is a circle. Then M2 is contained in a unique
totally geodesic S5 and the warped product immersion (3.1) is totally real.

(2) Let f and x as in Section 3. Then x is totally real if and only iffis totally real
and J(f*X) is tangent to S5(\)for all X tangent to M.

(3) Let f and x as in Section 3. Ifx is totally real, then f is totally real, minimal and
has ellipse of curvature a circle.

Other examples of totally real 3-dimensional submanifolds in S6 were constructed
by Ejiri in [El] in the following way. Let / : M2-+S6 be a linearly full superminimal
(in the sense of [BVW]) almost complex immersion. Let U and V be local orthonormal
vector fields, defined on a neighborhood W, which span the second normal bundle.
Then for any real number y (0 < γ < π) we can define the tube of radius γ in the direction
of the second normal bundle by

Fγ: Wx S1^S6, (*, θ)h+cosyf(x) + sinγ(cosθU+smθV) .

Then Fy defines a totally real immersion if and only if either cos y = 0 or tan2 y = 4/5.
A similar construction of totally real submanifolds of CP3 can be found in [E2].
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A straightforward computation shows that all tubes of radius π/2 satisfy the
equality in (3.1). In particular, starting from the Veronese immersion/: S2(\/6)-+S6

one obtains a 3-dimensional totally real submanifold with constant scalar curvature,
which corresponds to Example 3.1 of [CDW1]. It is also possible to show that for
this class of tubes Fπ/2 the distribution <2>L is never integrable. As for the second
possibility (tan2 y = 4/5), one can show that the equality is never realized.

We now elaborate some more on totally real minimal surfaces whose ellipse of
curvature is a circle. For simplicity, assume that N=e4. We denote by π the Hopf map
from S5 to CP2 given by

π(xl9 x2, x3, 0, x5, x6, xΊ) = [xί +ix5, x2 + ix6, x3 + ixη] .

Then the following theorem from [BVW] gives a relation between minimal totally real
surfaces in S6(l) whose ellipse of curvature is a circle and minimal totally real surfaces
in CP2.

THEOREM 5.2 (cf. [BVW]). / / / : M 2->S 5c:S 6(l) is a minimal totally real iso-
metric immersion, not totally geodesic, whose ellipse of curvature is a circle, then
n(f): M2—>CP2 is a totally real, not totally geodesic, minimal isometric immersion of
M2 into CP2. Conversely, if M2 is simply connected and ifφ: M2-*CP2 is a totally
real, not totally geodesic, weakly conformal harmonic map, then there is a minimal totally
real immersion f: M2-+S5 whose ellipse of curvature is a circle such that ψ = π(f).

In this respect Theorem 5.1 should be compared with [BVW, Theorem 7.1]. In its
turn, minimal totally real immersions of a surface in CP2 can be characterized as
follows:

THEOREM 5.3. Let (M2, < , •>) be a simply connected surface with Gaussian cur-
vature K satisfying K<\. Then the following two conditions are equivalent:

(1) Δlog(l-#) = 6tf;
(2) there exists a totally real minimal immersion f: M2-»CP2(4).

PROOF. The fact that (2) implies (1) follows from a straightforward computation,
in view of the basic formulas for a totally real submanifold in CP2(4) from [CO].

Let us now prove the converse. We take isothermal coordinates on M2. So, we
have a local non-zero function E such that (d/du,d/duy = E2 = (d/dv,d/δvy and
ζδ/du, d/dv} = 0. Then K= — Δlog E. We now define a function φ by

Then, by the assumption of the theorem, we get that
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= 3AlogE+—Alog(l-K)=-3K+3K=0.

Hence there exist a function

ψ(u,v)=F(u,v)-iG(u,υ),

holomorphic in z = u + iv such that F2 + G2 = φ2. Put

F(u,v) G(u,v)

E\u, v) E\u, v)

and define α: TM2 x TM2-+TM2 by

aiβldu, djdu)=f{μ, υ)d/du + g(u, v)d/dυ ,

tx(δ/du, δ/dv) = oί(δ/δv, δ/δu)=g(u, v)δ/δu-f(u, v)δ/δv,

a(δ/δv, δ/δv)= -/(«, v)δ/δu-g(u, v)δ/δv .

Then

«, δ/δu,

», δ/δu,

», δ/δu, 3f^gΛδlδuv(
E E / \

(V<x)(δ/δu, δ/δv, ^

showing that Vα is totally symmetric if and only if

which by the definition of/and g is satisfied indeed. Since

we get that
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R(X, Y)Z=(Y, Z}X-(X, Z>7+α(α(r, Z), X)-φ(X, Z), Y).

Applying the basic existence theorem (cf. [CDW2]) then completes the proof of the

theorem.

6. Proof of the main theorem. We first recall some results of [ C D W 1 ] for

3-dimensional totally real (and therefore minimal) submanifolds of S 6 ( l) .

LEMMA 6.1. Let M be a ^-dimensional totally real submanifold of S6(\). Then

Equality holds at a point p ofM if there exists a tangent basis {eu e2, e3) ofTpMsuch that

K*u eί) = λJeί , h(el9 e3) = 0 ,

K*ι> e2) = - λJe2 , h(e2, e3) = 0 ,

K^i, e2) = - λJe1 , h(e3, e3) = 0 ,

where λ is a positive number determined by the scalar curvature τ according to

2λ2 = 3-τ(p).

So if we define a distribution 2 by

we see that @(p) is either 3-dimensional, in which case p is a totally geodesic point, or

1-dimensional. From now on, we assume that the dimension of Θ{p) is constant on M.

Then, exactly as in Lemma 5.3 of [CDVV1], we obtain:

LEMMA 6.2. Let M3 be a totally real submanifold of S6(l) satisfying the equality

in (1.3). Assume also that the dimension of the distribution 2 is constantly equal to 1 and

letpeM. Then, there exists local orthonormal vector fields Eu E2, E3 on a neighborhood

of p such that

h(EuE2)=-λJE2, h(E2,E3) = 0,

h(E2, E2) = - λJE, , h(E3, E3) = 0,

where λ is a non-zero local function determined by the scalar curvature by 2/l2 = 3 —τ.

Let us take the basis from the previous lemma. By (2.7) and (2.9), we see that

G(EU E2) is in the direction of JE3. From (2.10), we obtain that G(EU E2) is a unit

vector. Replacing E3 by — E3 if necessary, we may assume

E1) = JE2 .



TOTALLY REAL SUBMANIFOLDS OF S
6
 195

From now on, assume that we take this choice of orthonormal basis.
Throughout this section, M 3 is assumed to be a (non-totally geodesic) totally real

submanifold in S6(\) which at every point p of M satisfies the equality in (1.3). We
also assume that

(1) the dimension of 9 is constant on M,
(2) the distribution @L- is integrable.

Since M is assumed to be non-totally geodesic, we have that d i m ^ = l . Let peM.
We introduce local functions y*7 by

Since {Eί9 E2, E3} is an orthonormal basis, 7y + y/fc = O. Then, we have the following
lemma.

LEMMA 6.3. We have

ω »,l _ Λ , 2 _ Λ

\L) Ί\\ —722 J

WJ / 1 2 " ~ ? 2 1 »

1
( 4 ) y 2

3 1

ό

Moreover, the function λ satisfies the following system of differential equations.

(5) E1β)=-3λγ2

21,

(6) E2(λ) = 3λyl1 ,

(7) E3(λ)=-λγ{3.

PROOF. Since

(VΛ)(£Ί, E3, E3) = V^h(E3, E3)-2h(VEιE3, E3) = 0

and
/W"7 JL\Z' E 1 Z7* ZT* *\ V7-L /•/* E 1 E 1 \ l*m.ί\Π E 1 E^ \ ί-/ E 1 ^

\yn)\tj3, tjγ, JtL3)= \E^nyHtγ, EJ3) — n\y£3ϋij U3J — AZ x̂ίj,

Codazzi's equation yields V ^ ^ = 0. Next we compute

t + λJVE}E1 + λJE2 + 2<yEJSu E2}λJE2

and

, E3, £ 1) = Vέ1A(^3, E,)-h(SEιE3, EJ-KE* VElE,)

= - <yEiE3, EίyuEί+<yEιε3, E2>XJE2 .
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Since <VE3£
r

3, £'1> = 0, by comparing components, we get that

(6.1) E3(λ) = λ(VEιEuE3y = λγ3

11, 3<yE3El9 E2) = -<VEίE2, E3>-1 .

This proves (4) and (7). Similarly, from (Vh)(E3, E2, E2) = (S7h)(E2, E3, E2) we obtain

(6.2) y! 2=y?i-

Finally, we have

(Vh)(E2, El9 Ex) = Vi2KEu Ex)-2hφElEu Ex)

= E2(λ)JEt + λJVE2E1 -λJE3 + 2<yE2El9 E2}λJE2

and

u E2, Ex) = Vih(E29 Ex)-h(yEιE29 Eγ)-h{E2, VEίEx)

= -Ex{λ)JE2-λJVEιE2-λJE3-<yEiE2, E^λJE^<yEβu E2>λJE1

So, by comparing components, we get

<V£ 2^1+V£ l^2,^3> = 0, E2(λ) = 3λ<yEίEl9E2>, Eί(λ)=-3λ(VE2E2,Eiy.

This completes the proof of the lemma.

In order to simplify the notation, we introduce local functions a, b, c and d by

« = 7 i i > b = y\2, c = ylί9 d=y2

21 .

Then Lemma 6.3 implies that

VEιEx = cE2 + aE3 , VElE2 =-cE±+ bE3 , VEίE3 =-aEx- bE2 ,

VE2EX = dE2 - bE3 , VE2E2 =-dEx+ aE3 , VElE3 = bEx - aE2 ,

and

Ex{λ) =-3λd9 E2(λ) = 3λc , E3(λ) = λa .

Let us now use the assumption that the distribution £&L

9 which is locally spanned by
the vector fields Eγ and E2 is an integrable distribution. Then, the above formulas imply
that b = 0. Then, we have:

LEMMA 6.4. The local function a, under the assumptions made above, satisfies the
following system of differential equations:

^ ( β ) = 0, E2(a) = 09 E3(a) = l+a2.
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PROOF. Using the Gauss equation, we find that

0 = <R(Eί, E2)EU ^ 3 > = < V £ I V £ 2 £ 1 - V £ 2 V £ I E 1 - V V E I £ 2 _ V E 2 £ I ^ 1 , E3}

= -ca-E2(a) + ca = -E2(ά).

Similarly, it follows from the Gauss equation 0 = (R(E2, E^)E2, E3} that £'1(β) = 0.
Finally, in order to prove that E3(a) = 1 + a2, we use again the Gauss equation. We have

1 = <R(E19 E3)E3, ^ 1 > = <V£lV£3^3-V£3V£l^3-Vv£l£3-vE3£^3J E^^E^-a2 .
D

LEMMA 6.5. Let M be as above and let peM. Then, in a neighborhood of the point

p, M is warped product of an interval ( — ε, ε) and N2, the leaf of the distribution ΘL

through p.

PROOF. We check Hiepko's condition [H], using the formalism of [N, §3]. In
particular, we have to check that 3} is totally geodesic and that 3>L is spherical. Since
7^3^3 = 0, the first assumption is trivially satisfied. For the second assertion, we first
have for ije{\,2} that

which shows that @)L is totally umbilical in M with mean curvatuve vector r\ — aE3.
Since, by the previous lemma, E1(a) = E2(a) = Q, the mean curvature vector is parallel.
So, we get that 3L is spherical. •

The warping function can be determined from Lemma 6.4, but we do not need an
explicit expression. Now we can finish the proof. Indeed, we know that M is locally a
warped product and that the distributions on M, determined by the product structure,
coincide with 2 and 2L. Moreover, since h(β, ̂ 1 ) = 0, we obtain that M 3 (locally) is
immersed as a warped product; further, the first factor is totally geodesic, and therefore
we can assume that the first factor of the corresponding warped product decomposition
of 56(1) is 1-dimensional. Since the decomposition of S6(l) into a warped product
whose first factor is 1-dimensional is unique up to isometries, we obtain that M 3 is
immersed as described by (3.1).
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