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Abstract. In this paper we introduce equations whose solutions are considered to
be a generalization of simply connected, minimal surfaces or constant mean curvature
surfaces in 3-dimensional space forms and prove that there exists a natural bijective
correspondence among the sets of solutions of the equations under certain conditions.

Introduction. In 1970 Lawson [L, Theorem 8] gave an S1-family of isometric

immersions with constant mean curvature (CMC for short) JH2 — c from a simply

connected Riemann surface M into the simply connected 3-dimensional space form

9W3(c) of curvature c, where H,ceR such that H2 — c>0. His result implies that there

exists a natural S ̂ equivariant bijective correspondence between the space of isometric

immersions with CMC = JH2 — c of M in 9Jt3(c) and the space of isometric immersions

with CMC = jH2-c' of M in SR3(c'), where //, c,c'eR such that H2-c, H2-cr>0

and cφc'.
In this paper we shall generalize his result. Before we state our main theorem we

shall explain some basic notation.

We fix a Riemann surface M. Let Ω^M, so(3)) be the space of so(3)-valued 1-forms

on M and Ω 1 0(M, C3) the space of C3-valued (1, 0)-forms on M. Set

1 if c = 0,

if

and

sign(c) =

1 if c>0,

0 if c = 0,

- 1 if c<0

force/?.

Given H, ceR, we shall consider equations (*HJ on AeΩ1(M, so(3)) and

αeΩU0{M,C3) defined by
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(*H,c)
= J— 1 HL(c)a x a

1

dA + — \_A A A~\ - si

where x is the complex linear extension of the exterior product on R3.

We set

stf(H, c) = {(A, a); AeΩ\M, so(3)) and aeΩU0{M, C3) satisfy (*HtC)}

and

The group j f acts on s/(H, c) from the right by

where ke JΓ and (A, a)e^{H, c).

Let /? and ^ be C3-valued 1-forms on M and {z} a holomorphic local coordinate

on M. We define

where < , > is the complex linear extension of the standard inner product on R3 (this

definition is independent of z).

Then we set

and

<g(H9 c) = {(A, a) e s/(H9 c); α (x) β = 0, a ® Λ φ 0}/Jf .

Note that ^(//, c) is a subspace of J*(i7, c).

The space &(H, c) may be considered as a generalization of the space of isometric

immersions with CMC = // of M in 3DΪ3(c). Indeed, we can prove the following:

PROPOSITION. If M is simply connected, then

(i) %(H,c)^{conformal immersions with CMC = H of M in 9M3(c)}/Iso0(^3(c))

and

(ii) #(0, c) £ {harmonic maps from M into 9W3(c)}/Iso0(9«3(c)),

Isoo(50fί3(c)) is the identity component of the group of isometries 6>/$R3(c).

Moreover in §3 we shall naturally define an S1-action on &(H, c) leaving %>(H, c)
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invariant. Then our main theorem is as follows:

THEOREM. Let //, H\ c, cΈR. If sign(H2 + c) = sign(H'2 + c'\ then there exists a

natural S1-equίvariant isomorphism

F:

such that F (#(#, c)) = W(H\ c').

We remark that if we restrict to the case that M is a simply connected Riemann

surface, we obtain <$(yjH
2 — c, c)^(β(ΛjH

2 — cf, c') for any H,c,c'eR such that

H2 — c,H2 — c'>0 and cφc'. Since M is simply connected, by the Proposition, this

isomorphism gives an S 1-equivariant bijective correspondence between the space of

isometric immersions with CMC = λ///2 — c of M in 50ί3(c) and the space of isometric

immersions with CMC = yjH2 — cf of Min 5013(c'). We can check that this correspondence

is just the one obtained by Lawson (see §3, Remark), although our proof is completely

different from his. Originally the author studied the bijective correspondence above for

a special case in [F]. This paper was inspired by Lawson's result and turned out that

the previous paper [F] is a special case.
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1. Preliminaries. In this section we shall give basic facts which will be needed

later.

Let N=G/K be a reductive homogeneous space, g (respectively f) the Lie algebra

of G (respectively K) and π: G->N the natural projection. Since N is reductive, we have

a decomposition g = ϊ © m with an AdGX-invariant summand m. We can naturally define

a g-valued 1-form β on N, called the Maurer-Cartan form. If Pm denotes the projection

from g to m, then

) = AdgPm(Adg-1ξ),

where geG, X = d/dt\t=0Qxptξ.x, ξe$ and x = π(g) (see [BR, p. 6]).

Now let M be a manifold.

DEFINITION. A map Φ\ M^G is called a framing of φ: M-+N if it satisfies

πo Φ = φ.

We set a = Φ~1dΦ for a framing of φ. Corresponding to the reductive decomposi-

tion g = I © m, we have a decomposition of α,

Then we have:
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PROPOSITION 1.1 (see [BP, p. 241]). Let M be an oriented Riemannian manifold

and Φ a framing of φ: M-+N. Then

β(traceWφ) = * Ad Φ{d * α m + [α Λ * α m ] } ,

where * is the Hodge star operator on M.

We shall now describe ^Sl3{c) as a (Riemannian symmetric) reductive homogeneous

space.

We put

P P]eGL(4,Ry,PeSO(3\peR3\,

GC = SO(4)

for oO, and

Gc = SO+{39 l) = {X=(Xij)eGL(49 R); *XJX=J, d e t Z - 1, x 4 4 > 0 }

for c<0, where J=diag(l, 1, 1, - 1 ) . Set

An involutive automorphism is defined by

σc(X) = JXJ,

where Xe Gc.

The corresponding symmetric decomposition gc = tc ® mc is given by

-sign(c)'α 0

and

mc = \( a)eM(4,R);aeR3[.
tV-signίc)^ 0/ J

An AdGcA^c-invariant metric on mc is defined by

g{{ °/v n ) ' ί °, VA π ) ) = L2(c)<ί
\\ — sign(c)α 0/ \—sign(c)o 0//

where a,beR3. Then $ft3(c) is a Riemannian symmetric space corresponding to

(Gc, Kc, σc, gc).
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2. A generalization of isometric immersions with constant mean curvature. In this

section we shall prove the Proposition in the Introduction.

Let φ: M —•90ίϊ3(c) be a map and Φ a framing of φ (M is not necessarily simply

connected). It is not hard to see that such a framing always exists. We have a

decomposition Φ~~1dΦ = : α = αίc + αm c. Since M is a Riemann surface, we have a type

decomposition

where α'mc is an mf-valued (1, 0)-form with complex conjugate α^c. We may consider

α'mc and α^ c to be C3-valued. We denote the decomposition α = αϊc + α'mc + α'™c simply

LEMMA 2.1. φ : M-»$R3(c) is a conformal immersion if and only ifcc'm (x) α'm = 0 and

oC#0.

PROOF. Let {z} be a holomorphic local coordinate on M. Since

for any tangent vector X on M, we have

gidφ\

and

This completes the proof.

If we write α m as

0

fa 0,

for aeΩ1(M, R3), we can define an mc-valued 2-form α m x α m by

a m X a J °
\ — sign(cy(a xa) 0

We set

L

If φ : M^SR3(c) is a conformal immersion, then there exists a function heC°°(M)

such that
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φ*gc =

where g is a Riemannian metric on M.

Let {x, y} be an isothermal coordinate system on M. It is easy to see the following:

LEMMA 2.2. If φ is a conformal immersion, then

and

gc(n,n) = e2h.

It is obvious that j f acts on C^iM, Gc) from the right by

0 .

where ΦeCx(M, Gc) and keJf. Note that if Φ is a framing of ψ: M^S0ί3(c), so is Φk.

We write a = Φ~ιdΦ as

-sign(c)rα 0 /

where ^ (respectively α) is an so(3)- (respectively R3-) valued 1-form on M. Then direct

computation gives the following:

LEMMA 2.3. Let Φ be a framing of φ: M^9W3(c) and kε X. Then

ik-'a) 0

Now we are in a position to prove the Proposition in the Introduction.

PROOF. It is enough to prove (i).

Let φ: M->SW3(c) be a conformal immersion with CMC = H of M in 2R3(c). Then

φ satisfies

— traceVί/φ = Hn .

Let Φ be a framing of φ. Then by Proposition 1.1, Lemma 2.1 and Lemma 2.2,

we have

m , m ® /

m = 0 and cc'm®ct'ή

Direct computation shows that
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(2.1) (doc

Taking the mc- and fc-parts of the Maurer-Cartan equations for α, we have

(2.2) (^α/

m + [αt>

and

1
(2.3) _ . 2

The equations (2.1) and (2.2) are equivalent to

(2.4) dα'm + [o^ Λ α'm] = y/— \HL(c)<x'm x a'γ

If we write α'm as

0 a

i ( / 0

for aeΩU0(M9 C\ we can see that (2.3) and (2.4) give (*H c).

Moreover the conformality condition is a® a = 0 and

Conversely let A and a satisfy (*HJ, a®a = 0 and a®άi^0. Then since Mis simply

connected, there exists a map Φ: M-+Gc such that

0

and φ = πoφ gives a conformal immersion with CMC = H of M in S0l3(c) (see [BP,

p. 230]).

By Lemma 2.3 this correspondence gives the isomorphism (i). •

REMARK, (i) In the case i J = 0 , (2.4) and (2.5) are the harmonic map equations

obtained by Burstall and Pedit [BP].

(ii) In the case c < 0 and H=0, (*Oc) are equivalent to Hitchin's self-duality

equations for a trivial bundle Mx SO(3). In the case c>0 and H=0, (*0J are obtained

by dimensionally reducing the self-duality equations in /?4 with signature (2, 2). For

more information about the self-duality equations, we refer to Hitchin [H].

3. Harmonic maps and associated maps. In this section we shall prove our main

theorem.

We define a bijective map i: /?3->so(3) by

0

p3

-P2

-P3

0

P1

P2

-P1

0

\

ι(p) = \ p3 0 -p1 for p = [ p2
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The map i extends naturally to a bijective map from the space of C3-valued forms to
that of so(3)-valued forms.

Let //>0, ceR such that H2-c>0. For (A, a)estf(H, 0), we define a JΓ-equivari-
ant bijective map

S{H; 0, c): stf{H, 0) - c, c)

by

S(H;O,c)(A,a) =
1

-\{H-JH2-c)ι{a-ά),~—a\.
L(c)

Then we can define a JΓ-equivariant bijective map

S(H; c, c'): <stf{JH2-c, c) -+ ̂ -c\ C')

by
H2-cf>0 and

S1 = {λeC; \λI = 1} acts on J/(H,0) by

ι{H\^c\ where H>0 and c,c'eR such that H2-c,

1 and {A,a)eΛ?QH2-C, C),

for λeS1 and (X, O)G£/(H, 0). Then we can define an S1 -action on

λ(A, a) = S(H; 0,c)oλoS~\H; 0, c)(A, a)

for λeS1 and (A, a)e^(^/H2-c, c).

Direct computation gives the following:

LEMMA 3.1. (i) ForanyλεS1,

(ii) For any

Then we have the following:

THEOREM 3.2. S(H; c, c') defines the quotient map

Sm(H; c, c'): @{JH2-C, C) -> @{jH2-c\ C') ,

which is S^-equivariant.

Now let //>0 and c<0 such that //2 + c<0.

by

H2 — c, c) by

For (A, c) e ̂ /(0, c), we define a Jf-equivariant bijective map

Γ(0, //; c): ^(0, c) -> ̂ (H, c)
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T(O,H;c)(A,a) = [A / ι(a-a), ——2

\ χ/-(i/2 + c) V —\H

S1 acts on J/(0, c) by λ(A, a) = (A, λa) for λ e S1 and (A, a) e ̂ (0, c). (If M is simply
connected, this action coincides with the action on the space of harmonic maps from
a simply connected Riemann surface into a Riemannian symmetric space defined by
Burstall and Pedit [BP].)

Let // ,// 'GR and c<0 such that H2 + c, Hr2 + c<0.
Similar to the above case, we can define a bijective map

T(H, H'; c): stf(H, c) -• ̂ {Hf, c)

and an S1-action on s/(Htc), where /f, Hf>0 and c<0 such that //2 + c, ///2 + c<0
and HΦH'. Then we have the following:

THEOREM 3.3. T(H, H'; c) defines the quotient map

T®(H, H' c): @(H, c) -• @(H', c),

which is Sι-equivariant.

Combining Theorem 3.2 with Theorem 3.3, we obtain our main theorem.

REMARK. Let H,ceR such that H2-c>0 and {A9a)es/(y/H2-c,c). If M is

simply connected and (A, a) corresponds to an isometric immersion φ: M-+yJl3(c) with
CMC = JH2 — c, then Theorem 3.2 gives us an S^-family of isometric immersions
{φ A ^__} ; i e S 1 in 9WV) with CMC = ̂ 2 - c ' for any c' such that H2-cf>0. This
family is just the one obtained by Lawson [L]. In order to see this, we have only to
calculate the second fundamental forms of φχ V g 2 c,.
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