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Abstract. We calculate Donaldson's simple invariant for a surface of general type
known as the Horikawa surface and for regular elliptic surfaces, by using Kronheimer's
method. As a corollary, it is shown that there exist infinitely many differentiable
structures on these surfaces and a torus sum of them.

1. Introduction. Donaldson [4] has developed a gauge theory on closed
4-manifolds and obtained new invariants from the moduli space of anti-self-dual (ASD,
for short) connections. At the same time, he also obtained a vanishing theorem for the
connected sum, which follows by counting the dimension of the ASD moduli space as
one shrinks the neck. Such a differential-geometric method could be also used to calculate
non-zero values of the invariant. In particular, as for the simple invariant, which is
denned by counting signed points in the zero-dimensional ASD moduli space,
Kronheimer [14] found out a way to calculate this invariant by collapsing ( —2)-curves,
and applied it to K3 surfaces and to some homotopy K3 surfaces.

In this paper we calculate the simple invariant for a surface of general type using
Kronheimer's method. Precisely we consider a minimal surface with cj=pg = 4, which
is known to admit a unique differentiable structure by Horikawa [11]. We know a
simple model as follows: Take a non-singular curve Π2 of genus 2 and choose a Z2-action
with six fixed points. Then the quotient (77 2 x Π2)/Z2 with respect to the diagonal action
has thirty-six double points. By resolving all double points, we obtain a simply-connected
minimal surface of general type. From this construction similar to that for Kummer
surfaces, we apply a method by Kronheimer [14] to deduce:

THEOREM. The simple invariant of the Horikawa surface with c\=pg = A is 4 for a
certain SO(3)-bundle.

Moreover, we can apply Gompf-Mrowka's technique [10] to construct infinitely
many homotopy equivalent 4-manifolds which are distinguished by the simple invariant.
Thus we have:

COROLLARY 1. There are infinitely many differentiable structures on this Horikawa
surface.

In [12] we have obtained a torus sum formula for the simple invariant and calcu-
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lated it for regular elliptic surfaces. Using this formula, we can also calculate it for
a torus sum of regular elliptic surfaces and the Horikawa surface (see Section 5 for the
definition). Thus we also obtain:

COROLLARY 2. For integers k, I with k>0, />0, the connected sum (2/c+10/-
l)C7>2#(10/c + 46/-l)CP2 has infinitely many differentiable structures.

On homotopy regular elliptic surfaces, it was shown that there exist infinitely
many differentiable structures (cf. [7], [8], [10], [13], [18]). All of the above results
are proved in Sections 4 and 5. In Section 4 we also calculate the simple invariant for
regular elliptic surfaces, which was carried out by another method in [12]. In Sections
2 and 3, we give a characterization of orbifold 5Ό(3)-bundles, which gives a formula
to calculate the simple invariant.

After having written this manuscript, the author found out in Donaldson's survey
[5] that Lisca [15], and Fintushel-Stern have found infinitely many differentiable
structures on surfaces of general type.

The author would like to thank Professor Mikio Furuta for providing valuable
information. Thanks are also due to the referees for careful reading of the manuscript.

2. A characterization of orbifold SΌ(3)-bundles. We first recall the simple

invariant γ defined from the moduli spaces of ASD connections on certain principal
bundles by Donaldson [4], [6, Chapter 9]; let Xbe an oriented, closed, simply-connected,
smooth 4-manifold with the condition that b+(X)>3 odd, where b+(X) denotes the
dimension of a maximal positive subspace for the cup product on H2(X). Let P-+X be
a principal S(9(3)-bundle. Then for a generic metric on X, the moduli space MX(P)
of ASD connections on P is a finite set of irreducible regular connections if
ά\mJίx(P)= -2p1(P)-3(l+b+(X)) = 0 and w2(P)φ0. Furthermore, given an integral
lift of w2(P) and the orientation of the vector space H+(X), we can attach a sign +1
to each point of Jίx(P). Then the number of points in Jίx(P) counted with sign is
independent of the choice of metric and called the simple invariant. Since 5O(3)-boundles
over X are classified by the characteristic classes (cf. [2]), the set of 5Ό(3)-bundles
defining the simple invariant corresponds bijectively to the set Cx = {ηe H2(X; Z2) \ η Φ
0, η2= -2(l+Z?+p0)/3(mod4)}. Thus we denote the simple invariant by yx(η). The
absolute value | yx(η) | is determined only by η e Cx.

Kronheimer [14] has given a natural extension of the simple invariant to 4-orbifolds
with singularities modeled on R4/Z2 and found out that this invariant is equal to that
for the 4-orbifold obtained by resolving double points, via an identification of the
moduli spaces. As a preliminary step to apply his idea to our case, we first give a
characterization of oribifold S0(3)-bundles over a 4-orbifold with double points. Such
a 4-orbifold X is obtained by gluing a compact 4-manifold X with boundaries
dtX= S3/Z2 (1 < i< n) to 4-disks Df (1 < i< n) with a linear Z2-action. Over the orbifold
D4/Z2, there are exactly two orbifold SΌ(3)-bundles, which are constructed from the
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trivial and a faithful representation of Z 2 to SO(3), and which are classified by the
Stiefel-Whitney class of the *SΌ(3)-bundle on the boundary S3/Z2. In the case of
non-trivial representations, the primary difference b = b(l, —1) (cf. [17, §36]) between
the identity and the other non-trivial flat automorphism — 1 defines the generator of
the cohomology H1(S3/Z2; Z2) = Z2. To save notation, we denote either bundle by
(D4 x SO(3))/Z2-+D4/Z2 and its restriction to S3/Z2 by R^>S3/Z2.

Next we consider an orbifold S<9(3)-bundle P over X=X\j(\jDf/Z2). Let
σ = Ui<ί<nσi' sx=\li<i<nSiX^x b e t h e inclusion. Then we can write P =
Pu(\Jti(Dt x SΌ(3))/Z2), where P is an S0(3)-bundle over Xand ι£: σf(P)-*R(l <ί<n)
are bundle isomorphisms.

Now we need one example: The linear involution of CP2 with one fixed point and
a hyperplane (say S2) lifts to the canonical 5Ό(2)-bundle so as to act as — 1 on the
fixed point and 1 on S2. Then the quotient defines an orbifold SΌ(2)-bundle, hence an
orbifold S0(3)-bundle Q over an orbifold Why an embedding SO(2)<=SO(3). We write
W= WΌ (D4/Z2) and Q = Q u (D4 x SO(3))/Z2. We extend the trivial connection over D4

to an ιSΌ(2)-reducible connection Θo on Q. Then the Pontrjagin charge of the Θo is
—1/2. In the following we also use the trivial -SΌ(3)-bundles over W, W and the trivial
connection over W. Again to save notation, we also denote them by Q, Q and Θo,
respectively.

DEFINITION 2.1. An element ξ in H2(X; Z2) is admissible if, for any even number
of generators ϊ>ieH1(dXi; Z2) for / with σf(ξ) = 0, there is a set of generators fye
H1(dX{, Z2) for / with σf(ξ)Φθ such that the sum of all the generators in these two
sets is an element of the image of the map σ* : H1(X; Z2)->H1(dX; Z2).

In the example above w2(Q)eH2(W; Z2) is obviously admissible regardless of
whether Q is trivial or not.

LEMMA 2.2. Let ιh ι\\ σf{P)^Rι (1 <ΐ<n) be bundle isomorphisms between σf(P)
and a copy Rt of the SO{3)-bundle R. We consider SO{3)-bundles P = Pϋ(\JH(Dt x
SO(3))/Z2), P' = Pu{\J^D4xSO{3))IZ2\ and smooth connections Ao, A'o on P, P'
which are equal to the trivial connection over Df (l<i<n). If ξ = w2(P) is admissible,
then the following two conditions are equivalent:

(1) There exists β^ej + l} for each i with σf(ξ)φθ such that the automorphism

(UΛξ) = o(ι'iylιi)U(Uσ*(ξ)*o(ιΰ~lεiιi) over dX can be extended all over X and that

1 (2) (-l/4
Regardless of whether ξ is admissible or not, if ιt= ι\ except for at most one i (say

i0), then the condition (1) with ε£= 1 except for i = i0 is equivalent to the condition (2).

PROOF. We consider SΌ(3)-bundles P* = Pυ(\JHQi) and (/>/)* = ̂ u(U I ;β , ) over
^ u ( U ΐ ^ί)» w n e r e Qi a n ( l Wt are copies of Q and W. We extend the connections Ao

and AQ to P* and (P')* using the Θo on Qi9 respectively. The condition (2) follows from
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(1) by the Chern-Weil formula. Conversely, if (2) holds, then clearly j

so w2(P*)2 = w2((P')*)2 (mod4). N o w we show that there are constant gauges SiE{± 1}

over S3/Z2 such that w 2 (P*) = w2((P')*) f ° r modified automorphisms ε£i£. By the exact

sequence

H\X; Z2)-^ H\dX; Z2) — H2(X u ({J. Wt)\ Z2) > H2(X; Z2) Θ H2{\Ji Wt; Z2),

we can write w2(P*) = w2((P')*) + &*(Ziiiin*(l> OίΓ1*.)). s i n c e δ*$i) is the mod2
Poincare dual of the 2-sphere [5?], we obtain w2(P*)2 = w2((P')*)2 -2N (mod 4), where
TV is the cardinality of / with σf(ξ) = 0 and b(l, (ιj)~ 1j ί) = b£. So TV must be even.

Suppose that ξ is admissible. Then there exist εie{±l} for all /with σf(ξ)φθ such

that, if we replace if by ε ^ in the definition of P*, we have w2(P*) — w2((P')*) =

^*(Σσi(ξ)*ok(l> O ' i ) 1 ^ ) ) - Furthermore, for all / with a f ( i ) ^ 0 , we replace εf so that

b(l, (Γ iΓ
1ε ii i) = 0. Then we have w2(P*) = w2((P')*).

Suppose that 1,— ιJ except for ί=iQ and that ξ is not necessarily admissible. If

σϊo{ξ) = 0, then ^ = 0 and so b(l,(ϊ' i o)-1i i o)) = 0, that is, w2(P*) = w2((Pγ). If σfo(ξ)Φ0,

then b(l, (iίo)~1ε£oi£o) = 0 for a i Γ ε £ o e { ± l } . So replacing ιio by εioιio we also have

w2(P*) = w2((Pf)*).

Now by the Dold-Whitney theorem [2], there are bundle isomorphisms / : P-+P

and hi'. Qr+Qi with ι'if=hiεiιi (\<i<n). Since π2(SO(3))=l, Af|S2 is homotopic to the

identity and so is Af. •

We put w2(P) = w 2 (/ | x ) and/>!(/*) = ( - l / 4 π 2 ) ^ T r ( ^ o Λ F A O ) . If W 2 (P) is admissible,

then these classes w2(P) and /?i(P) uniquely determine an 5Ό(3)-bundle X by Lemma

2.2. In the definition of p^P), we may choose any smooth connection Ao on P without

changing the integral, so Lemma 2.2 holds for any smooth connections Ao on P and

Ar

0 on P'.

We let srfp be the space of connections on P and % the gauge group on P. Let xt

be the center of Df. For any ue@p and / with σf (ξ)/0, define w^)e0(2) by using the

lift to Dfx SO(3). Let ^> denote the closed subgroup

{ue^p\u(xi)eSO(2) if σf(ξ)Φ0}

and <%p=s/p/&p the quotient. We let stfp*<^stfp denote the subset of connections whose

isotropy group does not have any non-trivial element in Wp. Let <%p* = s/p*l&'p.

LEMMA 2.3. Ψp is connected.

PROOF. It suffices to prove that any element u in C°(AutP) with u\dX=\ is

homotopic to the identity. Since H^{X9\\2^i^ndiX\Z)^lίom{H1(Xid1X\Z)9Z)
vanishes, X is retractable to ^ = ( L J 2 < i < « ^ ^ ) u ^ ( 2 ) ' w h e r e χ{2) i s a union of some

2-simplexes in X. So it is enough to construct a homotopy on X. We remove 3-disks

Df from diX=S3/Z2 (2<i<n). Then the complement ^\(LJ 2 <;<„£>?) is retractable
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to a union of some 2-simplexes, say X(2). On the other hand, σ* : H1(X; Z2)^H1(dX; Z2)

is injective, so we have b(l, u) = 0. Therefore, if we denote by X(1) the union of all

1-simplexes of X(2\ u\χ(ί) is homotopic to the identity. We extend this homotopy all

over X{2\ using the collar of 1-simplexes in X(2). Since π2(SΌ(3)) = {l}, we can modify

the extended homotopy into a homotopy Ht ( 0 < / < l ) from u\χ(2) to the identity. We

then extend Ht (0<t< 1) all over X using the collar of dDf {2<i<n). Then

_ f - i - i - i _
I Γt 1 1 Γt 1 1 Γt 1 1

since the last integral is a homotopy invariant and u\diX=\. This implies that / / J ^ is

zero in [(Df, dϋf), (SO(3), 1)] =π3(SO(3))^Z. Hence we can modify Ht to a homotopy

from u\χ to the identity. This is a desired homotopy. •

One can easily see that the above proof can be applied to any smooth 5Ό(3)-bundle

over smooth 4-manifolds X with H^X; Z2) = 0, by removing a ball in X. So we have:

COROLLARY 2.4. The gauge group &P of any SO(3)-bundle P over smooth

4-manifolds X with H^X; Z2) = 0 is connected.

LEMMA 2.5. The assignment of the primary difference b(l,w|x) in H1(X\Z2) to

each element u in ^p sets up a one-to-one correspondence between ΉplΨp and

X; Z2)\σf(a) = 0 if σf(ξ) = O}.

PROOF. We can prove the injectivity in the same way as in Lemma 2.3. We will

prove the surjectivity. For any element α in H1(X; Z 2) satisfying the condition, we define

a section u on AutP| a f Λ : to be 1 for / with σf(α) = 0 and to be — 1 for / with σf(α)#0.

Clearly b(l, u\d.x) = σf(ξ). So by the homotopy extension theorem (cf. [17, §37]) we get

an extension of u to X, where X is as in Lemma 2.3. Pulling the extension back to X,

we obtain a section of Aut P. •

Let Λ'p^&p* be the orientation bundle defined as in the case of closed manifolds

(cf. [3], [6, Chapter 5]). Then by Lemma 2.3 and the homotopy exact sequence

we have π1(^p*)=\. In particular, we obtain:

PROPOSITION 2.6. The line bundle Λ'p^&p* is topologically trivial.

3. Kronheimer's main result. Let X be a 4-orbifold whose interior compact

4-manifold X satisfies the conditions (1) and (2) in Section 2. Then Kronheimer [14]

has naturally extended the simple invariant to orbifold 5Ό(3)-bundles P over X. In our
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notation it can be defined as follows: For a generic metric on X, the moduli space

Jίj^P)d^S'p of ASD connections is a finite set consisting of irreducible regular

connections (so in &p*) if P satisfies the following assumption:

ASSUMPTION 3.1. (1) w2(P) Φ0 and dim Jt't(P) = -2Pl(P) - 3(1 + b+(ί)) + τ{P) = 0,

where τ(P) is the cardinality of the twisted double points of P,

(2) ifp^P) < 0, no S0(3)-bundle P' with w2(P) = w2(Pf) admits a flat connection,

(3) if Pι(P) = 0, then for any flat connection A on P, the cohomology group of

the Atiyah-Hitchen-Singer (AHS, for short) complex [1] over Evanishes and A is in srfp*.

Moreover, if one gives an orientation of H+(X) and an integral lift of w2(P), we

can attach a sign to each point of Jt'%(P) (see also Proposition 2.6). Then the number

of points in Jί'χ(P) counted with signs is independent of the choice of metric. This

number is the simple invariant γχ(P) for X. (If X is nonsingular, then clearly

Here we give a formula to calculate the invariant yχ{P) when p1(P) = 0. The flat

moduli 9£'χ{P)d$p is not generally identified with the representation space 0ίχ(P) =

{p: πί(X)-^SO(3)\ w2(ξp) = w2(P)}/Ad, where ξp is the /?3-bundle associated to the rep-

resentation p. However, if w2(P) is admissible, Lemma 2.2 shows that the honest flat

moduli &]f(P) = {lA']ejι/p/&0\FA = O} can be identified with 0tχ(P) via the holonomy

representation, and Lemma 2.5 gives the difference between &χ(P) and %%(P)* To

compute the simple invariant defined by 9£%(P), we need to determine the sign of each

point in 9£jt(P). When X has a Kahler structure, however, it follows from the argument

of [3], and [6, 6.4] that the bundle Λ'p has a canonical orientation coming from the

complex structure and that the sign of each point is + 1 in this orientation. Hence we

obtain:

PROPOSITION 3.2. For a Kahler orbίfoldX, ifζ = w2(P) e H2(X; Z2) is admissible and

satisfies Assumptions 3.1, then

p ) =

%{the isotropy of p)

Now we state Kronheimer's main theorem [14]: Let X be a 4-orbifold obtained

from a compact 4-manifold satisfying (1), (2) in Section 2, by gluing the DAIZ2 to all

except one of the connected components of the boundary. Let X=Xu(D4~/Z2) and

Xί=Xu Wbe the 4-orbifolds obtained from Xby gluing DArjZ2 or Wto the boundary.

We let P be an 5Ό(3)-bundle over X. For a bundle isomorphism i: P\s^/z2^^ ^ e t

P = PuXDA x SO(3))/Z2 and Λ = P u , ( λ

THEOREM 3.3 (Kronheimer [14]). If P satisfies Assumption 3.1, then

REMARKS. 1. One easily sees that if P satisfies Assumption 3.1, then the
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S<9(3)-bundle Pt over Xί also satisfies Assumption 3.1. So one can repeat the above
formula till one resolves all double points. In particular, one may use Proposition 3.2
and Theorem 3.3 to calculate the simple invariant for an 5Ό(3)-bundle obtained from
a flat bundle with an admissible Stiefel-Whitney class.

2. Given an integral lift of w2{P1) and an orientation of H+(Xί; /?), we choose
an integral lift of w2(P) and an orientation of H+(X) by the exact sequence

0 -> H\Xγ\ Z) -• H\X\ Z)@H2(W; Z) -• H2(RP3; Z)^Z2

and that tensored with R. Then the above equation holds with the sign.

4. Application to the Horikawa surface. We calculate the simple invariant for
the Horikawa surface and regular elliptic surfaces using Theorem 3.3 and Proposition
3.2. We first recall the definition of our model of the Horikawa surface: Let Π2 be a
non-singular curve of genus 2. Since Π2 is necessarily hyperelliptic, it admits an analytic
Z2-action with six fixed points. Then the orbifold X=(Π2xΠ2)/Z2 with respect to
the diagonal action has a Kahler structure inherited from that on Π2. The minimal
resolution at the thirty-six double points yields the Horikawa surface Y. Topologically
we can write Y=Xϋ(\JiWi), where X is a compact smooth manifold obtained by
removing small cones about the thirty-six double points in X. Then we can easily verify
that Fis simply-connected and that b+(Y) = 9.

THEOREM 4.1. | yγ(η) | = 4 for some element η e Cγ.

PROOF. We first give a representation of π^X) in SO(3). Let yί9 ....
generators of π1(772) as shown in the Figure. They satisfy one relation

be

FIGURE,
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Let y5, . . ., ys be a copy of yu . . . , y4. If we denote the generator of Z 2 by μ, then
π^X) is represented by

π1(X) =

Let {1, fl, ft, c} be a copy of Klein's four-group in SO(3). We define a representation

a ,

Let P ^ X be the flat 4SΌ(3)-bundle corresponding to this representation and A the flat
connection. We will find out around which of the thirty-six double points the bundle
is twisted. The fundamental group n±(dX) is generated by the following elements of
order 2:

μ

(1 <«< 4), μy1y2y2y*yj (5 <j < 8)

It is easy to verify that there are six untwisted points corresponding to

μ, μyβ, w 5 ) w e . w ? . μy*ysy6yiy%>

and that all the other thirty points are twisted. So the 5Ό(3)-bundle P satisfies
Assumption 3.1.1. We show that w2(P) is admissible. Suppose that feH1(dX;Z2) =
Hom(//1(δA'; Z), Z2) takes the non-zero value 1 e Z 2 = {0, 1} on two or four elements
of the above six generators. We must find geH1(X; Z2)^Hom(H1(X; Z), Z2) such that
σ*(#) — θ*σ*=f a t the six generators. These generators satisfy only one relation in

So the condition on g is equivalent to the linear relation
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g(μ)

g(y5)

10 0 0 0 0 0

1 10 0 0 0 0

10 1 1 0 0 0

10 10 10 0

10 0 0 0 11

Since the above matrix has full rank, we can find a solution. Therefore w2(P) is admissible.
Next we will show that

f(μ)

f(μ+y6)

LEMMA 4.2. Let{Al9...9 Am} (m > 2) and {Bί9 ..., Bn} (n > 2) be finite sets in SO(3).
Suppose that each of them has no axis common to all elements and that \_Ah Bj~] = 1
(1 <ί<m, 1 <j<n). Then there is an element CeSO(3) such that

C'ίAiCe{l,a9b9c}9 and C-ίBjCe{ί9a9b9c}

for all 1 </<ra, 1 <j<n.

This follows from an elementary linear algebra: Rotations which commute with a
fixed rotation have a common axis if the angle of the fixed rotation is neither 0 nor π.

Suppose that there were another representation p' \ π1(X)^S0{3) with the same
second Stiefel-Whitney class. Pulling it back to π1(772 xΠ2) = π1(Π2)®πί(Π2), we can
apply Lemma 4.2 to deduce that, after conjugation with respect to SO(3), the image
of p' is in {1, a, b, c}. Since p' has the same Stiefel-Whitney class as p, it must send
the loops around the six untwisted points to 1. So we have p'{μ) = p\y^) = 1,
P\y^) = P\ys) = P'(y%ί a n d P\yώ = P\yτ)- Since p' should not send the loops around
the thirty twisted points to 1, we can directly verify that p' is conjugate to p.

Finally we will show that A is regular. Since the image of p has finite stabilizer,
H\ is zero. So it suffices to show that H\ is zero because the index of the AHS complex
is zero. Since the pull back of A to IJ2 x Π2 splits into three real flat connections by
Lemma 4.2, the vanishing of H\ reduces to that of the Z2-invariant part of the first
cohomology group on the real flat bundles over Π2 by the Kύnneth formula. We split
Π2 into two Z2-invariant punctured 2-tori Π1. Then from the Mayer-Vietoris exact
sequence

0 -• H\Π2)
Z2 -• H^Πif2 ® H^ΠJ*2

together with the Kύnneth formula and the Poincarέ duality, it suffices to show the
vanishing of H0^1)22. If the real line bundle is untwisted, then Z 2 acts on Sx by
reflection, so it vanishes. If twisted, then a Mόbius band on S1 has no non-zero constant
section, so it also vanishes.

Since p has stabilizer {1, α, b, c}, we see that the flat 5Ό(3)-bundle P^X satisfies
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3.1.3. Clearly the dimension of Hι(X\ Z2) is 9. So by Theorem 3.3 and Proposition 3.2,
we get |yy(^)| = 2 9 - 5 ~ 2 = 4 for an ηeCγ. •

Orbifold SO(3)-bundles with the same non-admissible Stiefel-Whitney class. Now
we digress to construct two orbifold SΌ(3)-bιmdles which have the same second
Stiefel-Whitney class and the same Pontrjagin charge (hence the same monodromy at
double points), but which are not isomorphic to each other.

Let Z be a simply-connected orbifold obtained from Y by resolving all except two
of the double points (these two points being easily detected from the generators of
π^dX)). Then we write Z=Z\Ji=12DflZ2 and r = Z ( J i = u ^ .

We let Pf be an S<9(3)-bundle over Y. We suppose that it restricts to the trivial
bundle over Wv Let Pf be the £<9(3)-bundle over 7 with w2(P2

<) = w2(Pf) + δ*(b1+b2)
and p1(Pί)=p1(Pf), where (5*: H\dZ\ Z2)^H2(Y; Z2) is the coboundary map in the
Mayer-Vietoris sequence for the pair (Z, WΊjJ^)- Then Pf and PJ can be written as
p * = p u (U H Wi x SO(3)) and Pf = P u (|J , W{ x SO(3)) using an SO(3)-bundle P over Z.
So Px = Pu((j HDf/Z2 x SO(3)) and P2 = Pu(|Jt[Df/Z2 x SO(3)) are SΌ(3)-bundles over
Z with w2(P1) = w2(P2). By construction, they admit smooth connections A1 and A2

which are equal to the trivial connection over Df and J^Tr(F4l Λ i7^^ = ̂ Ύr(FA2 A FAl).
We show that P1 and P 2

 a r e n °t isomorphic to each other. Suppose, on the contrary,
that there were a bundle isomorphism h: Pί^P2. Then /z|s3/Z2 is homotopic to a constant
map, since it lifts to S3 and extends to D4 by definition. So we may suppose that the
automorphism h\z is equal to (ιf

i)~1h over dZ. By the homotopy extension theorem,
there exists an element veH1(Z, Z2) such that σ*(ι?) = b(l, (iί)~1ϊI ) = b 1 +b 2 τ έ 0, where
σ: dZ^Z is the inclusion, a contradiction to π1(Z) = {l}.

For example, we take Pf to be the trivial bundle and Pf to be an 5O(3)-bundle
with w2(P|) = b 1 + b 2 a n d ^ ^ P ^ ^ O . Then the flat moduli of Pί consists of the trivial
connection, but that of P 2 is empty.

Next we will calculate the simple invariant for regular elliptic surfaces without
multiple fibers. Let Πk be a hyperelliptic curve of genus k. We consider a Z2-action on
Πk and Π1 in the same way as on Π2. Then the quotient Sk = (Πk_1 xΠ1)/Z2 with
respect to the diagonal action is a 4-orbifold with double points. Resolving the &k
double points in Sk, we obtain a regular elliptic surface π: Sk^CPx, where π is induced
from the projection of Πk_ίxΠ1 to the first factor. It is well-known that Sk is
simply-connected and b+(Sk) = 2k— 1. Let / be a general fiber in Sk.

PROPOSITION 4.3. For some ηk e CSk with (ηk, [/] > = 1 (mod 2), we have | ySk{η) I = 1

PROOF. We take generators yu . . . , y2k-2 of Πk_1 and generators y2k-ι, y2k of
Π1 in the same way as in the Figure. Define a representation pk: π1(Sk)-+SO(3) by
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,..., y2k-3-+b, y2k-2-+c, if A: is even ,

> ^2k-3-* U>'2fc-2->^ i f ^ i δ θ d d >

Then it is easy to see that its isotropy group is {1, α, b, c] and that there are 2k double
points around which ρk is sent to 1. Moreover, we can verify that Assumption 3.1 is
satisfied and that it is the unique representation in the same way as in Theorem 4.1.
Hence we get \ySk(

rlk)\ = ̂ 2k+1)~{2k~ί)~2 = 1 for some ηkeCSk with (ηk, [/]> = 1. •

REMARK. The author [12] has calculated the simple invariant for wider classes
in CSk: For any η e CSk with <*/, [/]) = 1 (mod 2), we have proved that | ySk(η) | = 1.

5. The proof of corollaries. We first construct a torus sum of two copies of Y
by choosing two embedded 2-tori with π1(Y\T2) = {1} and (JI, T2} = 1 (mod 2). One way
to choose such 2-tori is as follows: We slide the loops y1 and y3 *yΐ V2 i n t o t n e interior of
a fundamental domain of the involution. At the same time, we take Z2-invariant dual
circles zu z2 which intersect yu y3

 1yΐ1y2 at one point, respectively, and which are
disjoint to each other. We also perform the same procedure for ys, yη VίVβ* a n d take
dual Z2-circles z3, z4 in the same way. Then T1 = yί x jμ5, T2 = (yϊ 1y^ 1y2) x (yη xyj 1y6)
in Π2 x Π2 descend to 2-tori in F(also denoted by Tί9 T2). Since the 2-tori zγ x z3 and
z2 xz 4 descend to dual 2-spheres of Tl9 T2 in Y (in the sense that they intersect the
2-tori at one point), the complements Y\TU Y\T2 are simply-connected. Moreover,
since the p sends yu yϊVίVβ t o a a n c * ys, yϊ1yΐιy2 t o b> ^ follows that
<?7, T1 } = (η, T2} = \ (mod2). Now we take a copy of Y and identify a tubular
neighborhood of T1 in each of them and remove its interior. Then we obtain a smooth
oriented 4-manifold Yb Y and an element ηb\ηeCγϊY from the ηeCγ. Repeating this
procedure by using 7\ and Γ2, we obtain a closed oriented 4-manifold Yt=Yb - - bY
and an element ηt = η b 4 η e CFί from / copies of Γ and η. We call this multiplication
'torus sum' in [12]. Next we will glue Yx to the regular elliptic surfaces Sk. We remove
a tubular neighborhood of the remaining T2 in Yx and that of / in Sk. Then the same
procedure as before yields a closed oriented 4-manifold Sk % Yt and a class ηk^ηte CSk t, y/.

PROPOSITION 5.1. \yskϊγι(
rlk^r1ι)\ = 4ι for integers k, I with O<A;<1, l>\ or k>2,

PROOF. If k>2 or 0, then we can apply [12, Theorem 2.3] to deduce that

If k= 1, we consider a closed 4-manifold S2bSibYl = S3b Yh where 524Sx is the fiber
sum of S2 and 5^ Then we again apply [12, Theorem 2.3] to get
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By the last remark in Section 4, we can replace ηk by all η e CSk with <yy, [/]> = 1

(mod 2) in order to obtain the same conclusion as above. For example we can choose

P.D.[2:k] if k is even

if fcis odd,

where Σk: CP1->Sk is a section and P.D. means the mod2 Poincare dual.

Next we consider the effect of the topological logarithmic transformation performed

on a general fiber in a nucleus, in the sense of Gompf [9]. Here the nucleus is a regular

neighborhood of the bouquet of a section and a cusp fiber in a regular elliptic surface.

We find a nucleus in the surface Y. If we choose yί and yϊ ιy$ ιy6 to be a Z2-equivalent

circle, the preimage of the 2-sphere (y1 x (yϊ ιy$ 1yβ))IZ2 by the map Y-> Ϋ is identified

with a singular fiber of type /*. Then the preimage of the sphere (z1 xz 4 )/Z 2 can be

thought of as a section. By Moishezon [16], the singular fiber of type 1% is deformable

to four cusp fibers. Then a regular neighborhood of one cusp fiber together with this

section is a nucleus in Y.

Now performing a logarithmic trransformation on a fiber with multiplicity p, we

get a new manifold Y(p). Since <*/, F> = 0 (mod 2), we can apply the argument of [10,

IV] to deduce:

PROPOSITION 5.2. If we write Yt{p)= Yb * tl Yb Y(p), then

I ySk n γl(p)faι) I =p\ ysk*Yl(m) 1=4'/?.

Since Sk H Yt(p) is homotopy equivalent to (2fc+ 10/- \)CP2 #(10fc + 46Z- ̂ CP1 and

is finite, Skb Yι(p) has infinitely many diffeomorphism types of Skb Yv

Moreover, when p is odd, we can apply the argument of [10, IV] to all ξ e CSk t, Yιip)

to deduce the following: If <ξ,F} = 0 (mod2), then \ySk*γι(P)(ξ)\=P\ysktγι(ξ)l If

<ί, F) = 1 (mod 2), then | γSk ^ Yίip)(ξ) I = I ySfcnr,(O I- τ h e n multiplying all non-zero values,

we obtain a diffeomorphic invariant. Comparing the values of this invariant, we get:

THEOREM 5.3. For odd prime integers p, p\ if Sk^Yt(p) is diffeomorphic to

Skϊ Yt(p% thenp=p'.
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