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Abstract. In an Alexandrov space with curvature bound, we prove that a curvature
takes the extreme value over some specially constructed surfaces if and only if each
of the surfaces is totally geodesic and locally isometric to a surface with constant
curvature.

Introduction. An Alexandrov space is a locally compact complete length space
(i.e., a space in which distance is measured by the infimum of lengths of curves) with
curvature bounded either below or above in the distance comparison sense, that is, the
Alexandrov-Toponogov comparison theorem holds for all small geodesic triangles. A
complete Riemannian manifold with sectional curvature bounded either below or above
is an Alexandrov space and in fact the difference lies in the differentiability. Until
recently people discussed only C°°-Riemannian manifolds and forgot about other
important aspects of metric spaces. It was the work of Gromov that ended this long
sleeping period. Inspired by the idea developed by Gromov [11], [12], Alexandrov
spaces got footlights, and it became known that they can be obtained as the so-called
Gromov-Hausdorff limits (cf. [13], [15], [23]) of sequences of Riemannian manifolds
belonging to a certain class determined by geometric quantities; curvature, diameter,
and volume (cf. [17], [18], [24]).

Since the notion of Alexandrov spaces is a generalization of Riemannian manifolds,
is seems natural to consider the problem: To what extent can one extend results in
Riemannian geometry to Alexandrov spaces? It is known that some well-known results
in Riemannian geometry can be extended to finite Hausdorff dimensional Alexandrov
spaces of curvature bounded below. For example, the Myers-Toponogov compactness
theorem [6], the Diameter sphere theorem of Grove and Shiohama [19], [22], the
fibration theorem of Yamaguchi [27], [28], and the Soul theorem of Cheeger and
Gromoll [9], [22] can be generalized. It should also be mentioned that the isometry
group of a finite Hausdorff dimensional Alexandrov space with lower curvature bounded
is a Lie group [10].

In this paper, we will show that for specially constructed surfaces Σt (ί= 1, 2) in
an Alexandrov space X with curvature bounded either below or above, the curvature
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of X takes the extreme value over the surface Σt if and only if Σt is totally geodesic in
X and locally isometric to a surface with constant curvature. The surface Σ^ is an
exponential image of a plane and Σ2 is a ruled surface produced by a parallel line field
along a geodesic. This can be proved in the Riemannian case with the help of the Jacobi
equation and the curvature tensor. However, a generalization to an Alexandrov space
without a differential structure has a quite different character, and we will show how

it can be done.
We refer the reader to [3], [6] and [26] for basic tools and notation on Alexandrov

spaces.
We would like to thank the referee for pointing out incomplete arguments and

suggesting a number of improvements.

1. Preliminaries. In this section, we present some well-known facts about

Alexandrov spaces. Let (X, d) be a complete locally compact length space, i.e., a complete
locally compact metric space such that any two points p,qeX is joined by a minimal
geodesic whose length is equal to the distance d(p,q) between/? and q, where the length
of a continuous curve α : [α, b~\^X is defined to be

n-l

sup

From now on, we will assume that a minimal geodesic α is parametrized by arclength
(i.e., the length of α|[α>s]is \s — a\ for all s e (α, Z?]). For/?, q e X we denote by pq a minimal
geodesic joining /? and q. A limit of minimal geodesies is again a minimal geodesic and
moreover with the limit length. For any three points p,q,re X, the union of three
minimal geodesies pq, qr, rp is called a geodesic triangle in X and denoted by A(pqr).

For a fixed real number fc, we denote by M2(k) the 2-dimensional complete simply
connected Riemannian manifold of sectional curvature k. More precisely, M2(k) is a

Euclidean plane when k = Q, a sphere when k>0, and a hyperbolic space when k<0.

For a geodesic triangle A(pqr) in X we denote by A(pqr) a geodesic triangle sketched
in M2(k) whose corresponding edges have equal lengths as A(pqr). For k<0 the geodesic
triangle A(pqf) always exists and is unique up to rigid motion, and for fc>0 it exists
only with the additional assumption that the perimeter d(p, q) + d(q, r) + rf(r, /?) of A(pqr)

is less than 2nl^j~k. We denote by <pqr the angle at q of A(pqr). For the sake of
simplicity we often write A(pqr) instead of A(βqr) and also <pqr instead of <pqr.

DEFINITION 1.1. A complete locally compact length space X is said to have
curvature bounded below (above, resp.) by k (written, Curv(X)>k (CurvpQ < k, resp.)) if
for each point xeX there exists an open neighborhood Ux satisfying the following
condition: For any geodesic triangle A(pqr) with vertices in Ux and any point ueqr the
inequality d(p, u)>d(p,ύ) (d(p, u)<d(p, ύ\ resp.) is satisfied, where ύeqris the point of
the geodesic triangle A(pqr) corresponding to u, that is, such that d(q, u) = d(q, u).
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This definition is taken from [3] and [6]. We will sometimes call a geodesic triangle

A(pqr) a small geodesic triangle if it is contained in an open neighborhood Ux satisfying
appropriate conditions. An Alexandrov space is, by definition, a complete locally
compact length space with curvature bounded either below or above. Then of course a
complete Riemannian manifold with sectional curvature bounded either below or above
is an Alexandrov space.

There are several equivalent ways to describe the curvature bound in an Alex-
androv space. They sometimes involve the concept of angle, which we will explain
now. Let α and β be minimal geodesies having a common origin p. Then a(s) and
β(t) are points on α and β, respectively, such that s = d(p,a(s)) and t = d(p,β(t)).
If Curv(X)>k (Curv(X)<k, resp.), then the angle <a(s)pβ(t) is monotone non-in-
creasing (non-decreasing, resp.) for sufficiently small s, t>0 in the following sense:

<a(sί)pβ(tl)><a(s2)pβ(t2) (<oί(sl)pβ(t1)<<cc(s2)pβ(t2), resp.) for 0<s1<s2<s, 0<
tί<t2<t (cf. [2], [3]). This property is called the local version of the Alexandrov
convexity (concavity, resp.) property for pa(s) and pβ(t) for sufficiently small s, />0, and
equivalent to curvature bounded below (above, resp). We will simply say an open set
U to have the Alexandrov property if any two minimal geodesies pq and pr in U have
the Alexandrov convexity or concavity property. Then any open set with the Alexandrov
property satisfies the condition of Definition 1.1. Since <a(s)pβ(t) is monotone for

sufficiently small, s, />0, the limit of <a(s)pβ(t) as s, /->0 exists. We can define the
natural angle at p between α and β, <(α, j8) = limsί^0 <a(s)pβ(t). When there is no

danger of ambiguity, the angle at p between α and β may be written as < qpr, where
#eα, rεβ.

Making use of the property of angle as stated above, we can easily obtain the local
verision of the Toponogov theorem and the Hinge theorem.

TOPONOGOV THEOREM. If Curv(^) > k (Curv(X) < k, resp.) and if A(pqr) is a small
geodesic triangle, then <pqr> <pqr, <qrp> <qrp, and <rpq> <rpq (<pqr< <pqr,
<qrp< <qrp, and <rpq< <rpq, resp.).

HINGE THEOREM. IfCurv(X) > k (Curv(X) < k, resp.) and if a, β are minimal geodesies
on M2(k) with the same starting point and the same lengths as α, β and the same angle

atp, then d(a(s), β(t))<d(d(s), β(t)) (J(φ), β(t))>d(oί(s), /?(*)), resp.) for sufficiently small

We have the following properties of angle for later use which are taken directly
from [3] and [6].

PROPOSITION 1.2. Let X be an Alexandrov space.

(i) Suppose that α, β, y are minimal geodesies emanating from pεX. Then

(ii) Suppose Curv(X)>k (Curv(X)<k, resp.). Ifx is an interior point of a minimal
geodesic pq, then for any r(^=x)eX we have <pxr + <qxr = π (>π, resp.).
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In the above proposition, it should be noted that with an upper curvature bound

the sum of adjacent angles is not equal to but greater than or equal to π. This is due
to the fact that without a lower curvature bound we may have a so-called branch point
x of minimal geodesies pr andpq (i.e., x belongs to interior points of minimal geodesies
pr and pq such that prnpq=px, xr<^pr, xqc^pq, and xr n xq = {x}) and this may cause
some difficulties. We can take as an example a flat cone with the total vertex angle

greater than 2π, which is an Alexandrov space of curvature bounded above by zero.
At the vertex, the sum of adjacent angles along a geodesic is greater than π. We will

take care of this problem in Section 2.
Let α, β be minimal geodesies emanating from/? in X. It is called (the global version

of) the Alexandrov convexity (concavity, resp.) property for p<x,(s) and pβ(t) that the
angle <a(s)pβ(t) is monotone non-increasing (non-decreasing, resp.) for s, t>0 not
necessarily small. Then any geodesic triangle in Alexandrov spaces with curvature
bounded below has the Alexandrov convexity property (cf. [6]). However, the

Alexandrov concavity property does not hold even for Riemannian manifolds with
curvature bounded above, and we need some extra conditions on Alexandrov spaces
with curvatue bounded above. For an Alexandrov space X with curvature bounded
above by fc, we consider the following conditions:

(1) The minimal geodesies depend continuously on their ends in X (i.e., if pq and

pnqn are minimal geodesies in X such that pn-+p, qn-^>q, as n->oo, then for a point r on
pq and a point rn on pnqn such that d(p, r):d(r, q) = d(pn, rn):d(rn, qn), we have rw->r as

(2) If k > 0, then the perimeter of any geodesic triangle in X is less than 2π/λ/
ΓF.

Then any geodesic triangle in X has the Alexandrov concavity property if and only if
X satisfies the conditions (1) and (2) (cf. [2], Theorem 5.1 in [3]).

A map / between metric spaces is called a local isometry if it is locally distance

preserving (i.e., d(f(x\ f(y)) = d(x9 y\ for x, y in a neighborhood of every point in a
metric space). We denote by A(w) a ruled surface of A(pqr) on X, which is by definition
the union of minimal geodesies px for all x e qr. Unfortunately, for a point x e qr, the

minimal geodesic px may not be unique, and hence we may not have a well-defined
unique ruled surface. In M2(k), of course, the ruled surface is uniquely determined by
its boundary unless the geodesic triangle is the equator of a sphere.

On occasion, we will hope that locally a minimal geodesic connecting two points
in Alexandrov spaces is unique. In fact, in the case where Curv(X)<k, for any point
xeX, there exists an open convex ball Bx in the sense that any two points in Bx can
be joined by a unique minimal geodesic lying on Bx (cf. [2]). Without an upper curvature
bound, this is not true in general. We take as an example a flat cone with total vertex
angle less than π. For any neighborhood of the vertex we can always find two points
with more than one minimal geodesies. In the case where Curv(X)>k, however, we
know that a minimal geodesic connecting two interior points of a minimal geodesic in
X is unique because otherwise it would produce a branch point, which is impossible
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with a lower curvature bound. It is also known that if X has Wald curvature bounded
below, then for any point p e X, there exists a dense subset Jp of X such that for all
x e Jp there is a unique, almost extendable minimal geodesic from p to x (see Theorem
1.4 in [25]). The Wald curvature condition looks stronger than ours, but if Xis a locally
compact complete length space, then they coincide (see 2.3-2.5 in [6]). Furthermore,
in the case of finite Hausdorff dimensional Alexandrov spaces with curvature bounded
below, a concept of the cut locus of a point p e X can be defined and its Hausdorff
dimension is not greater than dimH X— I (cf. [21]).

Without a lower curvature bound we may have a branch point, and without an
upper curvature bound we may have this problem with the local uniqueness of minimal
geodesies. In Riemannian geometry, we do not have these problems, and we see that

even in local scale an Alexandrov space can be much more complicated than a
Riemannian manifold. Depending on whether we have an upper curvature bound or a
lower bound, we encounter different kinds of difficulties, and maybe this is the reason
why there are hardly any theorems which can apply to both cases simultaneously. We
will also have to handle them separately sometimes in order to obtain the same
conclusion.

DEFINITION 1.3. A subset Γis called totally geodesic in an intrinsic metric space
X if for every point y e Y there exists a neighborhood Uy around y in X such that every
pair of points in Yr\Uy is joined by a minimal geodesic in Uy which is, in fact, contained
in Y.

This definition of a totally geodesic subset in an intrinsic metric space is clearly a

generalization of totally geodesic submanifolds in Riemannian manifolds. Y is metrical-
ly embedded in X in the sense that the induced metric on Y is an intrinsic metric. In
Riemannian geometry, the equality case of the Toponogov theorem gives rise to a kind
of rigidity theorem for a subset. The same kind of property has been observed for
Alexandrov spaces. We will have only a sketch of the proof (see [26] for more details
of the proof).

PROPOSITION 1.4. Let Xbe an Alexandrov space with curvature bounded either below

or above by k. Assume that a geodesic triangle Δ(pqr) is contained in an open set with
the Alexandrov property and that the angle <pqr is equal to <pqr. Then there exists a
smooth ruled surface ±(pqr) which is totally geodesic in X and isometric to the ruled

surface A(pqr) in M2(k).

PROOF. We will first prove the proposition in the case where Curvpf)>k.I fueqr
and ύ e qr are taken so that d(q, u) = d(q, w), then by the Hinge theorem and the curvature

condition we have d(p9u) = d(p9ύ). Similarly, there exist vepq and vepq such that
d(q, v) = d(q, v) and d(v, u) = d(v, u).

By Proposition 1.2 (ii) and the Toponogov theorem, we have
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π= <uvq+ <uvp> <ύvq + <ύvp = π .

Thus we can obtain that <uvq= <ύϋq, and if the limit of uv as v^>q is a minimal

geodesic uq, then we have < upq = < upq.

The minimal geodesic rϋ intersects pu at a unique point w in M 2(k). We will verify
that if wepu is a point with d(p, w) = d(p, w), then d(r, w) = d(r, w) and d(w, v) = d(w, v).
From the fact that < upq = < upq and the curvature condition, we see that d(w, v) =
d(w, v). In view of the properties of angle and the Toponogov theorem, we have

π= <puq+ <pur> <puq + <puf=π .

Thus we can obtain that <pur= <pur, and hence we have d(r, w) = d(r, w).
This means that if α: [0, d(q, r)~\-*X and β: [0, d(q, p)~\-*X are the edges with

<χ(0) = j8(0) = g, at(d(q9 r)) = r, β(d(q, p))=p9 then natural maps /: [0, d(q, r)] x [0, d(q9pf\
->X and / : [0, d(q, rj] x [0, d(q, pJ]^>A(ρqr) are defined as follows: To each (s, ί)e
[0, d(q9 r)] x [0, d(q, pj] a point f ( s 9 t ) (J(s9t\ resp.) is assigned as the intersection
of geodesic pa(s) n rβ(t) (pS(s) n rβ(t\ resp.), where α and j? are the edges of jL(pqr)
corresponding to α and β. Then it is easy to see that / ° /~ 1 : A(pqr)->Xis an isometric
embedding.

In the case where Curv(X)<k9 all the inequalities in the above proof should be
replaced by the opposite inequalities and also the sum of adjacent angles can only be
not less than π. Namely, π = < uv q + < uvp should be replaced by π < < uvq + < uυp and
we should have π< <puq+ <pur. Then we have

π< <uvq+ <uvp< <uvq+ <uvq = π ,

π< <puq+ <pur< <puq+ <puf=π ,

and hence we obtain the same conclusion as in the lower bound case. Π

Unless the geodesic triangel A(pqr) is in a convex ball, the ruled surface A(pqr)
may not be unique and we may have several sheets of surfaces with the vertices of
A(pqr). The above proof demonstrates that if any of them satisfies the angle condition
of Proposition 1.4 then it is isometric to the standard one no matter how many of them
there are. Applying the same idea as the proof of the above proposition a little more
carefully, we can in fact witness the following stronger statement, which we need for
the main theorem (see Theorem 5.1 in [3] and Lemma 6.4 in [26] for the proof).

PROPOSITION 1.5. Let X be an Alexandrov space with curvature bounded below
(above, resp.) by k. Let α : [0, a~]^>X and β : [0, b]-*X be minimal geodesies emanating
from p such that

«([0,α])u)9([0,έ])cr(' (J C/α(s))n( (J
\αe[0,α] / \fe[0,&]

where Ux is an open neighborhood around x with the Alexandrov property.
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Assume that there are s0 e (0, α), t0 e (0, b), and a minimal geodesic a(s^)β(t^} such

that <pa(sQ)β(t0) = </?α(s0)/?(/0). Then there exists a smooth ruled surface A(/>Φo)βUo))
which is totally geodesic in X and isometric to the ruled surface A.(p(x.(s0)β(t0)) in M2(k).

Again there may be several minimal geodesies joining <φ0) and β(t0). As long as
they satisfy (2), however, we have the same conclusion. In the case when Cuτv(X)<k,
if we assume that C/α(so) or Uβ(to) is contained in open convex balls, then the ruled surface

)β('o)) is unique.

2. Subsets with the extreme value of curvature. Throughout this section X is an
Alexandrov space with curvature bounded either below or above by fc, and Fis a subset
in X. In this section we will discuss a new concept that the curvature of an Alexandrov
space takes the extreme value over a subset, and we also discuss properties of such
subsets. By assumption, the extreme value of the curvature means that Curv(^) = k over
Y.

If X is a complete Riemannian manifold with Curv(X) > 0, we have the splitting
theorem (cf. [8], [9]) in the universal covering space and it produces flat subsets in X.
If X is a compact complete Riemannian manifold with Curvpf) < 0, then a solvable
subgroup of the fundamental group π^X) will also produce flat subsets in X (cf. [8]).
There are results in Alexandrov spaces corresponding to these phenomena under suitable
conditions (cf. [5], [16]). We are in fact interested in this kind of subsets in the case
of arbitrary curvature bound.

DEFINITION 2. 1 . For an Alexandrov space X with curvature bounded either below
or above by k, we say Curv(Z) = k over Y if for each point xeX there exists an open
neighborhood Ux such that for any geodesic triangle Δ(pqr) with vertices in Ux n Y,
there exists a point v on an edge, say qr, different from q, r such that for v e qr with

d(q, υ) = d(q, v) we have d(p, v) = d(p, v).

In fact, this definition is the equality case of Definition 1.1. In the following
proposition, we will show what this definition means in terms of angles and prove that
it in fact implies seemingly stronger conditions.

PROPOSITION 2.2. Let Y be a subset of an Alexandrov space X with a curvature
bound k. Suppose that Curv(X) = k over Y. Then for each point xeY there exists an open
neighborhood Ux around x such that if three points p, q, r are contained in Ux n Y, then
the following hold:

(i) There exists a smooth ruled surface ±(pqr) which is totally geodesic in X and
isometric to the ruled surface ±(pqr) in M\k).

(ii) If βq, p? are minimal geodesies on M2(k) with the same lengths as pq, pr and
the same angle at p, then d(q, r) = d(q, f).

PROOF. We will first prove the proposition in the case where Curv(X)>k.
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(i) If Cuτv(X) = k over 7, then for each point xeX we can take an open

neighborhood Vx around x which satisfies the condition of Definition 2.1 as well as
the Alexandrov property. Without loss of generality, we assume that the point v in
Definition 2.1 is on the minimal geodesic qr. By Proposition 1.2 (ii) and the Toponogov

theorem, we have

π= <pvq + <pvr> <pvq + <pvf=π .

Thus we can conclude that <pvq= <pvq and <pvr= <pϋr. For an arbitrary point
ueqv and ύεqv with d(q, u) = d(q, ύ), by the Hinge theorem for pv, vu, and <pvu, we
have d(p, u)<d(p, ύ). By the curvature condition, we already have d(p, u)>d(p, ύ), and
hence we can conclude that d(p,u) = d(p,ύ). In view of the properties of angle and
the Toponogov theorem, we have

π= <puq-\- <pur> <pύq + <pύr = π .

Thus we can obtain that <puq=<pύq, and if the limit of pu as u-+q is a minimal

geodesic /?#, then we have <pqr= <pqr. Then, by Proposition 1.4, (i) follows.

(ii) Suppose that d(q, r)^d(q, f). Let A(pqr) be a geodesic triangle in M2(k) such
that q — q. Then we have f/r, and hence <qprφ <qpr. By (i) there exists a minimal
geodesic pr satisfying <qpr= <qpr, and we can conclude that <qprΦ <qpr, a con-

tradiction.
In the case where Curv(^) < fc, all the inequalities in the above proof should be

replaced by the opposite inequalities and also the sum of adjacent angles can only be
not less than π. Hence we obtain the same conclusion as in the lower bound case. The
proof for (ii) is almost identical and omitted. Π

If the open set Ux in the proposition can be chosen to be convex, for exam-

ple when Curv(X)<k, the geodesic triangle A(pqr) is unique and we can obtain
the same conclusion for any geodesic triangle with vertices in Ux n Y. Therefore

even when the curvature is bounded above we can obtain π= <pvq+ <pvr as a re-

sult. In fact, for a minimal geodesic pq in 7, if we had a strict inequality in Pro-
position 1.2 (i) (Curv^^fc), it would lead to a contradiction, and hence we have:

COROLLARY 2.3. 7/*Curv(T) = λ; over 7, then the sum of adjacent angles of any
minimal geodesic in Y is equal to π.

The above Proposition 2.2 is the main ingredient we need for the proof of our
main theorem.

3. Main result. In this section, we will construct surfaces Σt in Alexandrov spaces
and prove the main theorem. Throughout this section X is an Alexandrov space with
curvature bounded either below or above by k.

In order to construct surface Σί9 we need the notion that each of the points in Σ1
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has no conjugate points. Let G be a set of minimal geodesies α: [0, /]->JSf having the
uniform metric dH defined by dH(ct, j?) = supί/(α(ί), β(t)). We then define the endpoint
map End: G-»^by End(α) = α(/).

DEFINITION 3.1. Let Gp be the set of all minimal geodesies starting from p. We
say q is not conjugate to p along a minimal geodesic pq if the endpoint map End on
Gp maps some neighborhood of pq in Gp homeomorphically onto a neighborhood of
q in X.

In the case of complete Riemannian manifolds, this definition is equivalent to the
usual one (cf. [1], [29]).

The subset Σ^ in X is, by definition, the union of the traces of minimal geodesies
in G! described below. For a fixed point p G X, let G± be the maximal set of minimal
geodesies emanating from p satisfying the following conditions:

(la) If α, β, y are minimal geodesies in Gl9 then <(α, y)= <(α, β)+ <(β, y),
<(β, α) = <(β, y) + <(y, α), or <(y, j8) = <(y, α)+ <(α, β).

(Ib) The point /? has no conjugate points in Z\.
If CurvpO<& for &>0, then it is further required that the perimeter of any geodesic
triangle with vertex/? in Zt is less thant 2π/Λ/AΓ. By the condition (Ib) of G1? for any point
xeZΊ, there exists a unique minimal geodesic px in Gί. Moreover, for any two points
y and z on the minimal geodesic px, the minimal geodesic yz is unique in X.

When a tangent space of X&t p can be defined, for example in the case of Riemannian
manifolds, the condition (la) above means that the initial vectors of the minimal geodesies
in G! are contained in a 2-dimensional subspace of the tangent space, and hence Σ± is
a surface. If X is a finite Hausdorff dimensional Alexandrov space with curvature
bounded below, then we can define the tangent cone and the exponential map at a
point in X (cf. [6]). Two minimal geodesies emanating from a point are by definition
equivalent if one is a subarc of the other. For a point peX, let Ω'p be the set of all
equivalence classes of minimal geodesies emanating from p. The space of directions Ωp

at p is the completion of Ω'p with respect to the angle distance (Proposition 1.2 (i)). We
denoted by x' the set consisting of all directions represented by minimal geodesies
joining p to x. If ξex', we define the exponential map, exppξί, as the minimal geodesic
px parametrized by the arclength. The tangent cone at p e X is defined to be the cone
over the space of directions Ωp. In fact, the construction of Σί is modelled on the

exponential image of a plane in a tangent cone.

LEMMA 3.2. Let X be an Alexandrov space with curvature bounded either below or
above by k and let Σί be as constructed as above. IfCurv(X) = k over Σ^ then Σ± is totally
geodesic in X.

PROOF. If Cuτv(X) = k over Σί9 for a fixed point y e Σ1 let py be the unique minimal

geodesic in Z\. For any point zepy, we can find an open neighborhood Uz around z
which satisfies the condition of Definition 2.1 and the Alexandrov property. We further
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assume that there are no conjugate points of p in Uz. Since {Uz\zepy} is an open
covering of the compact set/rμ, by the Lebesgue number lemma and the condition (Ib),
it is easy to see that there exists an open neighborhood Vy such that for any two distinct
points q, reΣ^ n Vy, we have

pquprc: \J Uz.
zepy

We can now choose points p = qθ9 ...9qί9 ...9qn = q on the minimal geodesic pq and
p = r 0,..., rh ..., rn = r on pr so that, by joining these points on the sides of the geodesic
triangle A(pqr\ we obtain small geodesic triangles A(qiqi+1ri+1) and Δfe^+i^X
z = 0, 1, 2 , . . . , « — 1, in the sense that each of them is contained in U2 for some zepy.
Of course, these geodesic triangles may not be unique for given vertices. In fact, the

edges qiqi+i and riri+ί are unique because of the condition (Ib), but the edges qfi and
qfi + i maY not be unique. By Proposition 2.2 (i), there exists a smooth ruled surface
A(p#ιfι) which is totally geodesic in X and isometric to the ruled surface A(Mιrι) in
M2(k), and hence there exists a minimal geodesic qvr± satisfying <pq\r± = <ρq\r^

Now we can find extensions/?# ofp^ and/5r of j^ in M2(k) so that d( p, q) = d(p, q)
and d(p,r) = d ( p , r ) . We first take a point q2 in pq with d(qί,q2) = d(ql,q2). Since
<pqιrι= <Wιrι> by Corollary 2.3, we have <q2qίri= <q2qίr1. Then, by Propo-
sition 2.2 (ii), we obtain that d(r^q2} = d(r^q2) (i.e. A(qιrίq2) = A(qιrίq2)). From
Proposition 2.2 (i) there exists a minimal geodesic r±q2 such that <pq2rί — <q^q2r^ =

<qιq2rι= ^Pq2rι Thus the geodesic triangle A(pq2

rι) satisfies the conditions in
Proposition 1.5, which implies that for the minimal geodesic rvq2 we have <rrίq2 =
<rrvq2.

By induction on /=0, 1, 2 , . . . ,«— 1, we may now conclude that the geodesic triangle
A(pqr) satisfies the hypothesis in Proposition 1.5, and hence there exists a smooth ruled
surface ±(pqr) which is totally geodesic and isometric to Kpqr) in M2(k). We note
that by the condition (Ib) the given minimal geodesies pq andpr are the edges of ±(pqr).
Since the minimal geodesic qr in contained in Uz for some z, there are no conjugate
points of p on qr, and hence the condition (Ib) is satisfied. Furthermore, for any point
x 6 qr, we have

<qpx+ <xpr= <qpx+ <χpr= <qpr= <qpr,

which is the condition (la). Therefore we can conclude that the minimal geodesic qr is
contained in Σί9 and hence Σ\ is totally geodesic. Π

In order to construct the second surface Σ2, we need the notion of parallel translation
in an Alexandrov space. We say that an intrinsic metric space X satisfies the condition
of the local extendibility of minimal geodesies if for each point of X there is a ball of
sufficiently small radius with center at this point such that, if two points lying inside
the ball can be joined by a minimal geodesic, then this can be extended so that these
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points become interior points of the extended minimal geodesic.
Let X be an Alexandrov space with the local extendibility of minimal geodesies.

We use the following modification of the construction of parallel translation due to
E. Cartan (cf. [20]). It is sufficient to consider a small open ball U of X in which one
can carry out all the constructions mentioned below. Consider a minimal geodesic
y [0> l]-+U; by dividing it in half m times we separate it into 2m segments of equal

length by points γ(0)=pθ9 ...,pi9... ,/>2- = y(0- We Put L = lβm Then^ = y(//J. For a
minimal geodesic σ: [0, s]-+Xwith σ(0)=/?0, we choose m large enough that lm<s. We
first join the point h = σ(lm) to the midpoint o = γ(lm/2) of the minimal geodesic p0pι,
and then extend the minimal geodesic ho beyond o to a minimal geodesic hhί so that

o is the midpoint of hhί. We again join hl to o± = y(3/m/2), the midpoint p1p2, and then

extend it to a minimal geodesic hίh2 beyond o1 so that oί is the midpoint of h1h2. By
connecting p2 and h2 we obtain a geodesic σ x starting from p2. We may say that the
direction of σί atp2 is approximately parallel to that of σ. We start from h2 and repeat
this process. Then, in m steps we arrive at γ(l) and obtain a minimal geodesic σm starting
from γ(l). We adjust the length of σm so that it is same as that of σ, and denoted it by
Πm(σ). If there exists a limit of Πm(σ) as ra->oo, then by definition it is called a parallel
translation of σ along the minimal geodesic y.

In general, a direction parallel to a given direction may not be unique, and therefore
this parallel translation may not preserve angles. As an example, we consider a cone
and two rays starting from the vertex with the maximum angle. Then we will have two
directions along a ray which are parallel to the other ray. However, in a space with
curvature bounded both below and above, a parallel translation along an arbitrary

rectifiable curve is an isometric map of the corresponding tangent spaces (cf. [20]). In
the case of a Riemannian manifold, the above construction of parallel translation
coincides with the usual one determined by the Riemannian connection (cf. [2], [3],

[20]).
We now define the subset Σ2 in X. The subset Σ2 in X is, by definition, the union

of the traces of minimal geodesies in G2 described below. Let γ: [α, b]->J^be a minimal
geodesic and let σ be a minimal geodesic with γ(a) = σ(Q). Let G2 be the maximal set of
minimal geodesies σs emanating from γ(s) for each s e [α, b~\ satisfying the following
conditions:

(2a) For reach se[a, b], a minimal geodesic σs is a parallel translation of σ
along y|[α>s].

(2b) For a minimal geodesic α: [0, l~\-*X in G2 with α(0) = y(%), there exists an
open neighborhood U of α(/) in X such that the coordinate map Cor: UnΣ2->[a9b]x R,
Cor(σs(/)) = (s, ί), is a well-defined homeomorphism onto an open neighborhood of

(j0,/)e[0,6]xΛ.
If Curv(X) < k for k > 0, then it is further required that the perimeter of any geodesic

triangle in Σ2 is less than 2π/^fk'. The condition (2b) insures that for each peΣ2 there
exist a unique geodesic p0p e G2 connecting γ and p, and in a small open neighborhood
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the parallel translation is unique. In a Riemannian manifold, Σ2 can be regarded as a
ruled surface produced by a parallel line field along a geodesic. Recall that we assume
the local extendibility of minimal geodesies in order to define the parallel translation
in Σ2. This fact will be used again in the proof of the following lemma.

LEMMA 3.3. Let X be an Alexandrov space with curvature bounded either below or
above by k and let Σ2 be as constructed as above. If Curv(X) = k over Σ2 then Σ2 is

totally geodesic in X.

PROOF. If Curv(X) = k over Σ29 for a fixed point yεΣ2, let y0y be the unique
minimal geodesic which is parallel to σ along γ and hence contained in Σ2. By the
same idea as in the case of Z"1? we first cover y0y by open sets Uz, zεyQy, satisfying
the condition of Definition 2.1, the Alexandrov property and the condition (2b). Then
there exists an open neighborhood Vy such that for any two distinct points q, r e Σ2 n Vy9

the unique minimal geodesies q0q, r0r e G2 are contained in a small neighborhood of

y0y. Then we can take points q0 ey, ql9..., qt,..., qn = q on the minimal geodesic q0q
and r 0ey, r 1 ? . . . , rί9..., rn = r on r0r so that, by joining these points, we obtain small

geodesic triangles Afe^i + i^) and A(qi+ίri+1rί)y f°r i=Q, 1,2,. . . , n—l, each of which
is contained in Uz for some z.

We first consider the small geodesic triangle Δ(#o#ιro) By Proposition 2.2 (i) we
know that there exists a minimal geodesic q^rQ satisfying <rQqίqQ= <rQq^qQ. We claim
that the minimal geodesic q^0 lies on Σ2. We can first extend the minimal geodesic qq0

to qq-i beyond q0 so that Δ(#- itfi^o) ^s a small geodesic triangle. If we take a point
#_! e M2(k) with d(q-l9 q0) = d(q,l9 q0)9 then by Proposition 2.2 (i) there exists a smooth

ruled surface A(#-ι#ι/o) which is totally geodesic in X and isometric to A(#-ι#ιf*o) m

M2(k). Since Julias a convex ball if Curv(X)<k and has no branch points if Curv(X)>k,
without loss of generality, we may assume that the minimal geodesic q0r0 is unique in

X. Therefore the minimal geodesic q0r0 is contained in the ruled surface Afe-i^o)-
Then Cartan's process of parallel translation along <70r0 in A(#-i^o) can be carried
over to the ruled surface A(#-igif0), and produce the same process on it. Therefore
every point on q^r0 is an end point a geodesic parallel to σ along y. Since the condition
(2b) is clearly satisfied for a small geodesic triangle, we can conclude that the minimal

geodesic qvrQ is contained in Σ2.

Similarly, if we choose a point fίeM2(k) with d(r0, r ί ) = d(rQ, f±) and <<7</orι —
<^0f0r1, then from the same parallel translation argument as above we see that
there exists a minimal geodesic q0rί which lies on Σ2. Since parallel translation is

unique in a small ball, the ruled surfaces A(#0#ιro) and A(#(/ιro) overlap and hence
^^1^0^!= <^iVi- Frorn Proposition 2.2 (ii), we have d(qί9ri) = d(qί,f1), and the

region Atoo^ιro)u A(<hrιro) i§ totally geodesic in X and isometric to A(^0^ιro)u

Atoir^o) in M2(k).
Now we can find the extensions p0q of pQq^ and r0r of fo^ in M2(k) so that

d(q0,q) = d(q0,q) and d(r0,r) = d ( r 0 , f ) . We take a point ^2 on £0£ with d(q1,q2) =
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7ι? #2)- By Corollary 2.3, there exists a minimal geodesic rίqί satisfying
and, by Proposition 2.2 (ii), we have d(rί,q2) = d(rl9q2) (i.e.,

Thus from Proposition 2.2 (i) we have <q()q2ri = <clιcl2rι =

— <<7o#2rι> and hence the geodesic triangle Δ(^0^2rι) satisfies the conditions
in Proposition 1.5. Thus there exists a ruled surface A(#o#2rι) which is totally geodesic

in X and isometric to A(#0#2rι) i*1 M2(k). Therefore the region A(#orιro)u A(#o#2rι)
is totally geodesic in X and isometric to A(#orιro)u A(#o#2rι) in M2(k).

By induction on / = 0, 1, 2 , . . . , « — 1, we may now conclude that the region

A(#o#ro)u A(τΌ#r) i§ totally geodesic in ̂  and isometric to A(#o#ro)u A(^0^
r) in M2(k).

Thus from Cartan's process of parallel translation as above we see that every point on

the minimal geodesic qr is an end point of a geodesic parallel to σ along γ. Again, in

a small ball, the condition (2b) is satisfied, and hence we can conclude that qr lies on

Σ2 and therefore Σ2 is totally geodesic in X. Π

We are now ready to prove our main theorem.

THEOREM 3.4. Let X be an Alexandrov space with curvature bounded either below

or above by k and Σt (ί= 1, 2) be constructed as above. Then Cuτv(X) = k over Σt if and

only if Σ{ is totally geodesic in X and locally isometric to M2(k).

PROOF. Suppose Σt (i= 1, 2) is totally geodesic in X and locally isometric to M2(k).

Then for any small geodesic triangle A(pqr) with vertices in Fwe know that there exists

a ruled surface ±(pqr) which is contained in Σt and isometric to the ruled surface ί^(pqr)

in M2(k). Thus it clearly satisfies the required condition of Definition 2.1, and hence

we have Curv(X) = k over Σt.

Suppose Curv(X) = k over Σt (i= 1, 2). Then, by Lemmas 3.2 and 3.3, we can show

that Σi is totally geodesic in X9 and we can easily show that it is also locally isometric

to M\k\ Π

REMARK. Let X be a 3-dimensional Euclidean space. Then X is an Alexandrov

space with curvature bounded both above and below by zero and the curvature of X

takes the extreme value over any subset in X. However we can easily construct a surface

which is not totally geodesic unless it is of the type of Σt. Therefore the construction

of ΣI as we do is necessary.
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