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Abstract. We consider an algebraic D-module on a non-singular affine algebraic
variety from an algorithmic viewpoint. Our main purpose is to show that the method
of Grόbner basis can be applied to concrete computation of invariants such as the
characteristic variety of an algebraic D-module.

Introduction. The theory of D-modules, i.e., modules over the ring of differential
operators, was first developed in the complex analytic category by M. Sato, Kashiwara,
T. Kawai (cf. [Ka]), and for the Weyl algebra (i.e. the ring of differential operators
with polynomial coefficients) by I. N. Bernstein (cf. [Bj]). As a generalization of the
latter, the theory of algebraic Z>-modules has been developed by many authors as is
presented, e.g., in [Bj], [Bo], [H], [TH]. The aim of this paper is to show that the
notion and the algorithm of Grόbner basis by Buchberger ([Bu], [CLO], [BW]) can
be effectively applied to actual computation of algebraic Z>-modules as was the case
with the Weyl algebra.

Let V be a non-singular algebraic variety over the field of complex numbers.
Then the sheaf of rings @v of algebraic differential operators is defined on V as a sheaf
of subrings of that of analytic differential operators $)ψ on V as a complex manifold.
A left coherent ^-module Jί corresponds to a system of algebraic linear differential
equations on V. Our purpose is to present algorithmic methods for treating a coherent

From the theoretical viewpoint, since V is locally isomorphic to an affine space
as complex manifold, nothing new happens in this situation at least locally. However,
from the viewpoint of computation, this passage from the affine space to an algebraic
variety makes much difference because the local isomorphism stated above is not
bi-regular in general and this breaks the effective computability enjoyed in the affine
space by virtue of Grόbner bases for the Weyl algebra developed by Galligo, Takayama
et al. (cf. [Ga], [C], [N], [Tl], [Ol], [O2]). One possibility is to use the so-called
Kashiwara equivalence which states that the category of coherent ^-modules on V
and that of coherent ^Cn-modules with supports contained in V are equivalent (cf.
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[Bo], [H], [TH]). However this equivalence makes the structure of the module more

complicated in general.

In this paper, we shall show that the method of Grόbner basis can be directly

applied to ideals of (or, more generally, modules over) the ring of algebraic differential

operators on V. As applications, we get algorithms for computing a free resolution, the

characteristic variety and the singular locus of a coherent ^F-module.

The contents of this paper are as follows: In Section 1, we review the definition of

the ring Q)V{V) of algebraic differential operators on a non-singular affine algebraic

variety V of dimension d. This ring is generated (locally in the Zariski topology) by

linearly independent derivations S l 9 . . . , 5 d and the regular functions on V (as

multiplication operators). In Section 2, we see that if the derivations θ l 5 . . . , Sd have

polynomial coefficients, then the theory and the algorithm (the Buchberger algorithm)

of Grόbner bases can be applied to this ring. We can choose θ l 5 . . . , 9d so that they

commute with each other. This commutativity enables us to apply the Leibniz rule to

the product of two differential operators, which faciliates the actual computation as is

shown in Section 3. Here one drawback is that these derivations have rational functions

as coefficients in general, which prevents us from applying the Grόbner basis algorithm

directly. We bypass this difficulty by embedding V into a higher dimensional affine

space in Section 4. As an application, we present algorithms for computing the

characteristic variety (in the algebraic sense) and the singular locus of a coherent

^F-module in Section 5.

In Section Al, we state the relation between our method and the Kashiwara

equivalence. The fact that the characteristic variety in the algebraic sense coincides

with that in the analytic sense, which is more directly connected to the analytic theory

of Z>-modules (cf. [Ka]), is proved in Section A2. This fact should be well-known, but

an explicit proof seems lacking in the literature.

The author is grateful to the referee(s) for valuable comments, especially for

suggesting the possible relation to the Kashiwara equivalence. He is also grateful to

Prof. Takayama for pointing out that F.-O. Schreyer's method for computing syzygies

(cf. [E]) also applies to rings of differential operators.

1. The ring of algebraic differential operators on an affine algebraic variety. In

this section, we recall the definition of the ring of algebraic differential operators (cf.

[Bj], [Bo]) and give its concrete expression suited to actual computation.

Let K be an algebraically closed field of characteristic 0 and let xί9 ...,xn be

indeterminates. We denote by K[x]=K[xl9 . . . , x j and K(x) = K(xl9 . . ., xn) the ring

of polynomials and the field of rational functions respectively over K. Let V be an affine

algebraic variety in Kn and I(V) be the defining ideal of V. Then ΘV{V): = K[x]/I(V) is

an integral domain since Fis irreducible by definition. We denote by R(V) the quotient

field of ΘV{V).

We shall use the Zariski topology on V unless otherwise stated. For a (Zariski)
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open subset W of V, we denote by (9V(W) the set of rational functions on V which are

regular on W. This defines a coherent sheaf of rings Θv on V and its stalk at p e V is

denoted by {Θv)r For an element a(x) of K(x) and an open subset W of V where a(x) is

regular (i.e., its denominator never vanishes on W), we denote by a(x) its residue class

inΘv(W)czR(V).
For an open subset W of V, let 6>(FF) be the set of derivations of 0v(W) over

K; i.e., ©(W) is the set of ^-linear mappings δ: ΘV(W)-+ΘV(W) satisfying δ(fg) =

fδ{g) + gδ(f) for any/, geΘv(W). Note that Θ{W) is an ^κ(Py)-module. Then the ring

@V(W) of algebraic differential operators on W is defined as the subring of the ring

Yiomκ(βv(W\ ΘV(W)) of ΛΓ-linear homomorphisms of ΘV(W) to itself which is gener-

ated by Θ(W) and ΘV(W). Here, an element of ΘV{W) operates on ΘV(W) as a

multiplication.

In the sequel, we shall express @V(W) more concretely. Let / l 5 . . . ,/ s be a set of

generators of I(V). We denote by d the dimension of K. Then R{V)®Θv{y)Θ(V) is a

rf-dimensional vector space over R(V). Moreover, the rank of the matrix

, . . . j s ) _ l ^
,••-,/„) [dfjdx, ••• dfjdxΛι

is equal to n — d at any non-singular point of V.

Hence for each non-singular point p of V, we can choose an open neighborhood

W of p, and indices il9..., zπ_d andyΊ, . . . Jn-d such that

on W. For the sake of simplicity of the notation, we assume ix = 1, . . . , in_d = n — d and

j\=n — d+\,...,jn_d = n. Then xl9 . . . , xd constitute a regular system of parameters of

the local ring (Θv)q for any qeW. Hence xu . . . , xd serve as a local coordinate system

of V viewed as a complex manifold if K is the field of complex numbers C

There exist θ l 9 . . . , 9dεΘ(W) which generate Θ(W) over ΘV(W). For example, we

can choose them as follows: In general, put

5== Σ aA*)-z—

with αj.(jc) = θ(x7.)e^κ(l^). Then 9 belongs to Θ(PF) if and only if

(1.1) Jfl(χ)_^L(jc) = 0 on PF (V/=l,...,Λ-rf).
7=1 3 ^ -

Hence S e 6>(PF) of the above form is uniquely determined by a^x),..., ad(x). Put
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-eieK(xΓ
d(xn_d+1,...,xn)J d(xί9...9xd)

for /= 1,..., d, where eί9..., ed are the d-dimensional unit column vectors. Then we
have

in view of (1.1), and 9ί9 . . . , Sd generate Θ(W) over ΘV(W). Moreover, 9ί9..., Sd thus
constructed commute with each other, i.e.,

I9i99j]'. = ̂ - 9 ^ = 0 (ij=l,...,d).

This follows from the following lemma:

LEMMA 1.1. In the notation above, define an open subset W of Kn by

det 3 ( / l > " -Jn~ά)

δ(xn.d+ι,...,xn)

and elements §u ... ,§dof Θ{W) by

(1-2) 5 : = ^ + Σ 4°W^

where af(x) is defined above and regarded as an element of Θκn{ W) c K(x). Then as
elements of Θ(W), we have

PROOF. Put

^ t aj(x)-^- = 0 ( i=l , . . . , n-d)\ .
j=i j=i

For 9eΘ(W), we have 9e*Γ if and only if 3(/ ) = 0 for any /= 1, . . . , «-rf. Then in
view of the definitions above, we have Sj e^" for i= 1,..., d. Hence for 1 <i,j<d, we
get

Lh ^ ] ( Λ ) = 3 ί ( ^ ( Λ ) ) - 3 , ( S ί ( Λ ) ) = o ( f c = l , . . . , n-d).

This implies [5 i? Ŝ  ] G ̂  On the other hand, we have

[ M ; ] = Σ bijk{x)-^-
k = d+l OXk

with some bijk(x)e ΘRn{W). It follows that \βh Ŝ ] =0 since an element 5 of y is uniquely
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determined by 9(.*i), . . . , 5(xd). D

In the sequel, we fix 9l9 . . . , 9deΘ(W) which generate Θ(W) over ΘV(W). (We do

not assume that 9ί9..., 9d commute with each other except in Proposition 1.2 below.)

Then an arbitrary element P of <3V(W) can be written uniquely in the form

(1.3) P= Σ "AW,
txeNd

where aa(x) are elements of ΘV(W) which are zero except for a finite number of α's. Here

we use the notation 9" : = 9? 9"/ for α = ( α l 9 . . . , 0Ld)εNd with TV: = {0, 1, 2, 3,...}.

Let θί9..., θd be indeterminates. To P of the form (1.3), we associate its total

symbol P(jc, θ) defined by

P(x,θ):= Σ aa(x)θaeΘv(W)m
<xeNd

with θ = (θί9 . . . , θd). The order of P is defined by max{| α | = α x + + α d | Λβ(x)#0},

and if ra = ord(P), the principal symbol of P (with respect to θ l 5 . . . , 9d) is defined by

Σ a
|α|=m

(If P = 0, we put o r d ( P ) = - o o and σ(P) = 0.) For P,Qe@v(W)\{0}9 we have

ord(Pβ) = ord(P) + ord(β) and σ(PQ) = σ(P)σ(Q).

We write α! = α x ! . . . αn! for α = ( α 1 ? . . . , απ) e Nn.

PROPOSITION 1.2 (The Leibniz rule). Assume that 9ί9...,9de Θ(W) commute with

each other. Let ^ = Σ α e Λ Γ d « α ( ^ α and Q = ΣaeN*b*(xW b e t w o elements of 9V(W) and

put R = PQ. Then the total symbol of R is given by

(1.4) R(x,θ)= Σ -±-9*(Q(x,θ))^
! dθ

where 9a(Q(x, θ)) means the action of the differential operator 9a on Q(x9 θ) viewed as a

function of x, hence it gives an element of Θv(W)\β~\.

PROOF. (1) First we prove (1.4) for P = 9] and Q = g(x)eΘv(W) with veN by

induction on v. Put Rv : = PQ and suppose that (1.4) holds for v. Then we have

=Σ -!rv(v-1) ( v - 7 + l)9{(g(x))θΓJ

i = o j !

Since Rv+1 = 9ιRx, we get

, Θ)=Σ -!rv(v-1) (v-y+
j\

Σ !r
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This proves (1.4) for any v e N since (1.4) holds for v = 0.
(2) By using step (1) repeatedly, we have (1.4) for P = SV with veNd and Q =

g{x)eΘv{W).
(3) General case: Let P and Q be as in the statement of the proposition. Then

we have R = YΛΛ%βeNd(iJi9!lbβ)^'• B ^ u s i n β (2)> w e k n o w t h a t t h e t o t a l s v m b o l o f &*bβ i s

given by

1 d l v l

Σ — WAX))—p.
γes* γ\ dθγ

Since SaSβ = Sβ9a holds by virtue of the commutativity assumption, we get

D

The sheaf Q)v of rings of algebraic differential operators is defined on V so that
the set of its sections Γ(W, Q)y) over an open set W coincides with @V(W). Note that
<3)v is a coherent sheaf of rings (cf. [Bj]). Let Jί be a left coherent ^κ-module (i.e. a
sheaf of ^-modules) defined on an open subset W of V. Then by definition, for any
point p of W9 there exists a neighborhood W cz W of /? and an exact sequence

of left ^F-modules on W. Put

(0
«, : = φ(0,..., 1,..., 0)e J W , ^ ) (i= 1,..., r 0 ),

(0

γ + +S)vPri) on ϊ^r. Moreover

7 = 1

which is a concrete expression for J ^ a s a system of linear differential equations.

Then
H l 9 . . .

we have an
satisfy

isomorphism

ro

J( ~ (βy)rθj\
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2. Grόbner bases for modules over a subring of the Weyl algebra. Let V be an

affine algebraic variety in Kn of dimension d. Let 5 l 5 . . . , 5d be elements of Θ(V) which

generate R(V)®ΘviY)Θ(V) over R(V). We do not assume that θ l 5 . . . , 9d commute with

each other. We denote by Dv the subring of @V{V) generated by ΘV(V) and 5 l 5 . . . , 9d.

Then Z)κ is also a subring of @V(W) for any open subset W of F. Our purpose is to

perform explicit calculation for ideals of (or modules over) Dv. For this purpose, we

work in a subring Λv of the Weyl algebra An.

Write &i explicitly as

0*! CXn

with Λj°(jc)εfiV(K). Each 4°(x) is the restriction to W of a polynomial

Put

Let ^4F be the subring of the Weyl algebra

δ δ

generated by A[x] and 5 1 ? . . . , 5d; i.e.,

Note that ^4K is not defined uniquely by 5 1 ? . . . , 5 d being dependent on their

extensions 5 1 ? . . . , 5d. The total symbol P(x, θ) and the principal symbol σ(P) are defined

in the same way as in Section 1 as elements of ^κ(^)C^] with θ = (θ1, . . . , θd). Now put

Then I(V)AV is a two-sided ideal of ΛF and Dv is isomorphic to the residue ring

AV/I(V)AV. Let us denote by w the canonical surjective ring homomorphism of Av to

Dv. We also denote by w the canonical ,4F-homomorphism of (Av)
r to (£V)r. Then

w~ ι(N) is a left y4F-submodule of (Av)
r for a left Z)κ-submodule N of (Z>κ)

r. This defines

a one-to-one correspondence between left Z)κ-submodules of (Dv)
r and left Av-

submodules of (Av)
r containing (I(V)Av)

r.

Hence, in the sequel, we treat a left ^4K-submodule N of (Av)
r. It is easy to see that

the notion of Grόbner basis can be applied to N (cf. [T]). We fix a total order -< of

the set Nd+n x {1, . . . , r} which satisfies the following conditions:

(O-l) (α, i)<(βj) implies (α + y, i)<(β + γj) for any α, β,yeNd+n and ίe {1, . . . , r};

(O-2) (0, i) = (0, . . . , 0, i )^(α, 0 for any aeNd+n and ίε {1, . . . , r};

(O-3) For any α, α ' e W , j8, JS'GΛ^" and ίε{ l , . . . , r},
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\a\<\a'\=>(oc,β,i)<(oc',β',i).

The first two conditions imply that -< is a well-order. An element P of (Av)
r is written

uniquely in the form

where aja(x) = ΣβeNnajaβx
β eK^x], and

U)

Assume P^O and define the set of exponents, the leading exponent, the leading co-

efficient, the leading term, the leading point of P by

exps(P): = {(α, β,j)eNd+n | α w #0} cz W*+" x {1, . . . , r) ,

lexp(P): =max^ exps(P)eNd+n x {1,..., r) ,

lcoef(P): = aM e K with (α, β, j) = lexp(P),

lterm(P) :=ajaβx
β5"eje(Avγ with (α, jS,7) = lexp(P),

lp(P):=7G{l,...,r} with (α, β,j) = \exp(P)

respectively, where max^ denotes taking the maximum in the order < . In particular,

if P E ^ κ \ { 0 } , we suppose lexρ(P)eNd+n omitting the trivial index 1. For (α, i)eNd+nx

{l,...,r} and βeNd+n, we write (α,ι) + j8 = (u. + β,ϊ).

LEMMA 2.1. For Pe(^ K ) r \{0} and QeAv\{0}, we have lexp(QP) = lexp(P) +

lexp(β).

PROOF. Write P = ( P 1 ? . . . , Pr). In view of the condition (O-3), we have lexp(P) =

i),..., σ(Pr))) in general. Hence condition (O-l) and Proposition 1.4 imply

lexp(βP) = lexpίMβPi), , σ(QPr)))

= lexp((σ(β)σ(P1),...,σ(0σ(Pr)))

= lexp(P) + lexp(β).

D

For a subset S of (Av)
r, the set of leading exponents of S is defined by

£(5): = {lexp(P)|P65\{0}}.

For a subset F of Nd+n x {1, . . . , ή, we put

n: = {(oi + β,i)\(θL,i)eF,βeNd+n},
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which is called the monoίdeal generated by F.

DEFINITION 2.2. Let TV be a left ^4F-submodule of (Av)
r and G a finite subset

of N. Then G is called a Grόbner basis of N (with respect to the order -<) if

If TV is a left v4K-submodule of (Av)\ then E(N) + Nd+n = E(N) holds; i.e. E(N) is a

monoideal in view of Lemma 2.1. Every monoideal is generated by a finite set (Dickson's

lemma (cf. [CLO])).

For (α, /), (β,j)eNd+n x {1, . . . , r}, the relation (α, i)<(βj) means both ι = / and

β — oceNd + n. For a finite subset G of (Av)
r and an element P of {Av)\ the reduction (or

division) of P by (7 is defined by the following algorithm:

ALGORITHM 2.3 (reduction).

Input: Pe(Av)
r and a finite set Gcz (Av)

r;

While (P=^0 and lexp(P)eE(G) + JVd+n) {

Choose Q E G such that lexp(P) > lexp(Q);

P : = P-(lcoef(P)/lcoef(0)x^3αβ with (α, j8) satisfying

Return P;

This algorithm terminates since lexp(P) gets smaller with respect to the well-order

-< in the execution of the algorithm. We note that the output of Algorithm 2.3 is not

necessarily unique; it may depend on the choice of Q in the algorithm.

The following propositions follow from the definition of Grόbner basis, Dickson's

lemma, and the reduction algorithm:

PROPOSITION 2.4. If G is a Grόbner basis of a left Av-submodule N of(Av)
r, then

G generates N over Av.

PROPOSITION 2.5. Any left Aysubmodule of (Av)
r has a Grδbner basis, and hence

is finitely generated. In particular, Av is a Noetherian ring.

PROPOSITION 2.6. Let N, M be left Av-submodules of(Av)
r such that Na M. Then

N=M if and only ifE(N) = E(M).

In general, for vectors α = (α l 5 . . . , αm) and β = (βi,..., βm) in 7Vm, we put

α v β : = (max{α l9 0 J , . . . , max{αm, βm})

DEFINITION 2.7. For P,Qe {Av)\ put lexp(P) = (α, β, i) e Nd x Nn x {1, . . . , r} and

lexp(β) = (α/, β',j). Then the S-operator of P and Q is defined by

sp(P, Q): = lcoef(β)x^ vβ'~ β5a v α ' " α P -
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if i =j, and sp(P, β ) : = 0 if i Φj.

THEOREM 2.8 (Takayama [Tl]). Let G={Pl9..., Ps} be a finite subset of(Av)
r

which generates a left Av-submodule N of (Av)
r. Then the following conditions are

equivalent:
(1) G is a Grδbner basis of N;
(2) For every PeN, its arbitrary reduction by G is zero;
(3) For any pair P,QeG such that lp(P) = lp(β), some reduction ofsp(P, β) by G

becomes zero;
(4) For any ije {1, ...,s} such that i<j and lp(Pt) = lp(P/), there exist Qijl9...,

QijseAv so that sp(Ph Pj) = Σl=1 Qij^u and that Qijk = 0 or lexp(QijkPk)<lexp(Λ) v
l ( ) for each k.

The condition (3) of this theorem provides the following Buchberger algorithm of
computing a Grόbner basis from a given set of generators:

ALGORITHM 2.9 (Grόbner basis).
Input: a finite set Ga (Av)

r;
Repeat

G': = G;
For each pair (P, Q)eGx G such that PφQ and lp(P) = lp(β) {

Let R be a reduction of sp(P, β) by G;

Until G=Gf;
Return G;

This algorithm terminates since the monoideal E(G) + Nd+n is strictly increasing
during the execution of the algorithm, which would contradict the Noetherian property
of monoideals if the algorithm did not terminate. The output of this algorithm is a
Grόbner basis of the left v4K-submodule generated by G in view of Theorem 2.8.

A Grόbner basis immediately solves the membership problem:

PROPOSITION 2.10. Let G be a Grδbner basis of a left Av-submodule N of(Av)\
Then for an element P of(Av)

r, the following three conditions are equivalent:
(1) PeN;
(2) A reduction of P by G is zero;
(3) Any reduction of P by G is zero.

Next, let us study the so-called syzygy module.

DEFINITION 2.11. For Pl9..., Pse(Av)
r, their (first) syzygy module is defined by
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This is a left v4K-submodule of (Av)
s.

The following theorem can be proved in the same way as its polynomial counterpart
(cf. [BW], [CLO]). See also [O2] for results of this type for rings of differential
operators.

THEOREM 2.12. Let G= {Pl9 ...,PS} be a Grδbner basis of a left Λv-submodule N
of (Avy. Then for any i,je {1,..., s) with iφj and lp(Pf) = lp(P ), there exist QijU . . . ,

QijseAv such that sp(Pί9 Pj) = Σk = i &*P* and that Q^ = 0 or ^P(QijkPk)<^P(Pi) v
\exp(Pj)for each k. (Such Qijk can be obtained by the reduction algorithm.) Put lexp(Pf) =
(α ( i ), β(i\ v£) and

(0 U)
: = (O9...,Slh....9-SH9...9O) - ( β y i , . . . , Qijs) G (Avγ

if y. = Vj. Then the syzygy module S(Pl9..., Ps) is generated by V: = { V^ | 1 < i<j<s,

Note that the definitions and results of this section also apply, with trivial
modification, to right ΛF-submodules of (Av)

r.

3. Symbol calculus of Grδbner bases. We use the same notation as in the pre-
ceding sections. In general, it would be difficult to choose commuting derivations
3 1 ? . . . , 5de Θ(Kn) so that their restriction 5 l 9 . . . , θd to W generate Θ(W). However, as
we shall see later, we can take them so that 9U ..., Sd commute with each other and
generate Θ(W). Our purpose is to show that we can use the Leibniz rule for the
computation of Grόbner basis in Av.

Throughout this section, we assume that θ l 5 . . . , 9deΘ(V) commute with each
other and have polynomial coefficients.

DEFINITION 3.1. We define another 'product' R : = P* Q of P, Q e Av by

\ ^ x , θ).( )Σ \ ^

We call P*Q the ̂ -product of P and Q.

Note that the *-product is non-associative in general.

LEMMA 3.2. For any P, Q, Re Av, we have

P*Q-PQeI(V)Av,

= σ(P)σ(β).
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PROOF. By the assumptions on 5 1 ? . . . , 5d, Proposition 1.2 holds for elements of
<2)y(W\ which contains DV = AV/I(V)AV as a subset. Hence the residue classes of P * β
and of Pβ coincide in Dv. This means P*Q-PQeI(V)Av. The other identities follow
immediately from the definition. •

LEMMA 3.3. For Pe(Av)
r\{0} and QeAv\{0}, we have

lexp(β * P) = lexp(P) + lexp(β) = lexp(βP).

Our purpose is to show that we can use the *-product in Algorithms 2.3 and 2.9
as long as G contains a Grόbner basis of I(V)r.

In the sequel, let Go be a Grόbner basis of I(V)r as a K[x]-module with respect
to the same order -<. (Hence Go is a subset of £[x] r.) Then in view of Theorem 2.8,
Go is also a Grόbner basis of the left ,4K-module (I(V)Av)

r, and at the same time, Go

is a Grόbner basis of (I(V)Av)
r as a right ,4K-module. This fact follows from Theorem

2.8 since we can take Qijk as an element of K[x] in the condition (4) of Theorem 2.8.

ALGORITHM 3.4 (*-reduction).
Input: Pe{AvY and a finite set Ga(Av)

r containing <70;
While (P^O and \exp(P)eE(G) + Nd+n) {

Choose QeG such that lexp(P) > lexp(β);
Take (α, β)eNd+n such that lexp(P) = lexp(β) + (α, β);
If (Qφ Go) then

P\=P- (lcoef(P)/lcoef(β))(x^5α) * Q\

lf(QeG0) then
P : = P - ( ^

}
Return P;

We call the output of this algorithm a ^-reduction of P by G, which is not necessarily
determined uniquely.

PROPOSITION 3.5. Algorithm 3.4 terminates in a finite number of steps. Let R be
an output of Algorithm 3.4 with inputs P and G={PU . . . , P j . Then there exist

£?i> •> Qse^v s o tnat

P = QίPί+ +QsPs + R

and that for each i, Qt = 0 or lexp(P) > lexp^P;). In particular, P-R is contained in the
left Ay-module generated by G.

PROOF. Let us denote P and Q (of the right hand side) at the k-th execution of
the While loop in Algorithm 3.4 by R{k) and Pik respectively. Then there exists BkeAv

such that

= R(k)-Bk*Pik,
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if PikφGo; and

) = \term(PikBk)

if PikeG0. Hence we have, in both cases, lexp(Λ(k + 1))-<lexp(jR(k)). It follows that the

algorithm stops in finitely many steps because the order -< is a well-order.

Note that R(k+1)-Rik)e(I{V)Av)
r holds in the latter case. Hence combining the

rewriting expression for every k, we see that there exist β ' 1 ? . . . , Q's e Av and R' e (I(V)Av)
r

such that

(3.1) P = Q>1*P1+... + ρ ; * p s + JR' + κ

and that for each i, Q[ = 0 or lexp(P) > lexp(β' P), and lexp(K') < lexp(F). We may assume

G0 = {Pt+ί9 ...9PS} with some t<s. Since Go is a Grόbner basis of (I(V)Av)
r as a left

ΛF-module, there exist Q't+U ...,Q^eAv such that

(3.2) κ ' = GίViΛ + i + +β; / J > .

and that Q'{ = 0 or lexpίβ'/P^lexpίR')- Combining (3.1), (3.2) and Lemma 3.2, we are

done. •

DEFINITION 3.6. For P, Q e {Av)\ put lexp(P) = (α, jS, ΐ) e Nd x Λ̂ n x {1, . . . , r) and

lexp(<2) = (α\ β'J). Then the ^-operator of P and β is defined by

if i=j, and sp*(P, β) : = 0 if iφj.

The following lemma is an immediate consequence of the above definition and

Lemmas 3.2 and 3.3:

LEMMA 3.7. Let P,Qe(Av)
r. We have sp*(P, β)-sp(P, Q)e(I(V)Av)

r. Further-

more, z/sp*(P, β)/0, we have lexp(sp*(P, β))-< lexp(P) v lexp(β).

ALGORITHM 3.8 (Grόbner basis via symbol calculus).

Input: a finite set G<= (Av)
r containing a Grόbner basis Go of I(V)r;

Repeat

G : = G;

For all PeG and QeG\G0 such that P ^ β and lp(P) = lp(β) {

Let R be a *-reduction of sp*(P, β) by G;

) thenG: =

Until G=G';

Return G;

THEOREM 3.9. Algorithm 3.8 terminates in a finite number of steps, and its output

G is a Grδbner basis of the Av-submodule of(Av)
r generated by G.
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PROOF. The termination of the algorithm is an immediate consequence of

Dicskon's lemma. Let G={Pί9..., Ps} be the output of Algorithm 3.8. Then by

Proposition 3.5 and Lemma 3.7, for \<i<j<s such that lp(Pf) = lp(Pj), there exist

Qijl9 ...,QijteAv so that

(3.3)

and that Qijk = 0 or \exp(QijkPk) •< lexp(Pt ) v lexp(Pj). By using Lemma 3.7 again, we get

(3.4) R : = sp(Pi5 Pj)-sp*(Pi9 Pj)e(I(V)Av)
r

and lexp(.R) •< lexp(Pt) v lexp(Pj). Since Go is a Grόbner basis of (I(V)AV)\ there exist

β ; + 1 , . . . , β ; e i 4 F such that

(3.5) Λ=eί + iΛ + i+ + e ; ^

and lexpίβJP^Klexp^), where we assume G0 = {Pf + 1 , . . . , Ps} with /<s. Combining

(3.3), (3.4), (3.5), we see that the condition (4) of Theorem 2.8 is satisfied. •

THEOREM 3.10. Let G={Pί9..., P j be a finite subset of (Av)
r. We assume that

G contains a Grδbner basis G0 = {Pt+1, . . . , Ps} of I(V)r with \<t<s. Suppose, for

any(i9j)eI: = {(i9j)\l^i<j^s9i^t9vi = Vj}, there exist Qiju . . . , QijteAv such that

sp*(Pi9Pj)- Σ Qijk*Pke(I(V)Avγ
k=l

and that Qijk = 0 or lexp(β/jfc * Pk) -< lexp(P ) v lexpίP^ ) for each k. (Such Qijk can be

obtained through the ̂ -reduction algorithm.) Put lexpίP,) = (α(0, β{i), v( ) and

S t J : = l c o e f ϊ Λ ) * * 0 v βU) ~ βm 5 α ( 0 v α0)" α0),

(0 U)
(0, . . . , Sii9.... 9-SH9..., 0)-(Qin, • •., Qijt) if j

(0
..,QίJt) if j

t

for (i,j)el. Then the left Ay-module

N : = {(Qu .. .9Qt)e(AvY\Q1P1 + +QtPte(I(V)Av)
r}

is generated by V : = { Ky | (ι,;) G /}.

PROOF. In view of Proposition 3.5, there exist QijkeAv also for (i,j)φl or lot

so that sp(Pi9 Pj) = Yi

s

kssίQijkPk and l e x p ^ P ^ l e x p t P ; ) vlexp(P, ). Moreover, we

may assume Qijk = 0 if ij>t and k<t. Suppose (Qu ..., Qt)eN. Then there exist

Qt+u >-, QseAv s o t h a t Σ I = i δ Λ = 0. Let Ko be as in Theorem 2.12. Then by
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Theorem 2.12, there exist CtjeAv such that

From this we get ( β 1 ? . . . , β ί) = Σ ( ί J ) e / CijVv- •

THEOREM 3.11. In the same notation as in Theorems 3.10 and 2.12, let <x be a

total order on Nd+n x {1, . . . , s} defined by

(α, i) < x (β, j) « lexp(^) + α -< lexp(^) + β

or lexp(i)

ί ) + α = lexp(PJ ) + jS and i>j

for a,βeNd+n and i,je{l,..., s}, and let <\ be the restriction of <1 to Nd+nx
{1,..., t}. Then -<\ satisfies the conditions (O-l)-(O-3), and V is a Grδbner basis of N
with respect to the order -<'t.

PROOF. Since the theorem of Schreyer (cf. [E. Theorem 15.10]) applies to the
situation of Theorem 2.12, V is a Grόbner basis of S(P l 5 . . . , Ps) with respect to the
order -<x. It is easy to see that

^;(Vlj) = \exp< x( Vtj) = (α(ί) v α ω - α(i), β(i) v βU) - β(i\ i)

for (ij)el. Now assume ( β 1 ? ...,Qt)eN. Then in the proof of Theorem 3.10, we can

choose β ί + 1 , . . . , β s so that

since Go is a Grόbner basis of (I(V)Av)
r with respect to the order < . This implies

lexp<(βi, , β ί) = lexp^ 1(β 1,..., β ί 9 β ί + 1 , . . . , β s)

e(E<i(V) + Nd+n) n (Λ^d+M x {1, . . . , *}) = E<X(V) + Nd+n,

where E<t denotes the set of the leading exponents with respect to the order
D

4. Application of Grδbner basis to modules over the ring of algebraic differential
operators. Let V be an affine algebraic variety in Kn. We use the same notation as in
Section 1. In particular, we assume that S l 9 . . . , 9d generate Θ(W) with an open subset
W of V. We can assume that there exists a polynomial fo(x) e A [̂x] so that W=
{xe V\fo(x)¥=0}. In fact, we can take, e.g.,

/0(x): = the square free part of det
d(xn-d+1,...,xj

in the notation of Section 1. Suppose that Jί is a coherent ^-module on W. Then by
replacing W with its open subset if necessary, we may assume that
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with P\eQ)y(yV)r.

In order to apply the arguments in Section 2, we need to take the derivations
5 l 5 . . . , 3d so that their coefficients are polynomials. In what follows, we propose two
different methods for this purpose. The first method (A) does not increase the number
of variables, but the restrictions of derivations do not commute with each other in
general. In the second method (B), we introduce an additional variable but we can take
commuting derivations when restricted to an affine variety so that the arguments in
Section 3, in particular, the Leibniz rule can be applied. We suppose that the method
(B) has an advantage also from the viewpoint of complexity (see [T2, Proposition 1.2]
for an estimate of the complexity of the Leibniz rule).

A. Direct method. Multiplying by the least common multiple of the denomi-
nators of the coefficients, we can take 5 l 9 . . . , 9deΘ(Kn) whose restrictions 9U . . . , Sd

to W generate Θ(W). Then the method of Section 2 can be directly applied with
Av \ = K\_x]<βu . . . , 3d>. We have an inclusion

DV = AV/I(V)AV c

and the pojection w: Av-+Dv.
There exist v. eTVand P^iAγY such that/O

V\P; = w{P^)e(Dv)
r. Then we have an

exact sequence

0 <— M <— (βvγ J- (βvy

on Wwith

Ψ(Qi, ,Qs) = QMPi) + + Qs

since/0 is invertible in ®V(W). Thus we can apply the argument of Section 2 for actual
computation of Jί.

B. Embedding method. We start with the derivations 51 ? . . . , 9d given in Lemma
1.1, which commute with each other. Let/ 0 be as above. Then the coefficients of
3l9...,5d belong to the affine ring X[x,/0"

1] = ̂ n ( ^ ) with W: = {xeKn\fo{x)Φ0}.
Define an affine algebraic variety W in Kn+ί by

ίn + 11 (χl9..., xn)e VJ0(x)xn + 1-1 =0}

and define a map φ : W-+W by

φ ( x u . . . 9 x n ) = [ x ί 9 . . . 9 x n 9

Then φ defines a bi-regular mapping of W to W. In the notation of Lemma 1.1,
there exists a polynomial bf(x, x,+ 1)eK[x, xπ + 1] such that af(x) = bf{x,fo{x)~1). For
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* = 1, ...,</, put

V* I - ~ lγl_|_ \ Mθ(y v

Λ B + i I — VΛJ ~Γ ^ ~ Uj \A9 Λ,n +
j=d+l OXj

LEMMA 4.1. Let Ά\eΘ{Wr) be the restriction O / S ; G 6 ) ( K Π + 1 ) defined above. Then

..., d'd generate Θ(W) over ΘW (W) and commute with each other.

PROOF. We use the same notation as in Lemma 1.1. First note that

-7^0
d r t / o d e t

d(Xn-d+U -> Xm -^π+l) v(Xn-d+l'> » Xn)

on py by the assumption. It is easy to see that 5 (/k) and 5l(xn + ίf0(x)—\) vanish on

W for i= 1,..., d and k=l,...,n — d. Then by the same reasoning as in the proof of

Lemma 1.1, we see that $[, . . . , Qj generate Θ{W) and they commute with each other.

D

The isomorphism φ induces a ring isomorphism

with Aw. = Gw.(W')<<5>'l9...,3'dy. More concretely, for an element P = Σaaa(x)9a of

3)V{W) with φ ) e K [ j c ] , we have

with Z?a(x, X Π + 1 ) G K [ X , ^Π + I ] which satisfies ba(x, l/fo(x)) = aa(x), where SieΘ(W) is the

restriction of SieΘ(Kn). We denote by m': Aw.-+Dw, the canonical projection.

Now let Ji be a coherent ^ κ -module on ^Γ. Then, by replacing W by its affine

open subset if necessary, we may assume that there exist P ' 1 ? . . . , Fse<2)v(W)r so that

holds on W as a sheaf of left ^-modules .

Choose i )

i e 0 4 i r ) r such that w'(Pd=zφ*(P'd ^ o r i = l , . . . ,s . We use the same nota-

tion as in Theorem 3.10 with n replaced by n+ 1 and V by W. Then we may assume

Pί9..., Ps satisfy the same condition as in Theorem 3.10. Define ZV^-homomorphisms

Ψo, Ψi b y

ψo(Ul9..., Ut) = ί Uflf{Pd for (Ul9..., Ut)

W./)= Σ ^ X ( ^ ) for {U^^
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with r2 : = #/. Then applying Theorem 3.10, we have an exact sequence

0^_M— {Dwr ^- (Dw)
n ^

o f left Z ) ^ ' - m o d u l e s , w h e r e ro: = r, r1: = t a n d

+ +Dw.υf(Pt)).

In view of Theorem 3.11, V is a Grόbner basis of Nί :=υjf~1(kQΐφ0) c (Aw)
ri with

respect to the order -<!. Let Gx be a Grόbner basis of I(W')ri with respect to -<Ί. Then
V u GΊ is also a Grόbner basis of N1 with respect to -<i. Hence we can apply Theorems
3.10 and 3.11 again to V u G1 instead of G. Thus we get a free resolution

of M succesively only by *-reductions and the Grόbner basis computation in the
polynomial ring. Since the stalk (βw^)v is flat over <2)W{W') = DW,, this immediately
gives a free resolution of φ^Jί on W. As an application, we obtain an algorithm for
computing

for pe Wcz V by applying the πg/z/ module version of Theorem 3.10 to the complex

(Φ )* (Φ )* (Φ )*

5. Computation of the characteristic variety and the singular locus. We shall
describe a method of computing the characteristic variety of a given coherent &v-
module. We use the method B of the preceding section and retain the same notation.
First let us recall the algebraic definition of the characteristic variety of a coherent Q)v-
module Jί on an affine algebraic variety V. We assume that V is non-singular. For
each integer k, let @v(k) be the subsheaf of <3V consisting of the sections of <3V of order
at most k. Let Ji be a left coherent ^-module on V. Then the graded ring %τ(βγ): =
®k>0@v{k)l<2)γ(k— 1) is a sheaf of commutative rings on V, which is locally isomorphic

tO Oy[β].
Suppose that with each integer k is associated a subsheaf Jί(k) of Jί. Then the

family {Jί(k)}keZ is called a good filtration of Jί if the following conditions are satisfied:
(1) Every Jί{k) is a locally finitely generated tf
(2) Jί(k) cz Jί{k + 1) for any fc;
(3) There exists koeZ such that Jt(k0) = 0;

(4) Ufcez ^( f c)/>=Λ h o l d s f o r a n y p ° i n t z 7 e v

(5) 2y(l)Jί(k) a M(k + /) for any fc, / 6 Z;
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(6) There exists kγeZ such that Jί(k) = @v(k - ko)Jί{ko) for any k > kx.

Then the graded module gτ(Jί) : = ®keZDv(k)/@v(k — 1) associated with this filtration

has a natural structure of gr(^κ)-module. Let us denote by Γ* V the cotangent bundle

of V and let π : 7"*K—• V be the projection. Then the {algebraic) characteristic variety

C h a r ( ^ ) of Jί is, by definition, the support of the sheaf

MgrMO): = &τ*v®π-1gr(3V)π~*gr(ΛT).

This definition is independent of the choice of a good filtration of Jί.

Now let Jί be a left coherent ^F-module on F. We may assume that Jί is given

explicitly by

on an affine open subset W o f K with Pί9..., PseQ)v(W)r. Let w1? . . . , wr be the residue

classes of (1, 0, . . . , 0 ) , . . . , ( 0 , . . . , 0, 1) e (βv)
r in M and put

Jί{k): = Syik)^ + + 9v(k)ur (keZ).

Then {Jί{k)} constitutes a good filtration of Jί on W. Let Jί be the left ^κ-submodule

of (βγ)r generated by Pu . . . , Ps. Let W\ φ be as in the preceding section and choose

Qie(Aw.)
r so that φ*(Pi) = πf(Qi). Note that we have an isomorphism T*W~ WxK

as algebraic varieties given by

T*WB(X, θ1dx1 + +θddxd)^ (x, ^ . . . ^ ^ e ί f x ^ .

d

Here we impose the following conditions on the order •< in addition to (O-l)-(O-3) in

Section 2 (where we should now replace n by n+ 1):

(O-4) | α | < | α ' | implies (α, β, i)<(a\ β'J) for any oc,oc'eNd, β,β'eNn + \ ίje

(O-5) If I α I = I α' I and i<j, then (α, β, i) <(*', β'J).

For an element P = (PU ..., Pr) of (Aw)
r with lp(P) = v, we put σ(P) v: = σ(Pv).

THEOREM 5.1. /« /Â  above notation, let G be a Grόbner basis of the left

AW"Submodule

N: = (I(W')Aw,γ + Aw,Qι+ • • • +AW.QS

of (Aw,y with respect to the order <̂ satisfying (O-l)-(O-5). Then the characteristic

variety of Jί is given by

C h a r ( ^ ) = U {(Jc, θ)e Wx Kd \ σ(P)v(φ(x), θ) = 0 for any PeG such that lp(P) = v} .
v = l

PROOF. We denote by ΰl9..., ΰr the residue classes in g r ( ^ ) of ul9..., ur. Let p

be an arbitrary point of W and define a gr(^κ)p-submodule 5£y of g r ( ^ ) p by

J S ? V : =
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for v = 0, 1,..., r. Then it is easy to see that

v = l

since μ is an exact functor. Put Jv \ = {fe%τ(βy)p\fΰve^^^\. Then we have an iso-
morphism £'Jg?

v_1~gτ(@v)p/Jί

v. Hence, in order to prove the assertion of the theorem,
it suffices to show that Jv is generated by

Gv: = {σ(φ~\m'(P)))v \PeG, lp(P) = v} .

Take P = (Pu...,Pr)eG such that lp(P) = v and put m : = ord(P) = max{ord(Pf) | i =
1,..., r}. Then we have

since ova{P^)<m for i>v in view of the conditions (O-4) and (O-5). This implies, in
particular, that σ(φ-\vf(P)))veSy.

Conversely, supposefeJv\{U). We may assume fe@v(m)p/@v(m—l)p for some
m>0. Then there exist f ί 9 . . . ,fv_1e@v(m)p/@v(m—l)p such that

/ 1 M 1 + + / V _ 1 M V _ 1 + / W V = 0

in gr(^) p . Hence there exists some P = (Pί9..., P Γ ) E ^ of order m such that σm(Pt ) =
fι for / = l , . . . , v - l , σm(Pv)=/, and σm(Pί) = 0 for i>v. Multiplying P by a suitable
polynomial aeK[x] such that a(p)φθ from the left, we may assume that there exists
some β = (6i, ...,Qr)e7V such that φ^(P) = m'(Q) and that ord(Qi) = ord(Pt) for i =
1,..., r. Hence lp(6) = v. Put G={GU . . . , Gt). Then there exist Sl9..., Sts2w{W)
such that

Q = S1G1+--+StGt

and that lexpίSiGf) < lexp(Q) for i= 1,...,/. This implies, in view of (O-4) and (O-5),
thatf=σ(φ~1(wf(Qv))) belongs to the ideal of gr(S>v)p generated by Gv. Π

For a coherent ^-module M defined on an open subset W of V, its singular
support Sing(e/#) is defined by

Sing(^) : = π ( C h a r ( ^ ) \ Γ ^ ^ ) ,

where T%W denotes the zero section of the cotangent bundle T*W. Since the charac-
teristic variety is homogeneous with respect to the fiber coordinates 0, the singular
locus is an algebraic set in W.

THEOREM 5.2. Under the same assumptions as in Theorem 5.1, let Hv t be a Grδbner
basis of the ideal of K{x, xn + l9 0] generated by

{subst(σ(Q\,θhl)\QeG,\p(Q) = v}
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with respect to the order -< restricted to Nd+n + 1 x {v}; here subst(/(x, θ), θh 1) denotes

putting θi = 1 in f Then the singular locus of M is given by

Sing(^)= U U ί*e W\f(φ(x)) = 0 for anyfeHvΛ n Klx,xn+1]} .
i = l v = 1

This theorem can be proved in the same way as Proposition 2 and Algorithm in

[Ol] by using the preceding theorem.

REMARK. The term order used in the computation of Hvi may be any term order

for eliminating θu . . . , 0,_ l 9 θi+ ί9..., θd (cf. [BW], [CLO]).

EXAMPLE 5.3. Put V : = {(x, y, z)e K3\x3 + y3 + z3 -\ = 0} and W: = {(x,y,z)e

V\zΦύ). Then Θ(W) is generated by commuting derivations

x ' dx z2 dz' "' δy z2 δz "

Put W : = {(x, y, z, t) e V x K \ tz -1 = 0} and define &„ 5; e Θ{KA) by

5x dz dt 5j δz δ/

Consider a ^V-module ^ : = ̂ V/(^VP1 +@VP2) on ̂ , where

Pi : = xz9x + ex3 -az, P2: =yzSy + ςy3 - b z e

with constants a, b, ceK\Z. Put

and let TV be the left ideal of Aw, generated by Ql9 Q2 and fo: = tz-\,

fχ : = x

3 + 3 ; 3 - | - z

3 _ l. Then we get G={fo,fl9 Gu G2, G3, G4, G5} as a Grobner basis of

TV (with respect to an order satisfying (O-l)-(O-5)), where

G2=x3'x-cty3-cz2

+ cxιy1t\t*-\)9

-cx2y2t2(t3-l).

Hence the characteristic variety and the singular locus of Jί are
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= {(x, y, z, ΘX9 θy)e Wx K2\xθx=yθy = (\/z2-z)θxθy

= {θx = θy = O} u {χ = θy = 0} u {y = θx = O} u { χ = ^ =

This computation has been done by using a program written in a computer algebra
language Risa/Asir. We acknowledge the assistance of T. Shimoyama and M. Noro at
Fujitsu Laboratories Limited.

Al. The Kashiwara equivalence. Let V be a non-singular affine algebraic variety
in Kn. Let us denote by i: V^Kn the natural embedding. We use the same notation
as in Section 2. For a left coherent ^-module Jί on V, its direct image is defined by
ι + Jί \=Q)Kn^v®Q)vJi. The functor ι + induces an equivalence between the category of
coherent left ^-modules on V and that of coherent left ^χn-modules whose supports
(as sheaves on Kn) are contained in K(cf. [Bo], [H], [TH]).

PROPOSITION A.I. Suppose that M is given by Jί = (βγ)r\{βvPγΛ
on W with Pu...,PsG(Dv)

r. Take Qje(Avy so that w(Qj) = Pj. Then we have an
isomorphism

as left Q)κn-modules on an open neighborhood of W in Kn.

PROOF. We have an isomorphism @κn^v~@κn/3ικnI(V) on W as (βκn,Q)γ)-
bimodules. Define a sheaf si of subrings of <2)κn by s/ = Θκn(3ί,..., 5d>. Then
^Kn/^KnI(V) has also a structure of (βKn, j/)-bimodule which is compatible with the
natural ring homomorphism si -+@v~silsiI(V). This ring homomorphism induces
an isomorphism

with / : = J^Q1 + 1- j / β s + siI(V)'. On the other hand, the exact sequence

of (βκn, <s/)-bimodules yields the exact sequence

o=2>κni(V)®A^r/f) — ®v®As*r/S) —»(βKr>\®κΛV))®A*iΊβ) —»0

of left ^Kn-modules. Thus we get

D

Hence it is possible to compute, e.g. the characteristic variety of Jί via the Grobner
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basis computation for ι + Jt in (An)
r. However, as is verified by actual computation of

Example 5.3, such computation yields more complicated results than our algorithm in

general. This is probably caused by the fact that AnI(V) is not a two-sided ideal and,

when the codimension of V is higher, the number of variables becomes larger.

A2. Coincidence of the algebraic and the analytic characteristic varieties. Let

Vcz Cn be a non-singular algebraic variety over the field C of complex numbers and

let Jt be a coherent ^ - m o d u l e on V. In the sequel, we use the usual topology on V

instead of the Zariski topology. This does not affect our arguments below since the

stalks of $)v with respect to these two topologies are isomorphic.

In view of the isomorphism φ^ defined in Section 4, we may assume that Jt is

given by

on

Let Q)™ be the sheaf of rings of analytic differential operators on the complex

manifold V and put

Let uu ..., ur be the residue classes in Jt of (1, 0 , . . . , 0 ) , . . . , ( 0 , . . . , 0, 1) e (βγ)r and put

Jt(k) : = @v{k)uί + +Θv(k)ur c Jt,

Jt*n(k): = 2ψ(k\\ <g> WO + + 9ψ{k){\ ® ur) a Jt™

for each integer k, where @™(k) denotes the subsheaf of @™ consisting of operators of

order at most k. Define the associated graded modules by

:=© Jt{k)IJt(k-\),
k>0

)\= 0 Jt™{k)IJt*n{k-\).
fc>0

Note that there is a natural gr(^F)-module homomorphism g r ( ^ ) -> gτ(Jtan) induced

by the homomorphism Jt -> Jt™.

The analytic characteristic variety of Jt™ is defined as the support of the sheaf

μ(gr(Jt™)): = Θ^v®n-^^)n~1 gv(Jt™)

with π : Γ* K-» V being the projection and Θ™v the sheaf of holomorphic functions on

T*V. Since Θ™v is faithfully flat over Θτ*v, it suffices to prove the following proposition

in order to show that the analytic and the algebraic characteristic varieties coincide.

PROPOSITION A.2. Under the assumptions and notation above, we have an isomor-

phism
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gr(Λfan) ~ g r W ) ® gri

induced by the pairing g r (^ n ) x gr(«^) -»gr(^#an).

PROOF. Put

and

gr(ΛO : = 0 Jί{k)IJί{k - 1 ) , g r ( ^ a n ) : = © Jf™(k)ι'Jf™(k - 1 ) .

Then we have short exact sequences

0 —> gr(^) —> gr(^K)' — * gr(^) — . 0 ,

0 —> gr(^Γan) — • gr(^^n)r —> gr(^ a n ) —> 0 .

Since gr(^a/1) is flat over gr(^F), it suffices to show that the natural homomorphism

h:

is an isomorphism. It follows from the above exact sequence that h is injective. Now

choose PiβiAyY so that w(Pi) = P'i for i= 1, , ί with Av = C[x](5ί9 ...,5dy. H e r e

5 l 5 . . . , 9dG <9(CW) are derivations whose restrictions 9 l 5 . . . , 9d to ίPκ(K) are generators

of <9(F) commuting with each other.

We may assume that G= {Pl9..., Pt, Pt+19..., Ps} is a Grόbner basis of

M: = AVP1 + H-^P. + ̂ P . + i + + AFPS

with respect to an order satifying (O-l)-(O-5), and Go : = {Pt+ u . . . , Ps} is a Grόbner

basis of (/(K),4F)
r with respect to the same order. Using the same notation as in Theorem

3.10, put

( ° v βU) ~ βii) θ a i i ) v α 0 )"α ( 0

(0 U)
(0, . . . , sφ . . . . ? -sjh . . . , 0)-(σmij-mi(Qijll..., σm ί._m t(βO ί)) if

(0

for (ij)el, where mi\ = \ α(ί) |, m o : = | α ( 0 v α 0 ) |. Then by the same argument as in the

proof of Theorem 3.10, the gr(^κ)-module

{(/i,...,/,)e(gr(®κ)) r |Λσ(P;) + - • +ftσ(P't) = 0}
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is generated by v : = {m(v'ij)\(ίj)el}. Hence we have an exact sequence

of gr(^F)-modules with homomorphisms φ and ^ defined by

φ(ίfi, ,/r)) = Σ / ^ ( n ) , <K(/o)) = Σ fijΦ'ij) ,
k=ί (ij)el

where r2 : = #/. Since gr(^ n ) is flat over %x(βγ), we have also an exact sequence

(A.I) BtβψY2 - ^ L gr(^a

κ

n)<

Let /? be an arbitrary point of V and let [P] be the element of gr(^Γan)p represented

by Pe^ a n (fc) p \^r e n (fc- l)p. Then there exist Uί9..., Uts(2ψ)p such that

(A.2) P = Σ l / ^ .

We claim that we can take ί/f so that ordί ί/ fPJ)^^ for any Ϊ = 1 , . . . , ί . Assume

m : = max{ord( C/.-PJ) | Ϊ = 1,..., t] > k. Then we have

In view of the exact sequence (A.I), there exist (/ f j.)e(gr(^n)p) r2 such that

Σ y i ^ y = (σm.m i(l/1),..., σm_mt(t/t)).
(U)e/

Here we may assume fije@yί(m — miJ)p/@yι(m — mij—l)p. Let i ^ be an element of

®V(rn-m^v such that [ F y ] = ^ and define U'l9 ...,U'te(9?)p by

(i/ ' 1 , . . . ,t/;)=(i/ 1 , . . . , ι/ t )- Σ FiMvij).
(U)e/

Then we get P = Σt

i=1U'iFi and ord(I/}P})^m— 1. Hence by induction, we can choose

Ui in (A.2) so that ord(U^) < k for i = 1,..., t. This implies [P] e im h. •
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