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Abstract. In this paper, we consider an ^-species almost periodic Lotka-Volterra

competition system with dominated infinite delays. By constructing suitable Lyapunov

functionals, we are able to show that, under a set of algebraic conditions, the system

has a unique positive almost periodic solution which is globally attractive.

1. Introduction. In this paper, we consider an almost periodic Lotka-Volterra

system

i = 1 , . . . , « ,(1.1) xi(t) = xi(t)ϊbi(ή- J atJ(t) j Kij(t-s)xj(s)ds\,

which describes a model of the dynamics of an w-species competition in mathematical

ecology. When the system (1.1) has delay-independent dominated terms, it takes the form

(1.2) xi(t) = xi(t)\bi(t)-aii(t)xi(t)- Σ fly(θΓ Kij(t-s)xj(s)ds\

1 = 1 , . . . , 71 .

Recently, Gopalsamy [3] discussed the system (1.2) with ω-periodic coefficients bh atj

(i, j = 1,...,«) and proved that, under a set of delay-independent algebraic conditions,

the system (1.2) has a unique globally attractive ω-periodic solution. Murakami [10]

generalized the discussion to the system (1.2) with almost periodic parameters bh aVj

(Ϊ,7 = 1, . . . , ή). By investigating the stability properties of the solutions of the system

(1.2), Murakami [10] was able to show that (1.2) has an almost periodic solution. We

also refer to Hamaya [7] and Hamaya and Yoshizawa [8] for further discussion on

the periodic and almost periodic system (1.2), respectively. As one can see easily, when

such delay-independent dominated terms are not present, the argument used in

Gopalsamy [3], Hamaya [7], Hamaya and Yoshizawa [8] and Murakami [10] cannot

be used for (1.1). For (1.1), when n= 1, the related problem has been studied recently

by Gopalsamy et al. [5] in the periodic case and Gopalsamy and He [4] and Seifert

[11] in the almost periodic case. We also refer to He and Gopalsamy [9] for the
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discussion on the periodic system (1.1) with n = 2. However, when n>2, it has been

an open problem whether the system (1.1) has a unique globally attractively positive

almost periodic solution (see also Gopalsamy and He [6] and He and Gopalsamy [9]).

It is the purpose of this paper to solve this problem. Motivated by recent work of

Gopalsamy and He [4], [6] and Murakami [10], we first give estimates for the uniform

upper and lower bounds of positive solutions of (1.1). Then, by constructing some

Lyapunov functionals, we obtain a set of algebraic conditions, under which the systems

(1.1) has a unique positive almost periodic solution which is globally attractive. As

in the case n = 1 (see Gopalsamy and He [4]), the sufficient conditions are delay-

dependent, which characterizes the competition systems with delay-dominated terms,

while the conditions for (1.2) are often delay-independent (see Gopalsamy [3], Hamaya

[7], Hamaya and Yoshizawa [8] and Murakami [10]).

In what follows, we denote by Rn the ^-dimensional real Euclidean space and by

I x I the norm of xeRn. Given x = (xu . . . , xn)eRn and y = (yu .. .,yn)eRn, we put x>y

if Xi>yι and x>y if Xi>yt for all iel= {1, 2, . . . , n). R\ will denote the nonnegative

cone of Rn. Throughout this paper, we assume that the functions bh atj and Ktj in (1.1)

are real-valued functions on R and that the following conditions are satisfied:

(HI) atj and bΛ are continuous, almost periodic functions, and inf i e Rtf l 7(0>0 for

iΦj, infίeKfliι(0>0 and mfteRbi(t)>0 for ijel.

(H2) Kij is nonnegative piecewise continuous, J * K^ds = 1, j * sKij(s)ds < oo and

J^ s2Kij(s)ds< oo for i, e/.

Consequently, define constants bι

i9 &", a\^ a"} (Ujel) by

O ^ j
teR teR teR teR

Let BC+ be the set of all bounded nonnegative continuous functions from R_ =

(-oo, 0] into R+ satisfying φ{0)>0. Set \\φ\\=supseR_φ{s) for φ(s)eBC + . We assume

that the system (1.1) is supplemented with the initial condition

(1.3) x(s) = φ(s)eBC+ for seR_ .
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ticular, for pointing out two ambiguous gaps in the proofs of Theorems 3.2 and 4.6
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2. Uniform upper and lower bounds. In this section, following the idea in

Gopalsamy and He [4], we obtain a priori upper and lower bounds of the positive

solutions of (1.1) and (1.3). One can see that, under the conditions (HI) and (H2),

the solutions of (1.1) and (1.3) exist for all t e [0, r) (r< + oo) and remain positive. From
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the following Lemma 2.1, we know that the solutions of (1.1) and (1.3) are continuable
to t— oo. It follows from the positivity of the solution x(t) of (1.1) and (1.3) that

*i(O<^(θU(O-fl«(O Π ^ ( Φ ^ -(2.1)

from which, using the same argument as in Theorem 2.1 in Gopalsamy and He [4],
we can derive the following estimate for the uniform upper bound of the solutions of
(1.1) and (1.3).

LEMMA 2.1. Under the assumptions (HI) and (H2), the solutions x(t) = (xί(t),...,

*n(0) 0/(1.1) and (l 3 ) satisfy x(t)>0for all t>0, and furthermore

b"
(2.2) limsup xt(t)< Mt : = ^ - for iel.

Using Lemma 2.1 and the idea of Theorem 2.2 in Gopalsamy and He [4], we now
have the following estimate for the uniform lower bound of the solutions of (1.1) and
(1.3).

LEMMA 2.2. Assume the system (1.1) satisfies (HI), (H2) and
(H3) b\>Yj)=ιjΦia^Mj with M{ defined by (2.2) andiel;
(H4) there exists δ > 0 such that

f°° Γ / , £ \ Ί
Jo L V J=i J Ί \

Then the solution x(t) 0/(1.1) and (1.3) satisfies liminf^^jc^^ra; with

(2.3) mt = ^ p ^ p ^ ^ for iel.
aύ Kuis^xΛ -(bl-Σ^MΛs Ids

PROOF. The proof is similar to that of Theorem 2.2 in Gopalsamy and He [4]
and we indicate it briefly.

Let x(t) = (x1(t),..., xn(t)) be any solution of (1.1) and (1.3). It follows from Lemma
2.1 and the condition (H4) that, for ε<δ, there exists a tί>0 such that

(2.4) XfίO^Afj + ε for t>tx and iel

with Mi defined by (2.2). Then, following the positivity of x(t) and (1.1) and (2.4), one
can see that, for t>tί9
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(2.5) Ut^xAbl- Σ «."( Γ "KiJ(s)xj(t-s)ώ+ f°°
L 7=1 \ J θ Jί-ίi

[ n / Λf-fi

7=1 V Jθ

with

'

It follows from (2.5) that

Xi(t—s)<Xi{t)exp \—\ Ci(s)ds\ f o r t —
L Jt-s J

which, together with (2.5), implies that

(2.7) /-β?/Γ ^^ωexpΓ- Γ q

j l j i J 7=1 Jf-ίi

Note that

lim

lim X £,5 I °° ^.

and

for t>t2>tι and some εx with 0<ε x <δ. Then we can see from (2.7) that

(2.8)

-a«I

cAt)=b\- ΣaϊΛlMj + e] \ Ku(s)ds+ Γ KiJ(s)xJ(t-s)ds), / > ί l 5 i e / .
J=l \ Jo Jt-ti J

By the boundedness of x(t) and the assumption (H2), we have

(2.6) l i m c i ί t H C , : ^ / - ttijWj + e), iel.
ί-̂ oo j=\
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for some ε2>0 sufficiently small and all large t. Then, similar to the proof of Theorem
2.2 in Gopalsamy and He [4], one can show from (2.8) that lim inf,.^ *,-(*) >w f with
mt defined by (2.3). This completes the proof.

It is noticed that the upper and lower bounds obtained in Lemmas 2.1 and 2.2
depend on the diagonal delay terms only. As a special case of (1.1), it can take the
following form with finite discrete delays:

- τ i ) - Σ fly(θΓ Kij(t-s)xj(s)ds\ iel,
j=lj*i J-oo J

(2.9) xi(ί) = ̂ (

where 0<Tj (iel) are finite constants. Consequently, from Lemmas 2.1 and 2.2, we
have the following bound estimate for the solutions of (2.9), which can also be found
in Gopalsamy and He [6]. This result will be used in our later discussion.

COROLLARY 2.3. Under the assumptions (HI) and (H2), if

(2.10) b\> t < ^fexp(ό;τ,.) for iel,
j=ιjΦi an

then the positive solutions x(t) of (2.9) satisfy

0 < mi < lim inf x(t) < lim sup xt(t) < Mt
t-* oo ί-> oo

with

(2.11) n {iel).

b\- Σ a?jM

3. Extreme stability. In this section we will show that, under a set of algebraic
conditions, the system (1.1) is extremely stable (see Yoshizawa [12], [13]) in the sense
that, for any two positive solutions x(i) and y(t) of (1.1) and (1.3), we have

\\m[χ(t)-y(t)~] = 0.
t->ao

LEMMA 3.1. Suppose the system (1.1) satisfies (H1)-(H4). Then there exists a
solution χ(t) = (x1(t\ . . . , xn(t)) 0/(1.1) and (1.3) on R such that 0<m ί -ε<x ί ( ί )<M I + ε
(iel) for teR and sufficiently small ε>0, where Mt andmi (iel) are defined by (2.2) and
(2.3), respectively.

Lemma 3.1 can be proved by repeating almost the same argument as in Lemma
2 in Murakami [10] and Lemma 4 in Seifert [11], so we omit the details.
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THEOREM 3.2. Assume (H1)-(H4) are satisfied. Suppose that

,** )2σ,<al [°° Ka(s)exp(-b«s)ds (/ = 1,. . . ,

Jo
with &i = §Q sKa(s)ds and E=(eij)nXn is an M-matrix, where

? —(Λf,-«••) σf for i=j

for iφj.

Then the system (1.1) is extremely stable.

PROOF. Since the matrix E=(eij)nXn is an M-matrix, we know that (see [2], [6])

there exist α = ( α 1 ? . . . , απ)>0 and ε o > 0 such that

n

(3.1) <xi(eii-ε0)> £ M ^ I + εJ, iel.

Clearly there exists an ε1e(0, ε0) such that

for ί G i^ and

(3.2) ^ —βo<eίl(ε1), βy-e^^/βi)

with

(3 3) ί *«(βΛ = ( f l«- ε i) | ^

We first know from Lemma 3.1 that there exists a solution, say >?(ί) = (>7i(0? • > JΊiίO)

of (1.1) and (1.3) satisfying

(3.4) 0<m I —ε 1<>y /(ί)<M I + ε1 for teR and ze/ .

To prove the extreme stability of (1.1), it is enough to show that for any positive solution

x(t) = (x1(tl...,xn(t)) of (1.1) with x(s) = φ(s)eBC+ for seR_ and the solution y(t)

satisfying (3.4), we have

(3.5) lim [^(0-^(0] = 0 , iel.
ί->OO

Define u(t) = (Ul(t),..., uπ(t)\ o(ί)=(»i(t), , ^(0) and w(t) = {wι{t),..., wn{t)) as fol-
lows:

(3.6) Wi(ί) = ln[x,.(ί)], »,(ί)

Then, from (1.1) and (3.6),
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(3.7) ^- [11,(0-^(0] = - Σ Oy
at j=ι Jo

For ίe/and ί>0, the equation (3.7) can be written as

(3.8) wt(t)= -au(t) ί'
Jo

Let

(3.9)

and

(3.10)

J=Uj*i Jo

= -fl«(t)Γ Γ « a ( φ t ( / - ί ) ώ l Cexp(w;(ί))-1]

+ flH(ί) Ku(s)yi(t-s)( ex.tfyvι{s1))wι{s1)ds1\ts

n ΓOQ

- Σ «ϋ(f) ^u(^(i-i)[exp(^(?
j=l,jΦi J o

= -α,(ί)Γ ΓΛΓa(j)Λ(ί-ί)ώl[exp(w,.(t))-

- Σ a^
j=l.j*i Jo

J=l Jo L Jt-s

x I ^ . ( ί j ^ ίίi -52)[exp(wJ<51 -s2))- Y]ds2 ψs^ \ds .
\ Jo / J
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Then, it follows from (3.9) and (3.8) that the upper right derivative D+/(Dt)Vn(w) of

Vn(w) along the solutions of (3.8) is given by

(3.11) ^ - Vn(w(t))< -aH(t)ϊ ίl Kii(s)yi(t-s)ds'\\Qχp(wi(t))-

+ Σ a^
j=lJΦi

aa(t) t Ktt(sMt-s)\
J = l J θ LJt-s

x ( Kij(s2)yj(sι -s2)\exφj(sί -s2))-l \ds2 \ds1 Ids .
\ Jo / J

By (3.10),

(3.12) l/fίWίίOίl̂ M + βi/ iK^ds) sup \Xi(s)-yi(s)\.
\Jt /-00<5<0

Denote Ei = (a"i + εί)sup-O0<s<0\xi(s)—yi(s)\. Then, for ί > 0 , we have from (3.12) that

(3.13) \Ji(w(t))\<Eί^Kii(s)ds.

Let

(3.14) Vi2(w)(t)= Σ

+ Σ ^ΰ ̂ ) %(^3+Φi(^)
J=lJθ Jί-s Js3

f 0 0

x Kij(s2)yj(s1 -s2)\exp(wj(sι -s2))-\ \ds2dsγdszds .
Jo

Then, from (3.11) and (3.14),

(3.15) ^- [Vn + Vi2-](w(t))< -au(t)ϊ !'Kii(s)yi(t-s)ds]\Qχp(wi(t))-l\

+ Σ
j=lJ

+ Σ ( *«(*) aii(s1+s)yί(s1)dsιds)
J = l \ J θ Jί-s /

Γ 0 0

Jo
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Denote

dt(t) = tfH(j) aii(sί+s)yi(s1)ds1ds.
Jo Jί-s

titHWi + εάaϊl + Bi) f G°^ ί i(j)ώ = (Mί + ε1Xfl1!} + β1)(ji.
Jo

By (3.4),

Also, for εj >0, there exists a 7\ >0 such that

exp(wf(0) < msx{Xi(t), yt(t)}

and

I °° Ku(s) exp[-{b u + C l ) s ] ώ < j °° KH(s)ds < εx

for t> Tx. It then follows from (3.15) that, for t> Tl9

(3.16) ^ [ K α + K i 2 ](wί0)<-(4-βi)ΓΓ^(%i(ί-^

+ Σ K + ε J ^

Σ
7 = 1

x
Jo

For i, 7 e /, let

and

(3.17)

with

7=1 Jo Jί-s

Then, one can derive from (3.17) and (3.16) that, for t>Tί9
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(3.18) J^_F;(wXt)<-(βa-βi) \ Kii(s)yi(t-s)ds \\exφt(t))-l\
Dt LJo J

n

+ Σ (aίj+£ι)yj(t)\ e xP(wj(0)-11 +1 JiWt)) I

Σ t J y j v j
7 = 1

On the other hand, one has from (1.1) that

y'i(t)<b,(t)yt(t) for ί>0 and iel,

which implies

(3.19) yi(t)£yt(ts)exp\\ bάs^ds,] for t>s.

By (3.19), for t>Tu

(3.20) - ΓK i i(s)y i(t-s)ds< - Γ ΓΛΓH(j)expί - [

< - Γ J °° Ai(

- f " *„

< - Γ j

(i) exp[- (*?+

)exp[ - ( * , " + β l

Note thatyt{t)\ exp(wt(ί))-11 = I x&)-)?&) |. Therefore, it follows from (3.18) and (3.20)
that, for t>Tu

D+ <- ι Γ f 0 0 " 1
n n

+ \Ji(w(t))\+ Σ (flij + e1)|jc/ (O-J'i, (OI+ Σ bij\xj(t)-yj(t)\

n

= - Σ ^(εi)i^ ( θ -

with βf/βi) defined by (3.3). Now, let

V(w(t)) =
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Then, from (3.21), (3.2) and (3.1), for t>Tu

(3.22) R- V(w(t))< - Σ «ι Σ eifa)\xJ{t)-yj(t)\ + Σ *i\J
Vt i=i j=ι ί=i

= - Σ Γ Σ Ujejiie

< - Σ \φιι ~ε.) - Σ «7(l eμ I + ββ)l I xt(t)-Λ(
> = i L }=IJ*I A

= - Σβι\χi(t)-yι(t)\+Άw(t)),
ΐ = l

where

n

j(w(t))= Σ <*i\Ji(Mt))\

and

n

β. = α.[e..— ε j — ^ αJ (|βJ i |4-εo)>0 (by (3.1)).

Note that V(w(t))>0 and also, from (3.13),

Hence, for t>Tu

'ί n Γί Γoo

J(w(s))ds< Σ *iEi Ku(p)dpd

< Σ «,^
* = 1 JΓi J

Integrating (3.22) from Tγ to t>Tu we have

Consequently, Σ ? = i ^ J r l J C /( ί )~J ; i ( ί ) l^ < 0 0 Hence, by the uniform continuity of

Σ"=i Λ |Xί(ί)—^, (ί)| on [0, oo), we have |x i(ί)-.y ί(ί)|->0 as /->oo. This completes the

proof.
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4. Existence of an almost periodic solution. In this section, we shall use the stability
properties established in section 3 and employ Murakami's idea (see [10]) to derive the
existence of a positive almost periodic solution of the system (1.1). For convenience in
the following discussion, we rename the system (1.1) as (E), that is,

For completeness, we include the following notation, lemma and definitions
introduced by Murakami [10]. We denote by S(E) the set of all solutions
x(t) = (x1(t),..., xn(t)) of the system (E) on R satisfying 0<ra i — ε^x^^Mi + ε for
/=1, 2,...,«, teR and sufficiently small ε>0. Let BC be the set of all bounded
continuous functions from R_ into Rn. For any φ, φeBC we set

ρk(φ,ψ)= sup \φ(s)-φ(s)\,
-k<s<0

P(Φ, Ψ)=Σ Ph(Φ> Ψ)/ί2\l +pk(Φ, Ψ))l •
k = ί

Clearly, p(φm, φ) -• 0 as m -• oo if and only if φm(s) -• φ(s) as n -• oo uniformly on each
bounded subset of (— oo, 0]. For any function x: R-^Rn and any teR, we define a
function x*: (— oo, 0] -• Rn by x\s) = x(t + s) for 51 < 0. Similarly to Lemma 3 in Murakami
[10], we can conclude:

LEMMA 4.1. Let a /?eS(E) and a sequence {tn}9 tn>0, be given. If
(H5) atj(t + /„) -• άij(t) and b^t 4- tn) -+Ei(t) as n^ oo on Rfor all i9j=l9...,«, and

p(t + tn)->p(t) as n-+oo uniformly on each bounded subset of R for some
functions άij9 Bt and p,

then peS(E), where S(E) denotes the set of all solutions y(t) = {y1(t)9.. .,yn(t)) of the
system

(E) A(0= =J ;i( ί) ^ί(0— Σ Quit) Ku{s)yi{t — S)ds , / = ! , . . . , « ,

on R satisfying 0<m I — ε<yi(t)<Mi + ε for /= 1, 2,. . . ,«, /G.R α«J sufficiently small
ε>0. (Henceforth, we denote (p, Έ)eΩ(p, E) wÂ /i (H5) holds).

DEFINITION 4.2. A function p e S(E) is said to be relatively uniformly stable in
Ω(E) (RUS in Ω(E), for short) if for any ε > 0 there exists a δ(ε) > 0 with the property
that for any to>0, any (p, Έ)eΩ(p, E) and any zeS(E) satisfying ρ{pto, zto)<δ(ε) we
have p(p\ zι)<ε for all t>t0.

DEFINITION 4.3. A function /?eS(E) is said to be relatively weakly uniformly
asymptotically stable in Ω(E) (RWUAS in Ω(E), for short) if p is RUS in Ω(E), and if
p(p\ zι) ->0 as /-• oo for all (p, E)eΩ(p, E) and all zeS(E).
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DEFINITION 4.4. A function p e S(E) is said to be relatively totally stable for (E)

(RTS for (E), for short) if for any ε > 0 there exists a δ(ε) > 0 with the property that if

to>0, p(xto,pto)<δ(ε) and g(t) = {gχ(t)9..., gn(t)): R^>Rn is any continuous function

satisfying supteR\g(t)\<δ(ε), then we have p(x\pt)<ε for all t>t0, where x is any

solution of the system

L 7=i Jo J

on i? satisfying 0<m I — ε ^ x ^ O ^ ^ + ε for /= 1, 2,...,«, ίei? and sufficiently small

ε>0.

By repeating the same argument as in the proof of Lemma 4 in Murakami [10],

we have the following conclusion.

LEMMA 4.5. 7/>eS(E) is RWUAS in Ω(E), then it is RTS for (E).

We now state our main result on the existence and global attractivity of the positive

almost periodic solution of (E).

THEOREM 4.6. Under the assumptions of Theorem 3.2, the system (1.1) has a positive

almost periodic solution, which is globally attractive.

PROOF. From Theorem 3.2, one can see that it is enough to show the existence

of an almost periodic solution of (E). The proof is essentially the same as the one for

Theorem in Murakami [10]. For the completeness, we indicate it briefly. By Lemma

3.1, there exists a/?eS(E). We shall prove that/7 is asymptotically almost periodic.

Let {tm} be any sequence satisfying tm^>co as ra-> oo. We may assume that the

sequence {p{t + tm)}%=1 is uniformly convergent on each bounded subset of R and that

the sequences {#ij(ί + O}m=i a n d {b(t + tm)}^=ι are uniformly convergent on R. Set

pk(t)=p(t + tk), teR, for each positive integer k. Clearly, pk is a solution of the system

(Ek) χ.(t) = χi(t)lbi(t + tk)- Σflyίf + f*) I Kii(s)xi(t-s)ds 1 , i = l , . . . , / i ,

on R.

We first prove that/?* is RTS for the system (Ek). By Lemma 4.5 it suffices to show

that pk is RWUAS for the system (Efc).

CLAIM A. For arbitrary (p\ Έk)eΩ(p\ Ek) and z*eS(E*), we have p((pk)\ (z*)')-*

0 as t-* oo.

The proof of this claim is essentially the same as the proof of Theorem 3.2. However,

for convenience in the proof of the next claim, we describe the modified Lyapunov

functionals, which will be used in the proof of the next claim.

Let
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for i= 1 , . . . , n and w(t) = {w1(t),..., wn{t)). Then, for / = 1 , . . . , n,

(4.1) tf((t)= - Σ "ij
7 = 1

(ί + 4 ) U Γ+ ί k

Jft:,,z^-

p + ίk Γt
^(^(ί-j) e

Jo Jί-s

- Σ βy
j=i,j*i Jo

Clearly, for the εo>0 satisfying (3.1), there exists an £^(0, ε0) such that for teR,

b!-εί<5i(t + tk)<bΐ + ει, 0<α i

ί

i-ε1<ά ; i(ί + /k

( 4 " 2 )

0<m i-ε1< jpf(t), zf(t)<Mi

and (3.2) holds with e^s^ defined by (3.3). Also, we can select a large positive integer
k0 such that, for k>k0 and ί>0,

Γ Kii(
Jt+tk

(4.3) Γ Kii(s)ds<εi.
t+tk

Let Vn be defined by (3.9). It then follows from (4.1), (4.2) and (3.11) that, for t >0,

(4.4) ^ Vn(w(t))< -(4-εi)Γ Γ'kKii(

Σ K + β1)fΛ:y(ί)fJ*(/-
j=l,j*i Jo

J = 1 Jo J ί - s J o

x I e x p ί w ^ ! — ̂ 2))~~ 1 \ds2ds1ds

with

and
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(4.5) Jf{t)= f °° Ku(s)\p*if-s)-zt(t-s)\ds .
Jt+tk

L e t

w h e r e

(4.7) Wn(w(t))= Σ K + ε i ) ) ^
j-lj^i Jo Jt-s

oo ft ft

\
O Jt-sJs3Jθ

x I expίwj^i — 52))— 1 \ds2ds1ds3ds

Jo Jί-s

Then, from (4.4)-(4.7),

D+ ? Γ Γ + ί k -* 1

+ Σ Wj+sJz

Similarly to (3.20), we have

(4.9) - Kii(s)zf(t-s)ds<- I ΛΓ^expC-ί^ + β ^ ώ - ε J f f ί ί ) .

Thus, from (4.8), (4.9), (4.3) and (3.3),

(4.10) Jζ- WMt))< - Σ e^lp

Denote

(4.11) W(w(t))= t
7 = 1

Then, for ί>0,

(4.12) 4 r " ^ N 0 ) < " Σ βi\Pk(t)-zk(t)\+7(t)



86 X. HE

with

(4.13) 7(ί)= Σ «.-(««+ βi)^(

Note that (from (4.5) and (4.2))

O, oo).J(t)< Σ Φu + εiWi + ti)
i - 1

 Jt

Then, similarly to the last part of the proof of Theorem 3.2, we can conclude from
(4.12) that |£*(ί)-£*(ί)|->o as f-*oo, which leads to p((£*)', (z fcy)^0 as ί^oo.

CLAIM B. pk is RUS in Ω(E).

It follows from (4.12) that, for t>to>0,

(4.14) £ «i I ln[Ak(ί)] " ln[ff(ί)] I < W O ) < ^(w(O) + P J(s)ds

= Σ αi |^ iN0)+ ^iMO) + (% + £i) I '

N o t e that, for i,j=l9...9n and all L > 0 ,

Vn(w(t0)) = \ ln[Λ*(ίβ)] - l n [ z *

sup
to-L<s<to

and

I Kii(s) I ^47(^2)1 .P/wi
Jo J ί 0 - s J s 3 J θ

%/0 Jto-sJto-sJ0

Γσo f Γ 0 0 Γ ί o

Jo IJo Jίo-5

where
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and

L \ Γ ή(t = \sKu(s)\ \Ku(s2) Γ Ip fa-s 2 )-ή(s γ -s 2 ) ids^
Jo Uo Jto-s

= P sKu(s)\ fLΛΓy(ί2) P° \pf(s1s2)-ή(s1-s2)\ds1ds2\ds
Jo I J o Jί o-s J

+ Γ^-ωj f"^^) ί'° Ipfis.-s^-ήis.-s^ds.
JO U L Jίo-s

<( Γs'K^ds) sup |^(ί)-z^)|
VJo Jto-2L<s<to

= YsKa(s)

s 2 A f l(.ί)ώ.
L

Also,

G;(ί) =(/»</«

J

= Γ Γ Ku(s)\pί(u-s)-zfiu-s)\dsdu

Ku(s)\pf(u-s)-zf(u-s)\dsdu

Γs-tk

Ka(s) \pj(u—s) — Zj(u — s)\duds
Jto+tk J ί o

I pj(u—s) — Zj(u—s) \duds

Γ
sup \p*(s)-ή{s)\ + {Mi + ει)\ Ku{s)ds

-ίo-2ί k<s<ίo Jt

Thus, for / = ! , . . . , « and all L > 0 ,



X. HE

sup \pk(s)-zk(s)\
to-2L<s<to

where

4 = c f i σ f , ί/y = (ΛJJ + βi) + CijGi (iΦj), i j = l , . . . , n .

Now, using the argument in [10, p. 77], one can show that, for each ε>0 we can select
large ko9 L>0 and small δ(ε)>0 such that \pk(t)-zk(t)\<ε for all t>to>0, provided
p((pk)t%(zψ)<δ(ε). This implies that, p((pk)t%(zk)to)<δ(ε) leads to p((pk)\(zk)t)<δ(ε)
for all t>t0. Therefore, for k>ko,p

keS(Ek) is RUS in Ω(Ek).
By the above claims, we conclude that pk is RWUAS for system (Ek) and hence

/?fc is RTS for (Efc). Then, following the same argument as in [10, p. 78], we conclude
that/?(0 is asymptotically almost periodic, and thus, its almost periodic part is a solution
of (E). This completes the proof.

5. Discussion. We conclude this paper with the following remark. The conditions
of Theorem 3.2 depend only on the size of the diagonal delays, which are measured by
σt (iel). For (2.9), which is a special case of (1.1), σf = τf and the conditions of Theorem
3.2 become (2.10), ( M ^ ^ ^ ^ ^ e x p ί - ^ τ ^ ) and that E* = (e*)nxn is an M-matrix with
eί? = fl/iexp(-*Iί

lτί)-(MI flS)2τi and e*= - [ 1 +Mfa?ixi~\a% for iφjjjel, where Mi

{iel) are defined by (2.11). In particular, when τt = 0 (iel), the system (2.9) becomes
(1.2) and the corresponding conditions become

(5.1) b\> t afj-^j- (iel)
j=ιjΦi an

and that E= (eij)n x n with eu = aι

u and etj = — a^ (iφj) is an M-matrix. Using the properties
of an M-matrix (see Gopalsamy and He [6]), one can verify that the condition (5.1)
implies that E is an M-matrix. In fact, in addition to (5.1), under the condition

(5.2) al> Σ "ji ('"£/),

the existence of a strictly positive almost periodic solution was shown by Gopalsamy
[3] in the periodic case in (1.2) and by Murakami [10] in the almost periodic case in
(1.2). It was shown by Hamaya and Yoshizawa [8] that, for the almost periodic system
(1.2), the condition (5.2) is not necessary. Therefore, when (1.1) takes the form (1.2),
our conditions are reduced to the one for (1.2). It is in this sense that our result is a
significant generalization of the known results.
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