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Abstract. We show that the fundamental solution of the initial value problem for
the time dependent Schrddinger equation is bounded and continuous for a class of
non-smooth potentials. The class is large enough to accomodate Coulomb potentials if
the spatial dimension is three.

1. Introduction. We consider the Cauchy problem for the time dependent Schro-
dinger equation

1
(1.1 i%:—?Au+V(x)u, (t, x)eR'xR™; u(0,x)=uy(x), xeR™

in the Hilbert space L2(R™). We assume that the potential ¥(x) is real-valued and the
operator —(1/2)A+V on CZP(R™) defines a unique selfadjoint extension H in L*(R™).
Then, the equation (1.1) has a unique solution wu(t)=e~ *Hu,. The distribution kernel
E(t, x, y) of the propagator e~ " is called the fundamental solution (FDS for short) of
(1.1):

u(t, x)=e " "Hug(x)= IE(L X, y)uo(y)dy .

The FDS E(t, x, y) is a solution of (1.1) with the initial data E(0, x, y)=4J(x—y). In this
paper, we show that E(t, x, y) is continuous and bounded, | E(t, x, y)| < Cy|t]|™™? for
0<|t]<T< o, for a class of potentials ¥(x) which can be as singular as | x|~ ™~ #/m~1D
and decay at infinity as slowly as V(x)=o(1). The class is wide enough to accommodate
Coulomb potentials V(x)=z j.v:l Z;/| x—R;| in dimension three.

When V(x) is C*, it was recently shown that the smoothness property of the FDS
is determined mainly by the growth rate of ¥(x) at infinity: The FDS is smooth and
bounded for t#0 if V is subquadratic, viz., | (x)|=o(] x |?) roughly speaking ([20], see
also [21], [11], [3]); whereas E(t, x, y) is nowhere C! if Vis superquadratic in dimension
one, viz., V(x)>C|x|***, £>0 near infinity ([20]); and at the borderline case | V(x)|~
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C|x|?, E(t, x, y) is smooth and bounded for at least small time ([5]) but it can in general
become singular at certain later times ([21], [12]). These properties of the FDS may
be explained, at least at a heuristic level, as the result of the propagation of singularities:
The singularities of the initial data propagate along the limit set as energy tends to
infinity of the classical trajectories x(t)=p(t), p(t)= — VV(x) ([20]).

On the other hand, if V' is not smooth, e.g., if V is the Coulomb potential in
dimension three, the singularities of V create those of the FDS and E(t, x, y) is not
smooth everywhere. However, the strong dissipation property of the free propagator
e~ "Homoderates the singularities and we expect that E(t, x, y) is bounded and continuous
for t+#0 if V is bounded at infinity in a suitable norm and is not too singular locally
(see Simon [14] who conjectures that this is true if ¥ is of Kato class). Indeed it has
been long known that E(t, x, y) is bounded and continuous on [g, 7] x R? for any
0<e< T< oo, if the spatial dimension m=1 and Ve L*(R) ([14]). In higher dimensions,
the same is known under various conditions. For example, in dimension m=3, the FDS
is bounded and continuous on [¢, T] x R® if V satisfies either of the following condi-
tions:

(a) Forsome e>0, | V34,4 | V32—, is sufficiently small ([13]).

(b) For some £>0, | V]| 2y jx—yj < 1 < C<xD - V279 ([18], [19]. We remark that
the spectral conditions on H in [18] and [19] are not necessary when applied to the
finite time problem).

(c) V is the Fourier transform of Ve L'(R3). If V is a measure of bounded
variation, E(t, x, y) is bounded for 0 <e<t<T< oo ([7], [4], [8], [10]).
Unfortunately, however, none of these results apply to physically important Coulomb
potentials: (a) and (b), though they allow singularities as strong as of L*?~¢ functions,
require V'to be either small or decay rapidly at infinity; (c) requires V' to be continuous.

The purpose of this paper is to prove that the FDS of (1.1) is bounded and con-
tinuous for another class of potentials which is large enough to accommodate Coulomb
potentials in dimension three. We write m, =(m—1)/(m—2).

THEOREM 1.1. Assume m=>3. Let V=V(x) be real-valued. Suppose that, for any
e>0, V can be decomposed as V=V, ,+V, , so that V| , satisfies for some ¢ >1/m, and
y>0

(1.2) 17 (XD XDYVy Mlmairmy <&

and the Fourier transform 172‘5 of V,, is a signed measure of bounded variation. Then,
the FDS E(t, x, y) of (1.1) is bounded with respect to (x, y) for t+#0 and, for any T>0,
there exists a constant Cp such that for 0<|t|<T

(1.3) LE(t, x, )< Cqlt|™™?,  0<|t|<T, (x,y)eR*™.
Moreover, if IA/zyseL‘(R"‘), E(t, x, y) is continuous with respect to (t, x, y) for t #0.
REMARK 1. When m=3, the condition (1.2) reads [|<{x>*<(D)"V, |l g3 <€ for
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some 6>3/2 and y>0 and the sum of Coulomb potentials V(x)=z;v=le/|x—Rj|
obviously satisfies the condition of Theorem 1.1. When m >4, the potentials with local
singularities of type Y C;|x—a;|~™™~D*¢ satisfy the condition of the theorem.

Since the propagator e “# is unitary in L?(R™), the estimate (1.3) and the inter-
polation theorem imply the following L?-L? estimate.

CorOLLARY 1.2. Let V satisfy the conditions of Theorem 1.1 and 1<q<2,
1/p+1/q=1. Then, for any T>0, there exists a constant Cy such that for 0<|t|<T,

(1.4) le™  f | Logmy < Crl L1727 VP £l agomy S € LAR™)NLA(R™).

The rest of the paper is devoted to the proof of Theorem 1.1. The basic idea is to
combine the method in [18] with the one used for the case Ve L'(R™). We explain it
here more precisely. We denote by X=(X,, ..., X,,) (resp. D=(D,, ..., D,))) the vector
whose components are the multiplication operators X; with the variable x; (resp. the
differential operators D;= —id/0x;), 1 <j<m. We define the Fourier transform by

% 1 —ix&
V()= o Je V(x)dx .
Here and hereafter, the integrals should be taken over the whole space if no domains
of integration are specified. For Banach spaces X, Y, B(X, Y) stands for the space of
bounded operators from X to Y. B(X)=B(X, X).

If V satisfies the conditions of Theorem 1.1, H= —(1/2)A+ V is selfadjoint with
the domain H*(R™) and CJ(R™) is a core. The solution u(t)=exp(—itH)u, of (1.1)
satisfies the integral equation ([15]):

t

(1.5) u(t):e_i’H“uo—ij e t=9Hoyy(g)ds |

0

where H,= —(1/2)A. We consider in the interaction picture and set
I'(s)=e*Hop(X)e isHo

By iterating the integral equation (1.5) repeatedly, we have at least formally

(1.6) e Mg = M0 Y (—if'G(thuo =€~ "G, (1),

n=0

where Gy(t)=1, and for n=1,2, ...,

(1.7) G,,(t)=j r@,) - I(t,)dty - dt, .
0<t1 <<t <t

We recall the argument that proves Theorem 1.1 if V; ,=0, that is, if ¥ is a measure
du of bounded variation. The following lemma is well known ([16], [10], [8]).
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LEMMA 1.3.  Let V(&)dé =du(&) be a (signed) measure of bounded variation. Then

(1.8) I@)f(x)= fe""‘“'éz’ 2f (x +18)du(l)

and, for any 1 <p <o, I['(t) is bounded in L (R™):
1.9) ITOS e <Iplllflle

where | | is the total variation of the measure du. Moreover, I'(t) is strongly continuous
in LP(R™), 1 <p< 0.

ProoF. The operators e *#° and e~ ***/2 are unitary in L>(R™) and as selfadjoint
operators eHoXe~Ho= X 4 tD = ¢~ X*/24tD)e'X*/?* Functional calculus then shows

(1.10) I(t)=e™V(X)e™ "o =Y (X +tD)=e” X 12V (tD)e X"/

as bounded operators in L>(R™). By using the Fourier transform, we have

(1.11) VD) f(x)= Jei"é V(t6)f(&)de= jf (x+)du() .

Inserting (1.11) into (1.10), we obtain (1.8). It follows from Minkowski’s inequality
applied to (1.8) that I'(t) extends to a bounded operator in L?(R™) for any 1<p<oo
and that the estimate (1.9) is satisfied. The strong continuity of I'(t) follows immediately
from (1.8). |

In virtue of Lemma 1.3 and (1.7), G,(t) is bounded in LP(R™) and
1G(Olprr <|u|"[2]"/n!. Hence the series in (1.6) converges in the norm of B(LP(R™))
for any 1<p<co and ||G,(t)] sy <exp(|p|| ]). Since e *Ho maps L'(R™) to L*(R™)
with the operator norm bounded by (2x| £|) ™ ™2, we see that

(1.12)  fle” g oy < lle ™l g ooy | Goo(O prry < 2l £ ) ™™ exp(| 1 £1) -

Thus, if ¥ is a measure of bounded variation, E(t, x, y) is a bounded function of (x, y)
if t#0 and | E(t, x, y)|<2n|¢|)"™?exp(| p|] t]).

If Ve L'(R™), we may approximate ¥ by Ve #(R™) so that | I7j— V|| .1—0asj—o0.
It is well known the FDS Ej(t, x, y) for H;= —(1/2)A+V; is C* for t#0 ([21], [20])
and (1.6) and (1.9) imply that e "#5 converges to e " in the topology of operator
norm of B(L',L*) uniformly with respect to 0<e<|t|<T<oo. Hence E;(t,x,y)
converges to E(t, x, y) uniformly on [e, 7] x R™ x R™ and E(t, x, y) is jointly continuous
in (t, x, y).

When V satisfies the conditions of Theorem 1.1, we again show that G_(t) is a
bounded operator in L’(R™) for any 1<p<oo with |G(t)lprr- bounded on every
compact interval. The argument above does not apply because ¥ decays slowly at
infinity and is not integrable any more. For controlling the slow decay of ¥ or the
singularities of V, we utilize the oscillation property of e~ o with respect to (¢, x, y) as
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in our previous papers ([ 18], [19]). This will be done by integration of I'(t) with respect
to ¢ which transforms the oscillation into the decay property. Thus we insert into (1.7)
the expression (1.8) of I'(t) in the operator form:

(1.13) (= Je"’“e"“’“‘ﬂ’” ede

and integrate the resulting formula with respect to the variables (¢, ..., t,) first.

However, as we shall see in the text the estimation of the resulting expressions
requires certain smoothness of ¥ or decay of ¥ at infinity. Recall that the argument
above for the case where ¥ is a measure did not require ¥ to decay at infinity, though
it did require V to decay instead. Thus we decompose V=V, + V, into the singular but
decaying part V; and the bounded but continuous part ¥, as in Theorem 1.1 and
combine those two methods as follows. In what follows, we omit the subscript ¢ >0 of
Vieand V, .

Denote by I',(t) and I',(t) the operator I'(¢) corresponding to V; and V, respectively.
Insert I'(t)=1I",(t)+ I',(t) into (1.7) and expand G,(t) into 2" summands. If we denote,
forasubset A: R, < <R;of {1,2, ..., n}, by G/(t) the summand which has the factors
Iy(t;) at j=R,, ..., R-th places and I'(t;) elsewhere, then, G,(t) is a sum of GA(t) over
all subsets 4 of {1,2,...,n}:

(1.14) G()=Y.GA0).

A

Combining the consecutive factors I'y(t;) together, we write G,(t) in the form

(1.15) Gt = F(t, tg )[ 5(tg )F(tg,s tr,—1) " -

OSKRIS”'S!RISI

o Toy(tr,)F(tr,, tr ) 2(tg,)F(tg,, 0)dtg, -~ - dig,,

where the first factor F(z, tg,) and the last F(t,, 0) should be understood as the identity
operators if R;=n or R, =1, and otherwise,

(1.16) Fltg,, . sz)=J Ty(tg,) - Tyltg,)dty, - dty, .
leSlB

.S"'SIEjStR

J Jjt+1

Here we set Ro=0, R, ;=n+1,tg, =0 and tg,, =t and
(1.17) R;<B;<---<E;<R;,, is a sequence of consecutive integers .

For estimating the operator norm in LP(R™) of F(tg,,,, tg,), we insert the expression
(1.13) for V¥, into (1.16) and integrate the result with respect to (/g,, ..., Ig,) first. In
Section 2, we perform this integration and rewrite the result in a form convenient in
proving the main estimate

(1.18) IF(tr,, » tr ) Bery <(CIF ((XD7F KDYV | pm)®e 771
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for 0<tg <tg,,, <T. The estimate (1.18) will be proved in Section 3. Combining (1.18)
with the estimate || I",(t)|| g1» < C| u| obtained in Lemma 1.3, we have
1

(1.19) 16O nan < P CIF R DYV .
By summing (1.19) up with respect to 4 and n, we see that, if [|#({x>° DDV )| Lm.
is small enough, then G, (t) is bounded in L?(R™) for any 1 <p<oo and |G (1)l gs 18
uniformly bounded on compact intervals. This implies that the FDS is bounded on
[e, T] x R*™ as explained above. An approximation argument necessary for performing
the estimation and for proving the continuity of the FDS will be given in Section 4
thereby the proof of Theorem 1.1 will be completed.

We adopt the following convention. When precise values are not important, various
constants are denoted by the same letter C. L? norms are denoted by || - ||, as well as
by [+ Il

ACKNOWLEDGEMENT. The present work was initiated while the author was on
leave from the University of Tokyo and visiting the Courant Institute of Mathematical
Sciences, New York University under the grant from the Ministry of Education, Science,
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2. Preliminaries. In this section, we rewrite the operator F(tg,, , fg,) defined by
(1.16) in a form suitable for the estimation to be done in the following section. In
Sections 2 and 3, we assume V, € CF(R™). As a prototype we deal with

2.1 F(t, s)=f r(t,) - T'y(tyde,...dt,, 0<s<t<T.
s<t1 < <th <t

To make the following computation legitimate we insert the damping factor e #Xj=1%
and write as I'| (t)=T",(f)e”*. We have, in the topology of operator norm in L*(R™),

e—=>+0 e=>+0

(22)  F(t,s)= lim F(t,s)= lim f Iy t) - Ty (t)de, - dt,
s<t1 < <tp <t

uniformly with respect to 0<s<t<T. We insert into (2.2) the expression (1.13) for
Iy(t;), 1<j<n. Writing E=(&,, ..., ¢,) and dE=d¢, - - - d&,, we have

(23) Ft, S)=f Vi€ -+ ViE)LYt, s, B)E,
RmMn

where we define the strongly continuous operator-valued function L(t, s, Z) by
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.4) Lyt s E)= i Xingitn(Den + 82 +ie) . .. piXS1pinDEHE 2Ny L gy

We set, for £#0,
[El.=—i(DE+E2/2+ie) "', [& 1]F*=eXee™CPHEDE] | [E 1]k = —[& (]¥* .

(2.5) i(DE+E22+ie) " f(x)= r QM2 (x 4 1)t .

0

Define for E=(&,, ..., £,) € R"™ and a (decreasing) consecutive sequence C=1{b, ..., a} =

{1,...,n}:
(26) [C’ E].‘J:[éb_'_ e +£a’ S](’Z—a-i-l)e[éb*—l + e +éa](b—a)£ e [éa]e s
2.7 [C, B, =L+ +&u 15 as o1+ +¢Jp-ae " [Eade -

LemMMA 2.1.  Let 9 ={D} be the set of decompositions D={Cy, ..., C}} of {1,...,n}
into subsets of consecutive integers:

C={n...,on_+1}, ..., Co={ny,....,ny+1}, Cy={ny, ..., 1},
where ny=0. Then L(t, s, E) of (2.4) is equal to the sum of
[D, 81, =([Cp E1,,+[Cp, E1DIC, 1, E], -+ [Cy, E,
over all D=(C,4, ..., C)e 2.

In what follows we omit the variables Z in [C, Z],, etc.

ProoOrF. We prove the lemma by induction on n. By integration

Jl XEs ity (DE+ £ 24 xe eil(Dél+§%/2+ie)_eis(D§1+{f/2+i£)
el 1elt|( 1+&%/ +15)dt1=et 1.

’ iDE v e v Lend ALk

which proves the lemma when n=1. We now suppose that the lemma is already proved
for n=1,...,k—1 and prove it for n=k. By the induction hypothesis, we may write

t
Lyt s, E)ZJ dtkf e XérpitDE+ &2 +ie) . . eiX{leiu(Dil+§f/2+i£)dt1 ceedty,
Sty < S-Stk

t
=ZJ eXekeiDaH GOy +[CLIIC- 1], -+ [Cyladly,
D Js

where D runs over all the decompositions D={C,, ..., C;} of {1,...,k—1} into sub-
sets of consecutive integers and [C,], is defined by (2.7) with ¢, in place of ¢. Since
[CI.LC-1], - - - [C,], is independent of f,, we may compute as in the case n=1 and
obtain
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2.8) f Mg DI (], - €Tty = ([T 4 TR IIC, -+ [Cy,

S
On the other hand, using the equation

eiXéeit(D§+§2/2 +i£)eaneit(Dr]+r]2/2 +ij£)=eiX(§+r])eit(D(§+;1)+(§+q)2/2+i(j+ 1)e}

we may compute

t
f e Xk DEH G2 O 1 Vx*dt, =&+, (18 1) L]+ [E 410 STE 4 e[ -
Hence, recalling (2.6) and (2.7), we obtain

t
(2.9) J et Par G2, [Croy], -+ [Cildt

=[Gkl A+LCUKIC -1 - [Ci]..

Since the decompositions of {1,...,k} into subsets of consecutive integers may be
uniquely obtained from a decomposition of {1, ..., k—1} either by adding the singleton
{k} or adjoining the element k to the subset containing k—1, (2.8) and (2.9) show that
the lemma holds for n=k as well. This completes the proof. |

It follows from Lemma 2.1 that Fi(tg,, fg,,,) decomposes into the sum over all
decompositions into consecutive numbers {C,, ..., C,} of {B;, ..., E;} (recall (1.17) for
the terminology):

E;j .
(210) Fs(tRj’ tRj+ l)=(C Z Cy ([Ck]l,s+[Ck]s)[Ck— l]e U [Cl]s l:‘[B Vl(ém)dém .

Since the variables ;’s contained in [C;], and [C,], are different among themselves if
J#k, the integral (2.10) breaks up into factors and is equal to the product of

(2.11) f([ck]e+[ck]1‘s) 11 Vi ll dc,,
and
(2.12) f[C,-Js [T 72 I1 d, 1sjsk—1.

We deal with the operators (2.11) and (2.12). Note that all factors [C,],,
[Ci-11s ---» [Cy], have similar form and [C,],, and [C,], differ only by sign and
parameters fg and tg . Hence, we have only to study the integral containing the factor
[C.], as a prototype. We assume, for notational simplicity, C,={n, ..., 1} and tg, =s
and tg, ., =t Then, making the change of variables (¢;, &,, ..., &) — (&, &,—&4, ..
&,—&,-1), we obtain

L]
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~

2.13) W,=(—1)y! [{n,n—l,...,l}]sljl Vi(&)dE

LY
P

S [t STALE -+ E e - TG, H P (&,)dE

J

r n
=(—1)"! [ SJ:a[én—J(n—ne o [€4], l:[1 171(5,'—5;—1)‘15

o

where £,=0. Recalling (2.5), we have

a0
[&, s]F =i et PR DE 4 £2/ 1 jg) =S j QD2 0

s

Hence, we have, writing dS=ds, - - - ds

n>

(2.14) RS0 ol K PP TP KLU W €3]

0 n
=eixénj J eiZ}‘=18j(§}/2+ije)f<x+ Z ijj>dS.
s J[0,0)n "1 j=1

Combination of (2.13) with (2.14) yields

J{ ,xgnf J ey 18iEH2+ije) n Vl(i —¢- 1)f<x+ Z ;¢ >dS}du.
[0,00)" " 1

We introduce polar coordinates ¢;=r;w;, 1 <j<n, 0<r;<oo and w;eX, X being the

unit sphere of R™ and make the change of variables s;—s;/r;, 1<j<n. Write R=
(R, r)=(@1 .- 1), S=(8",5,)=(5¢,---,8,), 2=(wy, ..., w,),dR=dR’dr,=dr, - - - dr,, etc.
Then

W.f(x)

=J‘ {eixr,.w"j J‘ eilh= lSj(rj/2+l.j£/rj)Kn(R, Q)f(X+p)dS’ds,,}deQ ,
[0,00)7 x Z7 s [0,00)n~ 1

rn

where p=) "_, s;0; and

(2.15) KR, Q=(ry )" 2 [ Vilrjo;=rj-y0;-1) . rgwo=0.
ji=1

We then change the order of integrations with respect to R and S to obtain

Sn/S
(2.16) W, f(x)= j { J J @iL= 1 sitrif2 Hijelry) Fixrwon g (R Q)dR’dr,,} f(x+p)dSdQ ,
[0 )" 1

0

where the first integration is taken over [0, c0)" x 2" and it should be understood that
Sowo=0 and that s,/s=o0 if s=0. We denote Wf=W,f"
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Sn/S
2.17) Wf(x)= J{ J J e'Lj-usirl2 ixmong (R Q)dR’dr,,}f(x +p)dSdQ .
0 [0,0c)n 1

LEmMMA 2.2. Let 1<p<oco and f € L*(R™). Then as ¢ > 0, |W f—Wf|,—0.

ProorF. We apply integration by parts to (2.16) with respect to the variables
ri,..., Fy twice each, using the identities

o " isirsI2 + ijelr)

m or;

eiSj(rj/2+ij£/rj)= 1 ]=1 l’l—l
b PR

e —iSn(rn/2 +ingfry) — irpxo,

i(s,/2 + xw,)(1 —ine'/r?) 6—r,,“

iSp(rn/2 +ing/rn) +irpxw, __ 1
- El

where ¢’ =s,¢/(s,/2 + xw,). Then, the lemma follows by applying the argument of the
proof of Lemma 2.3 of [ 18] to the resulting integrals. The boundary terms which appear
from the end point s,/s of r,-integration are easier to handle. We omit the details. N

It follows by applying Lemma 2.2 to (2.2) and (2.10) that the operators F(tg,, tg,, ,)
are the product of operators of the form (2.17) with different »n’s and different s’s.
Introducing the notation

(2.18) G, S, Q)=f e'Li=irsi?2K (R, Q)dR’
[0,00)n~ 1
and
(2.19) K1, S, Q)=J e'G(r,, S', Qydr,
0

we write Wf(x) in the form

(2.20) Wf(x)= K(5u/5, $0/2 + x0,,, S', Q) f(x + p)dSdQ .

[0,00)n x Zn

We recall p=)"_ 5;0;.

3. [Estimates. In this section, we show that the operator W defined by (2.20) is
bounded in LP(R™) for any 1 <p < oo and estimate || W]/, in terms of a certain norm
of V,, assuming V', € CJ(R™). When s=0, Wis nothing but the operator W, studied in
[18] and [19] and the estimates in Proposition 3.2 below are known. Thus we assume
s>0 in what follows. The following argument is a modification of what is given in [18]
and [19] to the case s#0.

LemMmA 3.1. Let W be the operator defined by (2.20). Then:
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3.1 W< Sl sup J | R (545, 8,2+ (x—p)o,, S, Q) |dSdQ .
XER™ J10,c0)n x In
(3.2) IS e < IS Nl o0 sup J | K (5,/5, $,/2+ x0,, S, Q) |dSdQ .
xeR™ J10,c0)n x 3n

ProoF. The estimate (3.2) is obvious. We prove (3.1). Integrating the modulus of
both sides of (2.20) with respect to x, we have

Wl < J‘ | R34/, 8/2 4 X0, ', Q)f (x + p) |dSdQx .
[0.00)7 X £ x Rm

Change the variables (S, @2, x)— (S, @, x—p) and integrate the result with respect to
(S, Q) first. The estimate (3.1) follows immediately. [ |

The integrals appearing on the right of (3.1) and (3.2) are estimated as follows.

PrOPOSITION 3.2. Let 1/m, <o <1 and y>0. Then there exists a constant C>0
independent of 'V and s such that both integrals

(3.3) sup J | Rol84/5, $0/2+(x — )y, S', 2)|dSdR
xeR™ [0,00)n x En
and
(3.4) sup J | R (s,/5, $,/2+ x,, S', Q) |dSdQ
xe Rm [0,00)" x I

are bounded by (1+|s|™)(C|F (x> THUDY' V)| 1m)" .

ProOF. We prove the proposition for (3.3) only. The proof for (3.4) is similar.
Using the identity

) 1 ( .0 > )
it = 1—it— lei™
1412 or

and applying integration by parts to (2.19), we obtain
K, 1,8, Q=1,(215S, Q)+, S, Q)+15a,1,S,Q),
where

—it .
e™G (a, S, Q),
— ( )

Il(a’ T, S,a Q):

1 ®
L1, S, Q=——| G, r, S, Q)dr,
N ) IHZL )

and
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Lz, S, Q)=—"" Jef"iGn(r,S',Q)dr.
1+1% ), or

Note that the boundary term does not appear from the zero end point since m>3.

We first estimate the contribution of I, to the integral (3.3). Write g(t) = —it/(1 +1?)
and {8 )¢, =<s,> - {8,—;). When m>4, take  and 4 so that 6+i=0, A>1/(m—1)
and 6 >(m—3)/(im—1); and when m=3 set A=0¢ and =0. Using Holder’s inequality
with (m—3)/(m—1)+1/(im—1)+1/(m—1)=1, we have

‘[ I11(54/5, $4/2 + (X — p)v, S, Q) |dS”
[0,00) !
SJ (8D cep * 19(80/2 4 (x = p)w,) [KS D gep * (S Deep| Glsi/s, S', Q)1dS’
[0,00)"’ 1
1/(m—1)
< IS D sepllLom=svm= 510,00y -)< J (1g(sw/2+(x =)o) [<S i)™ 1dS’)
[0,00)"~ 1

1/(m—1)
X <J (1 G(su/s, S, Q)|<S’>;’ep)'"‘1d8’> .
[0,00) 1

The first factor on the right is clearly bounded by C”". We integrate both sides with
respect to s, and estimate the right hand side by using Hoélder’s inequality with
1/(m—1)+1/m,=1. Then,

(35) J\ |Il(sn/Sa Sn/2+(x_p)wm S/a Q) IdS
[0,00)"

1/(m—1)
SC"(J 19(s,/2+ (x— p)w,,) I""‘<S’>§e£’""”’lds>
[0,00)"

0 my/(m—1) 1/my
x ” (J (1 G(s4f5, 8", QIS Y™~ 1dS ) dsn} .
0 [0,00)7 1

It is easy to see by changing the variables (S’, s,)—(S’, 2(s,—(x — p)w,)) that the first
integral on the right is bounded by C" with a possibly different constant C. We then
further integrate both sides with respect to Q. Changing the variable s, ss, and using
Holder’s inequality, we obtain

(3.6) j [ T1(Sn/$5 $u/2 4 (x = Py, S', ) [dSdQ
[0,00)n x Zn

0 1/my
< Cn| > In/(m— 1)| Ky Il/m*< J‘ ||G(S,,, S', Q)<S'>gep”'£:"_ 1{0,20)1; ,)ds,,dQ> ,

0

where | 2 | is the measure of ~. We estimate the last integral by interpolating the estimates
for the case 6=0 and for ¢=1. Remembering (2.18) that G(r,, -, Q) is the Fourier
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transform of K(+, r,,, ), we apply Hausdorff-Young’s inequality to the S’ integral. Then,

1/my
(37) ( J ”G(Sm S’, Q)“’[’,l:n- ‘([0.00)'8‘,' 1)dsndQ)
[0,00) x Zn
< C"<J\ “ K(R ’, Sn> -Q)”Zr"n.([o,oo),};7 ,)dsndg)
[0,00) x 7

n 1/my
SC"(J (S I Vl(rjwj—rj_le_l)l'"*deQ>
[0,a0) x £ i=1

=C" Vil -
Here we used the relation m (m—2)=m—1 and (r, - r,)" 'dRdQ=d¢, - - - d¢&,. To
estimate the case 6 =1, we let a= (o, ..., ®,_,) be a multi-index whose entries are either

0 or 1. The integration by parts shows that
S*G,(r, S, Q)= e'Li=irsiI2(—2Dp)*K (R, Q)R .
[0,00)" -1

Here we used the assumption that m >3 and, hence the boundary term from the zero
end point did not appear. The argument which was used in the estimate (3.7) produces

1/my
(3.8) <j 1S *G(s,, S’, Q)||7.- 10,0087 1)ds,,dQ>
[0,00) x Z7

my 1/my
< C"( f deQ) .
[0,00) x 37

The effect of the r; derivative is either to decrease the power of rJ*”2 by one or to
differentiate Vl(rjwj—rj_le_l) or Vl(rjﬂa)j—rjwj). Hence, applying Hardy’s
inequality, we obtain (cf. [18, p. 569]) that

(_DR’)a{(rl o "n)m~2 '1—11 IA/l(rjwj_rj—lwi—l)}
j=

1/my .
3.9 <J 1S*G(s,, S, Q)Il'i',*.._l(((,m)gl_lds,,dQ) < CMIKDY*V||n, .
[0,00) x I

Interpolating (3.7) and (3.9) by the multi-linear complex interpolation theorem, we
conclude

1/my .
(3.10) (j <+ DepGlsm > DlIm= 1dsnd9> <CMIKDY* WV lm,
[0,00) x 31
and, hence we obtain the desired estimate
3.11) sup j | L,(5,/S, 8,/2+(x—p)w,, S’, 2)|dSdQ
xeR™ [0,00)n x 31

<|s[Vm(Cy 2TV F (X2 TV ) )"
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To estimate the contributions of I, and I; to the integral (3.3), we use the following
lemma.

LemMma 3.3. Let 1 <p<oo. Suppose ge LP'P~Y)(R)n LP/P~V*e(R) for some 0 <e.
Let A(u, v) be defined by

A(u, v)=g(v) f“ e f(x)dx .

0

Then there exists a constant C>0 depending only on g and p such that

1

xeR

1 ”
, |hT 17(- +h) '—f“pdh)

(3.12) supr |A(t/s,xit/2)|dtSC<||f]|,,+J

where the Fourier transform f is taken after setting f(x)=0 for x <0.

Proor. We set f(x)=0 for x<0. Writing the Heaviside function by 6(x): 0(x)=1
for x>0 and 6(x)=0 for x <0, we compute

Jue“”‘f(x)dx=JOO e“’”@(u—X)f(x)dx=~1—.JOO e"y'j J(y—vdy
. . 2ni ), y—1i0

1 1 © e

= J=v+—pv. | -y

2 2mi e Y

where p.v. means Cauchy’s principal value. We decompose the singular integral as
follows:

p.v.J‘OO e:uf(y—v)dy=J elyuf(y—v)dy

- p>1 Y

1 eiyu 1 eiyu
rpv f F— oy + f (Fly—0)—F(—ohdy
-1 Y -1 Y

Correspondingly, we decompose
A(u, v)=11,(u, v) + I1,(u, v) + I 5(u, v)+ 4 (u, v)
and estimate the contribution of each summand to the integral (3.12) separately: By

Holder’s inequality we have for any 1 <p< oo

0

(3.13) Jw [TL,(t/s, x +1/2) Idt=j lgCe+4/2) 1] flx £1/2)lde <2lgllpyip- 1) 111, -

- 0

We estimate as

1 _
ML, 0] <) - J I_f_(lzylﬂ "
IyI>1
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and use Holder’s inequality and Young’s inequality for the convolution to obtain

(3.14) J y(t/s, x £ t/2) lde <™ gl T pllxgsrs ol 21 s
where ¢>1 and r>1 should be taken so that 1/p+1/q+ 1/r=2. Since

1 iyu )
p.v. J ¢ dy=2i J Smyu dy
-1 Y o Y

is uniformly bounded with respect to u, we have as in (3.13)

(3.15) J | TL3(t/s, x /) [dt < Clig | o1 Tl -

Finally we estimate

(y—v)—f(—v)| dy
[yl

and use Holder’s inequality and Minkowski’s inequality to obtain

1 1
|H4(u,v)ls|g(v)|.§;j |f
-1

@ 1 o) — .
(3.16) f |H4<r/s,x¢z/2)|drg*ngu,,/(,,_”f 17+ l’ylﬂ Mo 4y
. y

The combination of the estimates (3.13), (3.14), (3.15) and (3.16) yields (3.12). n

We now estimate the contribution of I, to the integral (3.3). Noting that s,/2 — pw, =
—s5,/24+p'w, and p'= Z;‘;ll s;w; is independent of s,, we apply Lemma 3.3 to f(r)=
G(r, S, Q) with g(v)=1/(1+v?) and p=m—1. It follows that

(3.17) sup JOO | 1,(s,/8, $,/2+ (x—p)w,, S’, Q)|ds,

xeR™ Jo

~ LI R ~
SC<”GM(.’ SI’ Q)”m—l +J\ m ”Gn(. +h’ Sl’ Q)_Gn(.’ Sl’ Q)Hm—ldh> s
-1

where G,(+, S’, Q) is the Fourier transform of G,(s, S, ) with respect to the first variable
s after setting G, (s, S’, Q) =0 for s<0. We integrate both sides of (3.17) with respect to
S’ and Q. Using Holder’s inequality, we estimate the integral with respect to S’ of first
summand on the right as

(3.18) J IIG.,(',S’,Q)Hm—ldS'SC”(j
[0.00)71‘1

[0,00)"

N 1/(m—1)
[{S"D%pGuls, S, Q)" 1 dS)

Note that G,(s, §', Q) is nothing but the Fourier transform of K(R, 2) with respect to
the all radial variables R=(ry, ..., r,). Hence the argument similar to the one used for
obtaining the estimate (3.10) implies the following for the dQ2 integral:
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(3.19) J G+, 8", @)l 1dS'dQ<(C, Z V™D F ((XD2V 1) )"
[0,00)n~ 1 x 30

In virtue of the modulus of continuity estimate for the functions in the Sobolev spaces
(cf. [1]) we have for arbitrarily small y>0.

1l A
(32) f <f v"”Gn(. +h’ S,,Q)_Gn(.as,, Q)“m—ldh>dS(dQ
[0,00)n =1 x 31 -1 lhl

Scyf [<D{ G+, ', Q|- 1dS'dQ .
[0,00)7~ 1 x 37

The integral on the right may be estimated entirely similarly as in (3.19) and is bounded
by
(Col Z =V F (XD LD V)| ,)" -

Thus we have for arbitrary small y>0:

xeR™

(321)  sup j 11,(5,/5, 5,/2 + (x— p),, S', Q) |dSdQ
[0,00) x Zn

Sj (Sup f | 15(8/8, —$u/2+(x—p'),, S', Q) IdS..>dS'dQ
[0,00)"_1 x yn

xeR™ Jo
S(CH Z = DIF (XD KDYV ) pm.)"

The contribution of I3 may be estimated entirely similarly as above by replacing
G(r, S', Q) by (8/0r)G(r, S’, Q), and we obtain

(3.22) sup J IT4(5,/5, $,/2 + (x — p)oo,, S, Q) |dSdQ
[0,00)n x Zn

xeR™
S(CH Z|MDIF (x> DYV ) pm)" -

Here we used the condition 6 <1 and the fact that the variable r, appears only once
on the right side of (2.15). Combining the estimates (3.11), (3.21) and (3.22), we have
proven the required estimate for (3.3) and have completed the proof of Proposition.

|

The right hand sides of (3.1) and (3.2) of Lemma 3.1 are both bounded by the
same quantity as in Proposition 3.2. Thus the complex interpolation theorem implies
the following:

COROLLARY 3.4.  For y>0 there exists C,>0 such that for any 1 <p< oo
(3.23) I, < DAL+ s, I F (XD IKDY V) )" -

We now fix 7>0 and assume that all relevant time variables are in the interval
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[0, T]. We apply Corollary 3.4 to the factors (2.11) and (2.12) of H(tg, tg,,,) in (2.10)
and obtain the bound on the operator norm in LP(R™):

(3.24) [F(tg;» tr,, )lpwn < QRC,IF (XY HDYV )| )Rt~ RiTL
In virtue of Lemma 1.3, it is obvious that
(3.25) 1T o6) | oy < Var(Z )| f | Locgemy

where Var(u) is the total variation of the (signed) measure u. Applying the estimates
(3.24) and (3.25) to (1.15), we see that, for all |#|<T, the operator norm ||G;A(¢)| in
B(LP(R™)) is bounded as follows:

(3.26) GO < (Var(V) T/INC, | F (x> KDYV ) [ pm)"
Now we suppose

(3.27) CIF(xTTHDYV )l =k <1

and write Var(¥,)= C,. Then

TI
||G([)||B(LP(RM))<Z“G ”— Z <7>(CK ) K"

=0 I

and

(328) S s 3 § MmN D e
_oc CT)Ioo(i) _OO"E (dﬁ)lao .
_l;o 12 n2=:l dk —tgo " dk nZ'OK

_i(CT)’< 1 ) 1 o <CKT>
=T 1—x -k P 1—x/)°

4. Proof of the Theorem. We take and fix 7> 0 arbitrarily and choose ¢ >0 small
enough so that C,,=x <1 in (3.27) is satisfied when we decompose V=V, +V, as in
the Theorem. We then take a sequence of smooth functions V{’e C¥(R™) such that

(4.1) 17 (x> KDY (VP =V Dpm. =0,  j—o0.
Denote H;=—(1/2)A+ V{’+ V,. In virtue of (4.1) and Young’s inequality, we have
IV = Vil < KD7FHLDY VP =V )llgm-1 =0, j—> 0

and (H;—z)"'—>(H—2z)" " in B(L*(R™)) for all ze C\(R. It follows that e~ *#i converges
to e~ "M strongly in L*(R™).

Denote the G (t) corresponding to V¥’ + V, by G_(t)¥. Note that G/(t) is multi-
linear in V. It follows by the argument used for proving (3.26) and (3.28) that G, (¢)
converges uniformly for |#|<T in the topology of operator norm in L?(R™) for any
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1 <p <o, the limit of which is denoted by G (f)=1lim;_,, G (). It follows by taking
the limit j— o0 in

e—itsze—itHOGw(t)(j) ,
that, as operators in L%(R™),
e—-ilH=e—itH0Gw(t)

and that e~ ¥ extends to a bounded operator from LYR™) to LP(R™) for any 1 <q<2
and p=gq/(q—1) with norm

||9_itH||B(L-1,LD) <Cqlt] mii2=1/p)

for |t|<T. Moreover, as the operators from LYR™) to LP(R™) thus extended, the
convergence of e "#i to e "M is uniform with respect to 0<d<¢<T in the topology
of operator norm.

It follows that the FDS E(t, x, y) of (1.1) is bounded by Cy|#|™™? and, if ¥, is of
LY(R™), E(t, x, y) is continuous since the FDS E ;(t, x, y) is continuous and converges
uniformly to E(t, x, y) with respect to (t, x, y)e[d, T]1x R™ x R™. This completes the
proof.
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