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THE RIGIDITY FOR REAL HYPERSURFACES
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Abstract. We prove a rigidity theorem for real hypersurfaces in a complex projective
space of complex dimension n>4. As an application of this rigidity theorem, we classify
all intrinsically homogeneous real hypersurfaces in the complex projective space.

Introduction. Let Pn(C) be an ^-dimensional complex projective space. It is an

open question whether a real hypersurface in Pn(C) has rigidity or not. More precisely,

if M is a (2n — 1)-dimensional Riemannian manifold and i, i are two isometric

immersions of M into Pn(C), then are i and i congruent!

To this problem, many authors including the present ones gave some partial

solutions (see [1], [3], [4] and [5]). Recall that an almost contact structure (φ, ξ, η) is

naturally induced on a real hypersurface in Pn(C) from the complex structure of Pn(C),

and ξ is called the structure vector field. The rank of the second fundamental tensor or

the shape operator of a real hypersurface in Pn(C) is said to be the type number. As

one of the above-mentioned solutions, the following is known.

THEOREM A ([ 1 ]). Let M be a (2n — \)-dimensional connected Riemannian manifold,

and i and i be two isometric immersions of M into Pn{C) (n > 3). If the two structure vector

fields coincide up to sign on M and the type number of(M, ή or (M, ϊ) is not equal to 2

at every point of M, then i and i are rigid, that is, there exists an isometry φ of Pn(C)

such that φ ° i = ϊ.

The purpose of this paper is to give a solution of the rigidity problem using Theorem

A. Namely, first of all we shall prove:

THEOREM 1. Let M be a (2n— \)-dimensίonal Riemannian manifold, and i and i be

two isometric immersions of M into Pn(C) (n>4). Then the two structure vector fields

coincide up to sign on M.

The following is immediate from Theorems A and 1.

THEOREM 2. Let M be a (2n— Vj-dimensional connected Riemannian manifold, and

i and i be two isometric immersions of M into Pn(C) (n>4). If the type number of (M, i)

or (M, f) is not equal to 2 at every point of M, then i and i are rigid, that is, there exists
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an isometry φ of Pn(C) such that φ o ι = ϊ.

There are two concepts of homogeneous real hyper surf aces in Pn{C). A real

hyper surface M in Pn(C) is said to be intrinsically homogeneous if for any points p and

q in M there exists an isometry σ of M such that σ(p) = q, and extrinsically homogeneous

if for any points p and q in M there exists an isometry φ of Pn(C) such that φ(p) = q

and φ(M) = M. It is clear that an extrinsically homogeneous real hypersurface in Pn(C)

is intrinsically homogeneous. The first author classified all extrinsically homogeneous

real hypersurfaces in Pn(C), which consist of the so-called six model spaces of types

Al9A2,B, C, D and E ([6], [7]).

As an application of Theorem 2, we shall classify all intrinsically homogeneous

real hypersurfaces in Pn(C) {n>4). Namely, we can state:

THEOREM 3. Let M be a (2n—l)-dimensional connected homogeneous Riemannian

manifold. If M admits an isometric immersion i into Pn(C) (n>4), then ι{M) is extrinsically

homogeneous, that is, congruent to one of the model spaces of six types.

1. Preliminaries. We denote by Pn(C) a complex projective space with the

Fubini-Study metric of constant holomorphic sectional curvature Ac and M a

(2n— l)-dimensional Riemannian manifold. Let i be an isometric immersion of M into

Pn{C). For a local orthonormal frame field {e1? . . . , e2n-ι} of M, we denote its dual

1-forms by θh where and in the sequel the indices i,j,k,l,... run over the range

{1, 2, . . . , In — 1} unless otherwise stated. Then the connection forms 0f</ and the

curvature forms Θu of M are defined by

respectively. We denote the components of the shape operator or the second fundamental

tensor A of (M, i) by Ai}, and put Ψi = ΣAiβj. Then we have the equations of Gauss

and Codazzi

respectively, where the triplet (φ = {φi}), £ = £<*,•£,-, η = YJξiθi) is the almost contact

structure on M. The tensor fields φ and ξ satisfy

(1-2) dφ,j

For another isometric immersion i of M into Pn(C), we shall denote the differential
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forms and tensor fields of (M, f) by the same symbol as the ones in (M, i) but with a

hat. Then, since 0f = i)f and 0^ = 0^, from (1.1) we have

(1.3) AikAfl-AHAjt + ciφitφjt-φnφjit + lφijφu)

= AikAjι-AilAjk + c(φikφjl-φilφjk

2. Proof of the theorems. In this section we shall prove Theorems 1, 2 and 3.

PROOF OF THEOREM 1. We choose a local orthonormal frame field {eu e2, ...,
e2n-2>eθ} ί n S U C Π a W a Y t n a t

(2.1) ii=0,...9ξ2n-2 = 0 and ξo=l ,

where 0 denotes the last index In— 1. Then it follows from (1.2) that

(2.2) 0£O = O.

If we put / = 0 in (1.3) and make use of (2.2), then we have

(2.3) AikAj0~Ai0Ajk + c(φikφj0-φioφjk + 2φtjφk0) = AikAj0-Ai0Ajk.

Here we consider a local vector field

2n-2
ui = Σ Aojβj.

This vector field is independent of a choice of a local orthonormal frame field

{eu ..., eln-2i eo} satisfying (2.1), up to sign. In particular, we can define a subset Nx

of M by

Assume that N]LΦ0. Then we can take another local orthonormal frame field

{fu ... 5 /2«-2J eo} o n ^ i m s u c n a w a Y t n a t the unit vector field / 2 π - 2 is parallel to

uί. If we denote the components of tensor fields with respect to this new orthonormal

frame field by the same symbols as those to the old frame field, then we have

2n~ 1

Aeo= £ AOiet =
ί = l

2n-2

Σ - j2n-

2/1-2

= Σ -
where || || indicates the length of a vector field. It implies that

(2.4) Ap0 = 0 for / > = 1 , 2 , . . . , 2 Λ - 3 .

If M\Nί φ 0 , then it is obvious that (2.4) holds on M\Nι for any local orthonormal

frame field {eu ..., eln-2i eo} satisfying (2.1). Thus we may assume that (2.4) holds
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on M\dNί. For a while we consider all forms on M\dNι. In terms of this new local

frame field, it follows from (2.3) and (2.4) that

(2.5) ΛpiAq0 - AqiAp0 + c(φpiφq0 - φpOφqi + 2φpqφi0) = 0 ,

where/?, q= 1, 2 , . . . , 2n — 3, and / = 1 , 2, . . . , 2n—\.

Here we consider another local vector field

2π-3

Then, by the same method as in the above, we can define a subset N2 of M by

N2 = {peM\dNι\u2(p)Φ0}

and can assume that

(2.6) Aa0 = 0 on ( M V Λ Γ J n ί M V Λ ^ ) ,

where and in the sequel the indices a, b, c, ... run over the range {1, 2, . . . , 2n — 4}.

Putting p = a and q = b in (2.5) and making use of (2.6), we have

(2.1) ΦaiΦbO-φaθΦbi + 2φabΦiO=Q

If we put i = a in (2.7), then we get

(2.8) ΦabΦao = 0

Multiplying (2.7) by φab and making use of (2.8), we have

(2.9) ΦabΦio = 0,

and hence it follows from (2.7) and (2.9) that

(2.10) ΦaiΦbO = ΦaθΦbi.

Let vί9 v2, v3 be vectors in the (2n — 4)-dimensional vector space /? 2 "~ 4 given by

Vl=z(Φl 2n-3> Φl 2n-3> •> <^2w-4 2n- 3) »

V2=(Φl 2n-2> Φ2 2n-2> ? 0 2 M - 4 211-2) >

V3=(ΦlO, 0 2 0 , •••> 0 2 π - 4 θ )

Then (2.10) shows that {t^, ι;2, ι̂ 3} is a linearly dependent subset o f/? 2 "" 4 .

Finally, we assert that φab^^ f° r some indices a and b. Indeed, if (φab) is the zero

matrix, then the matrix φ is given by
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Φ =

\

tυ1

 ιυ2

I

Since vu v2 and v3 are linearly dependent, the rank of φ is not greater than 4, a

contradiction, because the rank of φ is equal to 2n — 2 and n>4. Therefore the matrix

(φab) is not zero.

Since there exists a non-zero entry of (φab), it follows from (2.9) that φi0 = 0. It is

easily seen from (1.2) that ξo=±l, and hence the two structure vector fields ξ and ξ

coincide up to sign on (M\dNί) n (M\dN2), and hence on the whole M. This completes

the proof of Theorem 1.

PROOF OF THEOREM 2. It is immediate from Theorems 1 and A.

PROOF OF THEOREM 3. Since M is homogeneous, both M and ι(M) are complete.

We denote by t(p) the type number of i at a point p of M, and define a subset U of M by

U={peM\t(p)>3}.

Then obviously U is open. Moreover, by a theorem in [2] or [5], there exists a point

p in M such that t(p)>3. Therefore the set U is non-empty.

For any points p and q in U, there exists an isometry σ of M such that σ(p) = q.

Then, by Theorem 2, the two isometric immersions i \ v and (i ° σ) \ v are rigid, that is,

ι(U) is congruent to ι(σ(U)). Thus the principal curvatures at/7 coincide with those at

q. This implies that the principal curvatures of M are constant on U. Hence U is closed.

Since M is connected, we have U=M and hence the two isometric immersions i

and i o σ are rigid, that is, there exists an isometry φ of Pn(C) such that φoi = ioσ.

Therefore ι(M) is an extrinsically homogeneous real hypersurface in Pn{C). As we have

already seen in the Introduction, ι{M) is congruent to one of the model spaces of six

types Aί9 A2, B, C, D and E.

REMARK. Theorem 2 is valid for connected real hypersurfaces in a hyperbolic

complex space form Hn(C) of the same complex dimensions as Pn{C) because we can

replace Pn(C) by Hn(C) in the proofs of both Theorem A (see [1]) and Theorem 1.

REFERENCES

[ 1 ] Y.-W. CHOE, H. S. KIM, I.-B. KIM AND R. TAKAGI, Rigidity theorems for real hypersurfaces in a

complex projective space, Hokkaido Math. J. 25 (1996), 433-451.



536 R. TAKAGI, I.-B. KIM AND B. H. KIM

[ 2 ] H. S. KIM AND R. TAKAGI, The type number of real hypersurfaces in Pn{C), Tsukuba J. Math. 20

(1996), 349-356.

[ 3 ] I.-B. KIM, B. H. KIM AND H. SONG, On geodesic hyperspheres in a complex projective space, Nihonkai

Math. J. 8 (1997), 29-36.

[ 4 ] S.-B. LEE, I.-B. KIM, N.-G. KIM AND S. S. AHN, A rigidity theorem for real hypersurfaces in a complex

projective space, Comm. Korean Math. Soc. 12 (1997), 1007-1013.

[ 5 ] Y. J. SUH AND R. TAKAGI, A rigidity for real hypersurfaces in a complex projective space, Tόhoku

Math. J. 43 (1991), 501-507.

[ 6 ] R. TAKAGI, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10

(1973), 495-506.

[ 7 ] R. TAKAGI, Real hypersurfaces in a complex projective space with constant principal curvatures I; II,

J. Math. Soc. Japan 27 (1975), 45-53; 507-516.

RYOICHI TAKAGI

DEPARTMENT OF MATHEMATICS

CHIBA UNIVERSITY

CHIBA 263-8522

JAPAN

IN-BAE KIM

DEPARTMENT OF MATHEMATICS

HANKUK UNIVERSITY OF FOREIGN STUDIES

SEOUL 130-791

KOREA

BYUNG HAK KIM

DEPARTMENT OF MATHEMATICS AND INSTITUTE OF NATURAL SCIENCES

KYUNG HEE UNIVERSITY

SUWON 449-701

KOREA




