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Abstract. For a relatively minimal hyperelliptic fibration, the best bounds of the
orders of its automorphism group are obtained.

Let S be a smooth projective surface over the complex number field. A hyperelliptic
fibration is a morphism f:S->C where C is a projective curve such that a general
fiber of / is a smooth hyperelliptic curve.

DEFINITION 0.1. An automorphism of the fibration / : S-* C is a pair of auto-
morphisms (ά, α) with άeAut(S), αe Aut(C) such that the diagram

s
Ί

i

c

•

α

s

V
I

c
commutes.

The automorphism group of a fibration / will be denoted by Aut(/). Let G
be a subgroup of Aut(/), G. Xiao has obtained upper bounds for the order of G:

PROPOSITION 0.1 ([6, Proposition 1]). Suppose S is a complete surface of general
type over the complex number field with a relatively minimal fibration f:S->C whose
general fiber is of genus g>2. Then

ll68(2#+l)(Λ:s

2 + 8<?-8) otherwise.

When g = 2, we have shown the following result.

THEOREM 0.1 ([3, Theorem 0.1]). Suppose S is a complete surface of general type
over the complex number field with a relatively minimal genus 2 fibration f: S-+C. Then

G\<504Kϊ .
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IfS is not locally trivial, then

r
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120*s

2

/c

if

if

if

g(C)>2

g(C)=\

0(C) = O.

THEOREM 0.2 ([1, Theorems 1, 2]). Suppose S is a complete surface of general

type over the complex number field with a relatively minimal fibration f: S-+C whose

general fiber is a hyperelliptic curve of genus g>2. If g(C)>2, then

G\<

0 - 1
504*1

-Kί if ,3,5,9

157.5*|

if 0 = 2

'/ 0 = 3

if 0 = 5

if 0 = 9.

Ifg(C)=\, then
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90*1

if 0>6

if 0 = 2

if 0 = 3

'/ 0 = 4

if 0 = 5

Ifg(C) = 0, then

70-13

120*|/c

70*| / c

60*2

/ c

*l/c i/ 0>6

»/ 0 = 2

if 0 = 3

'/ 0 = 4

if 0 = 5.

In this paper, by using more detailed analysis of the singular fibers, we will obtain

the best upper bounds for the orders of the automorphism groups of hyperelliptic

fibrations. The main theorem of this paper is the following:

THEOREM 0.3. Suppose S is a complete surface of general type over the complex

number field with a relatively minimal fibration f:S-*C whose general fiber is a

hyperelliptic curve of genus g>2. If g{C)>2 and f is not locally trivial, then
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Ifg(C)=\, then
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0 - 1
126 2

0-i s

315 2

0- l^ S

f 24(0+1) R2

0-i s
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360 2
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if

0 / 2 , 3 , 5 , 9

0 = 2,3

0 = 5,9.

0 / 2 , 3 , 5 , 9

0 = 2,3

0 = 5,9.

Ifg(C) = 0, then

\G\<

20(0+1)

0 - 1
120 fc-2

ΛS/C

300

Kiιc if 0 / 2 , 3 , 5 , 9

if 0 = 2,3

c if 0 = 5 , 9 .
L 0 - 1 '

All these bounds are the best possible. Furthermore, if the equality holds, then the
fibration is necessarily equimodular.

1. Preliminaries. Let / : £-• C be a hyperelliptic fibration of genus g>2. Then
the relative canonical map of / is generically of degree 2. This map determines an
involution σ on S whose restriction on a general fiber F of / is a hyperelliptic involution
of F. σ is called the hyperelliptic involution associated to the hyperelliptic fibration /.
We always assume σeG.

Let p: S -+ S be the composite of all the blow-ups of isolated fixed points of the
involution σ, and let σ be the induced involution on S. The factor space P = S/(σ} is
a smooth surface, and / induces a ruling on P:

ft: P-^C.

The projection from S to P is a smooth double cover θ : S^P which is determined by
the pair (R, δ) where R is the branch locus of θ and δ is the divisor such that
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LEMMA 1.1. There exist contractions of ruled surfaces ψ : P-+P and φ: P^P,

such that π: P —> C is a minimal ruled surface and π = πψφ. Let (R, δ) and (R, δ) be the

images of(R, δ) in P and P, respectively. Then \(J\JJ : P -» P is a minimal even resolution of

singularities ofR, and ψ: P -> P is a minimal even resolution of non-negligible singularities

ofR.

The proof is obvious. Note that the minimal ruled surface P need not be unique,

but P-• C is uniquely determined by π : P-• C and {R, δ).

Now we obtain a diagram as follows.

(.*)

• P

In this paper the linear and numerical equivalence will be denoted by " = " and

" ~ " , respectively. Let

R~-(g+l)KP/c + nF.

Then

Since Kp/c = 0 and KP/CF= —2, we have

^p/c~

δKP/c = — n .

\jj can be decomposed into a series of blow-ups. Suppose that the center of the z'-th

blow-up is a singular point of multiplicity mt in the corresponding even resolution of

R. Let kt = [ra/2]. Denote the total transform in P of the exceptional curve of the i-th

blow-up by CEf. Then we have

By the formulas for double covering, we have

(1) χr = χ(&s)-(g-l)(g(C)-l)

(5 2 ^ )
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(2) κilc = K2

s~Hg

R may contain isolated (— 2)-curves which are produced during desingularization

of (2fc— 1 -• 2fc — 1) singular points. We have the following lemma.

LEMMA 1.2. The images under θ of vertical (— 1)-curves ofS are isolated (— 2)-curves

in R, which are the isolated { — 2)-curves in R as well. If R contains I vertical ( — 2)-curves,

then

κs/c = κs/c +1

PROOF. The vertical (—l)-curves in S are produced by blowing up the isolated

fixed points in S with respect to the involution σ. The restriction of σ to these (— l)-curves

is the identity map. Therefore the images of these (— l)-curves under the double covering

θ must be contained in the branch locus R. Since R is a smooth divisor, these images

are isolated ( —2)-curves in R. These ( —2)-curves cannot be produced during the

desingularization of R because the singularities in R are rational singularities after a

double covering. Hence they are isolated ( —2)-curves in R as well. •

If we take away from the branch locus R all the isolated vertical (— 2)-curves, we

obtain a divisor Rp which is called the principal part of R. The second singularity index

(or more precisely, the index of negligible singularities) s2(f) of the hyperelliptic fibration

/ : S-> C is defined as

Since R — Rp is the sum of / isolated vertical (— 2)-curves, we have

(R-Rp)
2 = R(R-Rp)=-2l,

(R-Rp)KP/c = 0.

Hence

(3) s2(f) = R2 + RKPlc + 21 = 4δ2 + 2δKP/c + 2/

Substituting (1) and (2) by (3), we have the following proposition.

PROPOSITION 1.1 (cf. [7, Theorem 5.1.7]). If / : S->C be a relatively minimal

hyperelliptic fibration of genus g>2, then
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Since afterwards we need only the formula for Klιc, for simplicity by abuse of

language, we define the higher order singularity index (or more exactly, the index of

non-negligible singularities) sh(f) as

The contributions of each fiber F of π to the singularity indices sh(f) or s2(f) are referred

to as sh(F) or s2(F) respectively.

Now we will show how to calculate s2(f) and s2(F). Let / : £-> C be a fibration,

and D an effective divisor on 5. If D is a non-vertical (i.e., f(D) = C) smooth irreducible

curve, then f\D: D -> C is a finite cover of C with degree DF where F is a fiber of /.

The ramification index of this cover can be calculated by the following formula:

/ = 2pg(D)-2-(2g(C)-2)DF.

If D is vertical (i.e., f(D) is a point), then

D 2 + DKSIC = 2pg(D) - 2 = - χ t o p(Z>).

For any reduced effective divisor D, we will define the relative ramification index of the

divisor D with respect to C as D2 + DKS/C. Let / : S-^S be an embedded resolution of

singularities of D in S and 5 the strict transform of D. Then 5 is a disjoint union of

smooth irreducible curves. Assume that the center of the z'-th blow-up in / is a singular

point of multiplicity mi in D or in the successive strict transform of D. Then

Therefore the relative ramification index of a reduced divisor D is just the sum of the

ramification index of D with respect to C and of the double of the difference between

the arithmetic genera of D and D. If D contains vertical components, then their

contribution to the ramification index is equal to the negative of their Euler characteristic.

In this way we can calculate explicitly the singularity index s2(f) and ^2(^)

For a subgroup G c Aut(/) we have two exact sequences

1 —> K —> G—> H—> 1 ,

1 —> Z2 —> K —> K —> 1 ,

where //^Aut(C), K={(&, id)eG}, and K^Aut(πψψ) is induced by K.

LEMMA 1.3. P can be contracted to a minimal ruled surface π : P-+C (see the

diagram (*)) which satisfies the following conditions:

(1) Let (R, δ) be the image of (R, δ) in P. Then φφ: P^P is the minimal even

resolution of R.

(2) Let Rh be the non-vertical part of R. Then the multiplicity of any singular point

in Rh cannot be greater than g + \.

(3) There exists a finite subset Σ = {pί, ... ,ps} c: C such that after having blown
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up the singular points on each fiber n~1(pi) which have the highest multiplicity, one gets

a ruled surface ft: P-+ C such that π is compatible with K, i.e., K can induce a subgroup

Λ"^Aut(π). If Σ = 0, then the minimal ruled surface is said to be compatible with K.

Proof. Let F be a fiber ofφφ: P -> C which is not irreducible. Let φφ(F) =p. The

set of (— l)-curves on Fcan be divided into ^-orbits. We have the following three cases.

(a) Some ^-orbit contains more than one (— l)-curves and they meet one another.

Then we have F=E-\-E', EE' = \ and {E,E'} forms a Λ^-orbit. We can choose one of

them, for example, E.

(b) F has more than one (—l)-curves and all (—l)-curves in any Λ^-orbit are

disjoint. We can choose a Λ^-orbit such that the intersection number of its (— l)-curve

with Rh (the horizontal part of R) is minimal.

(c) F has only one (— l)-curve E which is stable under K. The multiplicity of E

in F is greater than 1. We will choose E.

Therefore for the so chosen (— l)-curve E we have

R F l

Contracting the above chosen (— l)-curve (or all the ( — l)-curves in a ^-orbit as in the

Case (b)), we get a morphism φx: P ->P 1 . Pi is still a ruled surface and R, Rh, will be

contracted to divisors Rί9 RhΛ in Pι. The multiplicities of singular points in RhΛ will

not be greater than g + 1 . In the Cases (b) and (c) K induces a subgroup of the

automorphism group of Pγ -> C. In the Case (a) F will be contracted to a projective

line in Pί and ^induces a subgroup of the automorphism group of P1—φi{F) -+ C— {/>}.

Replacing P, R and Rh by Pu 7^ and RhΛ respectively, this process can be continued

inductively. Finally we will obtain a needed minimal ruled surface.

The statement of (1) is obvious by the uniqueness of minimal even resolution. •

2. Local analysis.

PROPOSITION 2.1. Suppose that f is not locally trivial and that there exists a minimal

ruled surface π: P -• C which is compatible with K. If Rh is etale, then

\G\:

_γ-rKllc if 0#2,3,5,9

24
rKilc if g = 2,

^-rK^ if 0 = 5,9

where
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r = min |StabHπ(F)| .

PROOF. Let Fo be a fiber of π with s2(Fo)φ0 such that r = | StabHπ(F0) |. Then

must be a component of R. Hence s2(F0) = 2(2g+ 1), we have

By [4] and [5] we have

if 0 ^ 2 , 3 , 5 , 9

if # = 2,3

if 0 - 5 , 9 .

D

PROPOSITION 2.2. Suppose that the minimal ruled surface π: P -• C satisfies the

conditions of Lemma 1.3. If there exists a fiber F ofπ such that sh(F)Φ0 and π(F) φ Σ, then

where

r= min
sh(F)±0
π(F)φΣ

PROOF. Let Fo be a fiber of π with sh(F0) Φ 0 such that r = | Stab^π^o) | and π(F0) φ Σ.

Then ^must be a dihedral group or a cyclic group. If there is a non-negligible singular

point of R outside the poles of Fo, then we must have k{>2 or kί = 1 but k2 = 2 (i.e.,

a (3 -• 3) singular point). Thus

Therefore

2(20+1) % + l ) ^ 2G <— —rK§lc< —-~rKlίC when #>
4^-7 0 - 1

Now suppose that 7? has a non-negligible singular point at the poles of Fo. The

strategy of the proof can be described as follows. Let peF0 be a singular point at a

pole. Let s2(p), sh(p) be the contribution of/? to the singularity indices of Fo. Then we have
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*-2 - * -((g-l)s2(Fo) + sh(F0))-~,

|G |<2 |£ | | 7/ |< ^ ' ; M M rKilc.
(g-l)s2(F0) + sh(F0)

 s ι c

The following inequality we need

2{2g+:

(g-l)s2(F0) + sh(F0) g-\

is equivalent to the inequality

2(g+l)((g-l)s2(F0) + sh(F0))-(g-\)(2g+l)\K\>0.

In fact we will show that

2(g+l)((g-l)s2(p) + sh(p))-(g-l)(2g+l)\K\>0.

The group K may be a cyclic group Zm or a dihedral group D2m. If K^D2m, then

the two poles are isomorphic singular points. Hence s2(F0)>2s2(p) and sh(F0)>2sh(p).

It is evident that if we can show the inequality for the group Zm, the same is true for

D2m. So from now on in the proof we will assume K^Zm.

Since p is a pole of P 1 , the leading part of the local equation of Rh at p is xa + th

or x(xa + tb), where the local equation of Fo is t = 0 and |ΛΠ|α. Since the singularity

index at p of the case xa + tb is less than other cases (for example, the cases x(xa + tb),

t(xa + tb) or xt(xa + tb)). We assume that the leading part of the local equation of R at

p is xa + tb. Then we have several cases.

(a) a<b and a<g+l. If a = 3, there is a (3 -• 3) singular point at p, hence kx = 1,

Jfc2 = 2 , / > 1 . Wehave

Hence

^ if

If α>4, then kx>{a-\)j2 and #>3. We have

Hence

sfc( p)-(0-1X20+

if
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(b) 4<b<g+\ and a = b + u where 0<u<b-l. Let c = [b/2].
If w>4, then we have kί=c, k2 = 2 and \K\<a<2b-\<4c+\.

Hence

-23g-3l>0 if g>3 .

If w = 3 and c>3, then we have &! = <:, Λ2 = l, ^ 3 = 2, /> 1 and | ^ | < α < 2 c + 4.

Hence

if ^>

If u = 3 and c = 2, then we have kι=2, s2(p)>6 and | ^ | < α < 8 .

sh(p)>2(g-l).

Hence

2te+l)sΛ(p) + 2(fif + l)(fif-l)52(p)-(gf-iχ2^+l) 8 > 8 t e - l ) > 0 if g>

If u = 2, then we have kί=c, s2{p)>2 and

Hence

if

If 0 < M < 1 , then we have kγ = c and \K\<a<2c + 2.

sh(p)> -6c2 + 6(g+l)c-4g-2 .

Hence

2fo + lK(/>) - (gf - 1X20 + l)(2c + 2)

>-l2{g+l)c2 + 2(4g2 + 13g + Ί)c-12g2-10g-2>0 if

If gf = 3 in this case, then b = 4 and | ^ | < α < 5 . Hence
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(c) 4<b = 2c<g+l and a = qb + u where 0<u<b— 1, q>2. In this case
\K\<a<2c(q+l)-l. We have kγ = -=kq = c.

~(3g2-2g-l-3(g+l- 2c)2)q

Hence

1 ) -

- 4 ^ - l > 0 if

(d) 5<b = 2c + l < ^ + l and a = 2qb + u where 0<u<b— 1, ^>1. In this case
|£ |<α<(2c+l)(2g+l)-l . We have kx=k3= - - =k2q_1 = c, k2=k±= - • =k2q =
cH-1, / > ^ .

Hence

2(0 +

if

(e) 5 < b = 2c + 1 < g + 1 and a = (2q+ \)h + w where 0<w<6-l,^r>l.In this case
|£|<α<(2c+l)(2# + 2)-l. We have k,^k3= =k2q+ί = c, k2=k^= =klq =
c+\,

l)c-2qg-4g-q-2.

Hence

Άg+1K( p) - ig - Wg + iX(2c+iχ2g+2) -1)

if

(f) fe = 3<0-fl and a = (2q+l)b + u where 0<w<2, ^r>0. In this case
\K\<a<6q + 5. We have k1=k3= • =Λ2 β_1 = c, k2=k4r= =Λ2β = c + l ,

Hence

) - (g - l)(2g + l)(6q + 5)

+ 5g-20q-Ί>0 if ^ > 2 .

D
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PROPOSITION 2.3. Suppose that there exists a minimal ruled surface π: P-+C which

is compatible with K. If Rh is not έtale and sh(f) = 0, then

(1) \G\<(4(g + l)/(g-l))rKΪ/c, where

r= max | StabH(F) | .

(2) I GI <(20(0 +1)/(0 - l))Ki/c if g{C) = 0.

PROOF. (1) First we fix some notation. Let Co be a section of π with the least

self-intersection number CQ = —e, and F a general fiber of π. Let Rh~2(g + 1)CO + «F.

Since 7̂ Λ is not etale, we have « > 0.

^ may be a dihedral group or a cyclic group. Assume that K=Zm. If Rh has a

singular point peF0 which is not a pole, then ^ ( p ) ^ , s2(F0)>2m. If p is a pole, then

\. Hence

> (g - l)[2(m + lXfif + 1) - m(2^ + 1)] > 0 .

Now assume that Rh is smooth. If Fo is tangent to Rh at a point outside the poles

(or at any point when m= 1), then s2(F0)>m. We have

Let C^^CQ^ eF be a section which is stable under the action of K. Since C^Rh =

there exists a fiber Fo tangent to Rh at a pole p0, hence s2{Po) = m — 1. If C o meets

then there exists a fiber F x tangent to i^Λ at a pole /?!. Hence

7 — 1 / m— 1 m— 1

IGI < 2 m 2 ^ i rKl
2 ( l ) ( l )

S/C

Next assume that C o does not meet Rh. If C o is not a component of i^Λ, then

n = 2(g + l)e, i.e., ^Λ^2(^f + l)(C0 + ^F). Then relative ramification index of Rh will be

ϊ ) - 2 ] .

Since the sum of ramification indices on C^ is equal to n(m — \) = 2(g+ l)(m— l)e<

Rjϊ + RhKPjC, there exists another fiber of π which is tangent to Rh at a point outside

poles. If Co is a component of Rh, then n = (2g+X)e, i.e., 7?Λ — CO
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The relative ramification index of Rh — Co will be

Since the sum of ramification indices on C^ is equal to (2g+ l)(m— l)e which is less

than the relative ramification index of Rh (note that m < 2 g + l ) , there exists another

fiber of π which is tangent to Rh at a point outside poles.

Therefore we have shown

when K^Zm.
Now assume that K=D2m. In this case we have e = 0. If Rh has a singular point,

then by the same argument as above we can show

3 - 1

Now we assume Rh is smooth. Since CoRh = n>0, there exists a fiber Fo of π which

meets Rh at 2 poles. The second singularity index of these points is greater than or

equal to m — \. There exist also fibers Fί and F2 which meet Rh at m points whose

stabilizer in K is isomorphic to Z 2 . Let rt = \ StabHπCFf)|, / = 0, 1, 2. Then

2(m-l)+ m_+rn_\H{

20+1

2(0-l)(2m-l) \H\
20+1 r

i|G|<2 (2m) " -rKilc

2(g-ί)(2m-l)

(2) If H is not dihedral or cyclic, then we have r = 5, and by the inequality of (1),

the conclusion of (2) is true. Now assume that H is dihedral or cyclic. Since a rational

fibration has at least three singular fibers, we may assume that Fo is a fiber with ^2(^o) > 0

with |Stab H π(F 0 ) |<2. Let \K\=m. Then s2(F0)>m/2. Hence

2 2 8(20 + 1) '

8(2g+l) 20(0 + 1)
κ < κ

20(0 + 1)
κs/c< — κ s/c

0 - 1 D
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PROPOSITION 2.4. Suppose that the minimal ruled surface π: P —• C satisfies the

conditions of Lemma 1.3 with Σφ0. Then

(1) I GI < ( % + l)/(g - l))rKi/c, where

r = max|StabH(/?)| .
peC

(2) I GI <(20(0 + l)/te - l))Ki/c if g(C) = 0.

PROOF. By Lemma 1.3(3), there exists a finite subset Σ={p1,... ,/? s}^C such

that after having blown up the singular points on each fiber π~ι(pi) which have the

highest multiplicity, one gets a ruled surface π: P^C such that π is compatible with

K, i.e., £ can induce a subgroup Λ^Aut(π). Let π~1(pί) = Γί + Γ 2 with ΓiRh = g+\,

i= 1, 2. Blowing down Γ 1 ? we get /\ = π~ 1(/71) which has a singular point of Rh with

multiplicity # + 1. If g + 1 is an odd number, then one and only one of the components

Γ1 and Γ2 will belong to the ramification divisor R. This is impossible because these 2

components are symmetric. Thus g + 1 must be even. We have

( 3 2 2 l

= \.5g2-g-0.5.

If Σ contains more than one i7-orbits, then

v2 ^ 1.5βτ2-^-0.5 Λ \H\
2

ι C ι s r K l c < , κ h c .
3g2-2g-l g-\

From now on we suppose that Σ itself is an //-orbit. If there is a fiber F2 of π

with sh(F2)>0 and π(F2)φΣ, then by Proposition 2.2 we are done. By assumption there

is an aeK such that oc(Γ1) = Γ2. Let

We have an exact sequence

1 -» TV -> ̂  -• Z 2 ^ 1 .

Since the intersection point of /\ with Γ2 is fixed by the action of N, N must be cyclic.

Similarly, K must be cyclic or dihedral. There exist two sections Co and C^ of π which

are stable by N. Let/?0 = Γx n C o , ^ ^ = Γ2 n C^. If Kis cyclic, then ot2eN. But α stabilizes

the sections Co and C^, so oc(p0) =p0, %{Poo) =Poo This contradicts the fact that α(ΓJ = Γ 2 .

Therefore ^ must be dihedral and α is an involution.

Since Σ is an //-orbit, the factor space P ' = JP/<α> is a minimal ruled surface. Let

π ' : P ' - > C be the ruling, and let P^P' be the double covering with branch locus
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B' ~2C'0 + mF' where C'o is a section of π' having the least self-intersection number

(C'0)
2= —e'. As P is smooth, the branch locus B' is smooth as well. Moreover, B' is

tangent to the fibers of π' over Σ. Thus we have e' > 0 and m>2e'. Since the two sections

Co and CQO in P do not meet the ramification divisor, there is at least one section in

P' which does not meet B'. Hence m = 2e'. Let rx = \ StabH(pι) |. Then we have

Let R'h be the image of Rh in P'. Then

Now we distinguish two cases.

(a) There is a fiber F2 of π, π(F2)φΣ such that i?' meets ^ on the image of F2.

Then we have s2(F2) > \ K\/2. Let r2 = \ StabHπ(F2) |. Then we have

κ 2 > L5g2-g-0.5 m \H\ (g-l)\K\ ^ \H\\

2{2g+\)

\G\

Since | K \ < 2g + 2, we have

Namely,

I ̂ l ^ ~ 7T7^ . Λ , , r?u fΛ^S/C^ —j fI^S/C '

(b) All the intersection points of R'h with B' are on the fibers over Σ. If C'o is a

component of R'h, then R'h — C'0~gC'0 + sFf. Since s>ge\ we have

It implies that the multiplicity of Rh on the interesection point Γ 1 n Γ 2 is at least g.

Since g+ 1 is even, we have /cx ={g+1)/2, k2>(g—1)/2, that is,

when g>4.

Thus
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If 0 = 3, then s^FJ^ 10, s2(F1) = 6. We have

A s / C > —
11 I f~* I

"7|if| "~7~

If Q is not a component of i^, then s>(g+ l)e'. We have

It implies that the multiplicity of Rh on the intersection point Γ1 n Γ 2 is at least g+ 1.
Since gf + 1 is even, we have kί =k2 = (g + l)/2, that is,

As

Thus

2(2^ + 1)1X1 4(^ +
I ^ I ^ 7 7 Γ T rlKS/C< 7

Finally assume that g(C) = 0. If H is not dihedral or cyclic, then we have r = 5,
hence by the inequality of (1), the conclusion of (2) is true. Now assume that H is
dihedral or cyclic. Since a rational fibration has at least three singular fibers, we may
assume that Fγ is a fiber such that π(F^)eΣ and | StabHπ(/7

1)|<2. We know that
1.50 2 -0-0.5, |£ |<2(0+1). Hence

Since

10(0+ lK(F1)-2(g-l)(20 + 1)| K\>(g2-\)(Ίg+l)>0,

we get

D
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3. Proof of the Main Theorem. By Propositions 2.1 to 2.4, we have

rCllc if 0*2,3,5,9

c if 0 = 2,3

if 0 = 5,9

where

0 - 1
24

1

9-1

60
rK2

slc

= max|StabH(/?)| .
peC

Or equivalently,

where

{
24

60

if gf/2,3,5,9

if 0 = 2,3

if 0 = 5,9.

We distinguish three cases.

(a) g(C)>2. Since H is a subgroup of Aut(C), H determines a finite morphism

τ: C-> X= C/H. Denote the ramification indices by rv Then Hurwitz's theorem implies

that

Let

where

ψ(g(Xls,ru...,rs) = 2g(X)-2+tι ( 1 - — | > 0 ,

s>0, rt>2, i= 1,..., s are integers. By calculation we can see

ς»(0,3,2,3,7) = - 1

9(0,3,2,3,8) =

42

1

~2Λ

φ(g(X),s,rί9 . . . , r j >
20~

otherwise .
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Thus

\ = 84(g(C)-l) when r 1 = 2 , r2 = 3, r 3 = 7

|J/ |=48(0(C)-1) when r 1 = 2 , r2 = 3, r 3 = 8

IHI < 40(gf(C) - 1 ) otherwise .

If | J7 | = 84(0(C)-1), then r = 7. We have

I GI < rΛΓ|/c = (Ki-S(g- IMC)-1))

7. ^ M H I JM ^ | 0 |

J - l 3 0 - 1 3\K\

™ ^ \G\

hence

.. 21 A '2

4 g-\

If I H\ = 48(0(C)-1), then r = 8 . Similarly we have

hence

l β , s ^ β
5 0 - 1 4 0 - 1

If I //| <4O(0(C)-1) and i?Λ is not etale, then \K\<4(g+l). Hence

< κ ϊ .
4 0 - 1

If Rh is etale, then since / is not locally trivial, R must contain some fiber Fo. By

Proposition 2.1, s2(F0) = 2(2g+l). Let p=f(F0), and n = \H\. H determines a finite

morphism τ : C-> Λ"= C/H. Denote the ramification index of pe C with respect to τ by

r and the other ramification indices by rt. Then Hurwitz's theorem implies that
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As the 7/-orbit of the point/? has n/r points, this implies that s2(f)>2(2g + \)n/r. Hence

It is not difficult to see that the expression 2g(X) — 2+ l/2r + Σ(l — l/rf) reaches

its minimal value 2/21 (under the condition 2g(X)-2 + Σ(\-\lri)>ϋ) when g(X) = 0,

rί=2, r 2 = 3, and r = r3 = Ί. Namely,

-l)n = — (g-l)\H\ =—?—(g-l)\G\.
21 21|X|

J - 21 21

Thus

. „. 21

4 g-\ ^~ 4 g-\

Therefore we have shown

T 7^
in all cases when g(C)>2.

(b) gf(C)= 1. Then r = 6, and we get

s / c |
gf—1 gf — 1

(c) gf(C) = O. If H is not cyclic or dihedral, then r = 5, and we get

Now assume that H is dihedral or cyclic. Since a rational fibration has at least

three singular fibers, we may assume that Fo is a fiber with | StabHπ(F0) | < 2 such

that sh(Fo)>0 or ^ 2 (F o )>0. If Rh is etale or sh(Fo)>0 and π(F0)φΣ, then

by Propositions 2.1 and 2.2. Otherwise we have
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by Propositions 2.3 and 2.4. D

4. Examples. To construct the fibrations whose automorphism group attains
the maximal order is nearly trivial. Let F be a hyperelliptic curve of genus g such that
I Aut(F) \=2A. Let φ: F-+ X= P1 be the double cover determined by the canonical linear
system | ^ F | . Let BeDiv(X) be the corresponding branch locus. Then dεgB = 2g-\-2.

Let Cί be a Hurwitz curve, and Hί=Aut(Cί). Then Cγ has an 7^-orbit
{g1? . . . , qm} which contains m=\2(g(C)—\) points. Let Dί=^qieΌrv(C1). Then

Let C 2 be an elliptic curve withy-invarianty(C2) = 0. Fix a qγ e C2 Then the order

of the group of automorphisms Aut(C2, qγ) of C 2 leaving qγ fixed is equal to 6. Let

H'2 = Zm@Zm be a subgroup of translations of Aut(C2). Take an extension subgroup

# 2 c = 7 / 2 c i A u t ( C ) such that H2/H'2^Aut(C2, qγ\ Then \H2 \ = 6m2. Let q u . . . , qmi be

the orbit of qι under H2 and D2=^qieΌiy(C2). Then deg D2 = m2.

Let C3 = P \ ^ i , . . . , ^i2 be the twelve vertices of an icosahedron. Let H3 a Aut(C3)
be the icosahedral group. Let Z)3 = Σ^iGDiv(C3). Then degZ)3 = 12, and \H3\ = 60.

Now let P=CxXwhere C=C i 9 /= 1, 2, 3. Taking R = pr:fD + pr^B where i) = A,
/= 1, 2, 3 as the branch locus, we construct double cover of P. After desingularization,
we get a smooth surface S with a hyperelliptic fibration of genus g / : S—• C.

When /= 1, we have g(C)>2 and

When z" = 2, we have ^(C)= 1 and

I GI = 12Λm2 , A | - 2(gf - l)m2 .

When / = 3, we have g(C) = 0 and
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