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Abstract. We study the geometry of the cut locus of a separating fractal set A in

a Riemannian manifold. In particular, we prove that every point of A is a limit point

of the cut locus C{A) of A, and the Hausdorff dimension of C{A) is greater than or equal

to that of A. Furthermore, we study the cut locus of the well-known Koch snowflake,

and show the Hausdorff dimension of its cut locus is log 6/log 3 which is greater than

the Hausdorff dimension, Iog4/log3, of the Koch snowflake itself. We also give another

example for which the Hausdorff dimension of the cut locus stays the same. These two

new examples are new fractal objects which are of interest on their own right.

1. Introduction. In Riemannian geometry, the concept of the cut locus plays a
very important role in investigating the global structure of a Riemannian manifold M.
The cut locus C(p) of a point p is defined to be the set of points xeM such that there
is a geodesic γ from p to x which is minimizing up to x, but stops being minimizing
beyond x. It is one of the basic tools in Riemannian geometry. It was used, for example,
by Meyers [7] in studying the topological classification of Riemannian manifolds, and
more recently, major advances in Riemannian geometry such as the sphere theorem,
the soul theorem, etc. are achieved by tools partly employing the concept of the cut
locus. One can similarly generalize it to the cut locus C(S) of a set S in a Riemannian
manifold. Namely, C(S) can be defined to be the set of point x such that there is a
geodesic, from a point p in S to x where any point z on γ between p and x minimizes
the distance between the S and z, but γ stops doing so beyond x.

However, as far as we know, the cut locus of a set has not been studied as much
as that of a point. People seem to be more interested in the focal locus of a submanifold
as can be found in [12]. The focal locus of a submanifold corresponds rather to the
conjugate locus of a point, and these concepts are more local. As for the cut locus of
a set, Hartman [5] and Shiohama and Tanaka [10] have studied it. Also Wolter [9]
[13] [14] [15] has studied it from various angles.

The study of the cut locus has a more practical side, too. In 1908, Voronoi
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studied the cut locus of a discrete set of points in the plane, which is now commonly
called the Voronoi diagram [11]. It has numerous applications in geometry and other
fields of mathematics as well as in computer science and engineering. More recently,
Blum [1] proposed to study the cut locus of a plane domain as a way of compactly
representing the shape of the domain. He called it the medial axis. The medial axis,
which is also called the Voronoi diagram, has many applications in computer vision,
NC (numerical control) tool path generation, and the automatic mesh generation in
FEM (finite element method). Its careful mathematical study has been done by the
first author and others [2], and a new algorithm to find the medial axis was obtained
in [3].

It is well-known that the cut locus is a very unstable object with respect to
the small boundary perturbation. In fact, none of the algorithms including that in [3]
are completely stable, and the stability analysis has been one of the main issues in the
study of the cut locus in the applications community. One can easily observe that if
the boundary has more and more wiggles, the cut locus branches out in a more
complicated fashion. The limiting case of boundary wiggling is the fractal boundary.
Even if the boundary may not be a fractal set in practice, it may look like one in the
resolution scale in question, in which case the cut locus also looks fractal-like.

In this paper, we investigate this limiting fractal case. It is interesting for the
stability reasons as explained above as well as being itself an interesting object of
study in mathematics.

In Section 2, we define the separating fractal set and study its local fractal geometry
using the concept of the upper convex density; we proved that the so-called dull or
sharp points are dense. (See below for definitions.) We prove that the Hausdorίf
dimension of the cut locus of the separating fractal set cannot decrease. An interesting
question arises whether it is possible for the fractal dimension to increase. In Section
3, we give an example, the cut locus of the Koch snowflake, in which the Hausdorff
dimension strictly increases. We also give another example, Bifurcated tree, in which
case the Hausdorff dimension remains the same. It is worth mentioning that these cut
loci are new examples of fractal sets, and it is our opinion that they are interesting
objects on their own right.

Finally, we would like to thank F.-E. Wolter for his interest in our works and for
the lively discussions on this subject matter.

2. Separating fractal set and its cut locus. In this section, we study fractal sets

in a smooth complete Riemannian manifold M. What we are interested in is a fractal
set which looks like a piece of boundary of a domain. As we can localize our argument,
a fractal set need not bound a domain, which leads us to the concept of a separating
fractal set. Below, we give definitions of dull and sharp points. Utilizing the notion of
upper convex density in fractal geometry, we prove that the dull as well as sharp points
are dense. Furthermore, we also prove that the Hausdorff dimension of the cut locus
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of a separating fractal set is greater than or equal to that of the given separating fractal

set. These results show that the cut locus of a separating fractal set is more complicated

than the given one.

DEFINITION 2.1. Let A be a closed set in M, and let x be a point not in A.

A geodesic segment y from A to x is said to be in the class Γ(A, x), if the length of y

is equal to the distance between x and A. A point peM is called a cut point of the

closed set A, if there exists a geodesic y from A to p such that y(0)eA, y(l)=p, and

y\[Ol]eΓ(A,p), but 7\ i0J+ε]φΓ(A, y(l+ε)) for any ε>0. The set of all cut points of A is

called the cut locus of A, and is denoted by C(A). (Note that some people take the

closure of C(A) to be the cut locus of A; see, for example [13].)

DEFINITION 2.2. Let A c=Λf. A is called separating at a point xeA if there exists

ε>0 such that for any 0<δ<ε, A separates Bδ(x) into two nonempty disjoint parts. A

set A is separating if A is separating at every interior point of A in the relative topology

of A.

Before defining fractal sets, we give several definitions about the Hausdorff dimen-

sion. We will follow the basic definitions and notation in [4].

DEFINITION 2.3. Let \U\=άmm(U) for UczM. For a subset Λc=M, define

HI(A) = mfΣ?ίί I UiW where {£/J is a cover of A satisfying | t/ f | «5 for each /. Define

the ^-dimensional Hausdorff measure by

Hs(A) = limHs

δ(A).

Define the Hausdorff dimension dimH(A) by dimH(Λ) = inf{ί>0|//'(,4) = 0}. When

dimH(A) = s, define the s-sef of A to be the subset of A such that for each point x in

the subset of A and for any sufficiently small ε>0, dimH(Bε(x)nA) = s. (This definition

of s-SQt is different from that of [4]. Note that if A is compact, then the s-set of A is

not empty.) Define the upper convex density of x in the s-set of A by

\U\>

where the supremum is over all convex sets U with xeU and 0 < | U\<r. Define the

upper spherical density of x in the s-set of A by

(2r)s

Here we note that since Br(x) is convex, and since U^Br(x) for each xeA where

r = \ U\, we have the relations

(* ) CSD
S

C(A, x) < DS(A, x) < DS

C(A, x),

where Cs is a positive constant depending only on s and M.
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Now let us define & fractal set. The definition could vary, but we choose the most

general.

DEFINITION 2.4. A set in a Riemannian manifold is fractal if its Hausdorff

dimension is not an integer.

DEFINITION 2.5. Suppose A is separating at x. Choose ε > 0 so that BE(x) is

separated by A into two disjoint subsets. Then taking the closure, we can get two closed

subsets A^ε, x) and A2(ε, x) whose union is Bε(x) and each of Aγ and A2 contains

AnBε(x). (When there is no danger of confusion, we abbreviate them as A1 and A2,

respectively.) xeAr\Bε(x) is called a dull point of Ax (resp. A2) if there exists a point

^ (resp. A2) and δ>0 such that xeBδ(q)czA1 (resp. A2). x is called a sharp

point of Aι (resp. A2) if x is not a dull point of At (resp. A2).

LEMMA 2.1. Suppose A is itself an s-set and a separating fractal set. Then for each

XEA, it cannot be a dull point of both Aί and A2.

PROOF. We use 2.3 in p. 24 in [4] which says that if A is an s-set in Rn, then

DS

C(A, x)=l at xeA. (Here, we note that our definition of an s-set is different from that

of [4], so that '//s-almost all' in [4] can be dropped.) This result also applies to a

Riemannian manifold. Now suppose that a point xeA is a dull point of both Aί and

A2. Then there exist two balls Br(p)cnA1 and Br(q)czA2 which contact each other at x.

Then for sufficiently small δ>0, Bδ(x)nAczBδ(x)nBr(p)cnBr(q)c. But this means that

there exists a tangent hyperplane touching at x. Then using the same calculation as in

Lemma 4.5 and Corollary 4.6 in [4], we can get DS(A, x) = 0. This is a contradiction

to (*). •

LEMMA 2.2. Suppose A is itself an s-set and a separating fractal set. Then the set

of sharp points of Aί is dense in A and the set of dull points of Ax is dense in A. The

same holds for A2.

PROOF. First, we note by Lemma 2.1 that x is a sharp point of A1 if x is a dull

point of A2. Suppose that the set of dull points of Ax is not dense in A. Then there

exists a point xeA such that for some ε > 0, all points in Bε(x)nA are sharp points of

A j . Since A is separating at x, we may assume that Bε(x) contains both the interior and

the exterior of Aγ. Choose a pointpe'mi(A^(\Bε l2{x). Then there exists a point xoeA

such that d{p, A) = d{p, xo)<ε/2. Then Bd{pxo)(p) is contained in Aί9 that is, x0 is a dull

point of Aγ. But x0 is in Bε(x)nA. This contradicts the assumption. Hence the set of

the dull points of A1 must be dense in A. This also proves that the set of sharp points

of Aγ is dense in A9 if we reverse the role of Ax and A2 and use Lemma 2.1. •

Here we remark that if x is a sharp point of Aί9 then x can be either a sharp point

or a dull point of A2 in the proof of Lemma 2.2.



CUT LOCUS OF A SEPARATING FRACTAL SET 459

LEMMA 2.3. Let Ω be any domain in M such that dΩ is separating. Then the

centers of the maximal balls contained in Ω are contained in C(dΩ), the cut locus of dΩ.

PROOF. Let Br(p) be a maximal ball contained in Ω. It touches dΩ at least at one

point. To show p e C(dΩ), we will show that for each point qedΩf)Br(p), any minimal

geodesic y e Γ(dΩ, p) from q to p has the property that r + α > d(dΩ, γ(r + α)) for any

α > 0. If the center p is already a cut point of q, then r + α > d(q, y(r + α)) > d(δΩ, y(r 4- α)).

If the center p is not a cut point of q, then d(q, y(r + α)) = r + α for sufficiently small α > 0.

Let/?' be the point y(r + α). Consider a geodesic ball Br+a(p'). It contains Br(p). Since

i?r(/>) is a maximal ball contained in Ω, we have Br+(X(pf)φΩ. So there exists a point

yeBr+(X(pf) — Ω. The distance minimizing geodesic from/?' to j must intersect dΩ. So

we have d(p\ dΩ)<r + oc. •

Now our main theorem is the following.

THEOREM 2.1. Let A be a separating fractal set in M. Them

(1) The Hausdorjf dimension dimH(v4) satisfies n — \ <dim H (^)<«.

(2) Every point of A is a limit point of the cut locus of A.

(3) dimH(C(v4))>dimH(^4), where dimH(C(^4)) is the Hausdorjf dimension of the cut

locus C(A).

PROOF. (1) Choose an ^-dimensional box B in a neighborhood of x in Bε(x), and

give a local coordinate (xl9 x2,..., xn) to B where the n-th coordinate can be chosen so

that each point in BπA has positive n-th coordinate values. This is possible because

A is separating at x so B is also separated by A into two disjoint subsets. Consider the

projection map P from B to the (n — l)-dimensional space defined by P{xu x2, - ., xn) =

(xu x2,..., xn-ι). Then the image P(B) is an (n — l)-dimensional box. Each ^-dimensional

(5-cover {ί/J of B is projected to an (n — l)-dimensional (5-cover {/>({/,•)} of /*(£). So

for any f>0, X-1 (̂C/f) |f < C ^ . | «7£ |
f for some fixed constant C. Hence H%

δ{P(B))<

CHUB). As <5->0, we get H\P{B))<CH\B). If H\B) = 0, then H\P{B)) = 0. Hence

dimH(£) = inf {f > 01 //'(£) = 0} > dimH(,P(£)) = Λ - 1 . Since the Hausdorff dimension of

a fractal set cannot be an integer, we get n— 1 <dimH(i?) = dimH(^4 nBε(x))<n.

(2) Let the Hausdorff dimension of A be s. To calculate the Hausdorff dimension

of C(A), we only consider the set A f\Bε(x) for a point x in the s-set of A. (Because A

is compact, the s-set of 4̂ is not empty.) From now on, denote A n Bε(x) by A for

convenience. Consider C(A)r\A1. We will show that for every sharp point xoeA of Ax

and for every 5>0, ^ ( x 0 ) contains a point of C(A)nA1. Choose a sequence of points

{xi}<=Aί which converges to x0. Choose a ball Br.(pi) containing xt which is a maximal

ball in ^ Suppose that for some <5>0, ^ ( x 0 ) does not contain any point of C(A)nAί.

Then by Lemma 2.3, each center pi is outside of Bό(x0). So for sufficiently large /, rt

is bigger than δ/2. Choose 5/4-balls Bδ/4.(qi) in Aγ such that xiedBδ/4_(qi) and

BδiAr{qi)^Bri(pi). Then the limit ball of these balls is contained in Ax because {Bδ/4.(qi)}

is a sequence of compact sets contained in the closed set Ax. Since xt goes to x0, the
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limit ball touches x0 at the boundary. But this means that x0 is a dull point of Ax. This
is a contradiction. So we proved that each sharp point of A{ is a limit point of the
interior cut locus C(A). The proof is complete since the sharp points are dense.

(3) Now compute the Hausdorff dimension of C(A). When we compute it, every
neighborhood of each sharp point, which is dense in A by Lemma 2.2, contributes to
the calculation of the Hausdorff measure. Thus we get dimH(C(^))>dimH(v4). •

REMARK. Theorem 2.1 can be used to construct new fractal sets. Suppose A is a
given separating fractal set. Then Theorem 2.1 says that the Hausdorff dimension
dimH(C(̂ 4)) of the cut locus C(A) of A is greater than or equal to dimH(̂ 4). If one can
prove that dimH(C(^)) is not an integer, C(A) is a newly found fractal set.

3. Examples. Theorem 2.1 shows that the cut locus of a separating fractal set
is at least as complicated as the original one. The natural question that comes up
immediately is if the cut locus of a separating fractal set is more complicated.

We give two examples here to address this question. The first one is the cut locus
of the Koch snowflake. The Koch snowflake is a well-known fractal object whose
Hausdorff dimension is Iog4/log3, and we show that the part of the cut locus which
lies inside the Koch snowflake is a fractal object whose Hausdorff dimension is log 6/log 3.
So this example shows that the Hausdorff dimension of the cut locus of a separating
fractal set can be greater than that of the separating fractal set itself. The second example
is the Bifurcated tree whose Hausdorff dimension is the same as that of the interior cut
locus of its boundary.

Another equivalent way of approaching the cut locus of a domain in Rn is via the
so-called medial axis. The medial axis MA(D) of a domain D in Rn is defined to be the
set of centers of maximal inscribed balls in D. The proof of this equivalence is not hard,
and it can be found in [13]. It should be noted that in applying the argument in [13],
one only needs the fact that 3D is closed.

3.1. The Koch snowflake. The Koch snowflake is a well-known fractal object,
and was invented by Koch in 1906 who wanted a nowhere differentiate curve.

The Koch snowflake is iteratively constructed as follows. We first start with an
equilateral triangle. We partition each side into three equal parts, and then attach at
the middle third of each side an equilateral triangle of one-third the size of the original
one, and take away both segments situated at the middle third. This is the basic
construction step. Let KSi be the domain obtained after one iterative step. Thus KSi
resembles the star of David whose boundary has twelve sides. A reduction of this figure,
made of twelve line segments, will be reused in the next step, partitioned into three
equal parts, and so on. The 6-th step object in the construction of the Koch snowflake
is shown in Figure 1. We have some immediate facts from its construction.

FACT 3.1. (i) Let KSn be the domain bounded by the closed curve constructed
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FIGURE 1. The sixth iteration object of the Koch snowflake.

in the n-th step above and let KS be the closure of the domain enclosed by the Koch

snowflake. Then

KSmczKSM for m<n, and KS n czKS.

(ii) The boundary points of KSn are not contained in the boundary of KS except

the vertices

In order to decide MA(KS), we need the following result which depends heavily

on the two-dimensionality [2].

THEOREM 3.1 (2-dimensional domain decomposition). For a given domain Ω in

R2 and any maximal ball B(p) in Ω, suppose Au A2, .... are the connected components

ofΩ-B(p). Denote Ωt = At u B(p) for i = 1, 2 , . . . . Then

MA(Ω)= (J MA(Ω f).

Moreover, we have
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MA(β, )nMA(Ω,) = {/,},

for every distinct i and j .

PROOF. Suppose q is the center of a maximal ball Br(q) in Ωf for some i. We will

show that Br(q) is also a maximal ball in Ω. Suppose there is another ball Br,(q')<=Ω

such that Br(q)dBr{q'). If Br,(q')aΩh then by the maximality of Br(q) in β f , we get

Br(q) = Br{q'). If Br{q')ψΩh then there exists veBr{q') — Br{q) such that υeAj for some

jφi and *%', v) = r'. Define T(p) to be the union of all segments from p to contact

points of B(p) with δΩ. By T(p), B(p) is devided into separate regions B/s each of

which is contained in Ωt. So Ω is devided into A^B^ Furthermore, since Bd(q, v)(q')a

Ω and q' eAt and veAp the line g'u meets T(p). Let w be one of them. Also, let w'

be a point in T(p)ndΩ such that d(w, w') = <i(w, d£2). Then r' = d(q\ dΩ)<d(q\ w')<

d(q\ w)+ d(w, w'). Since vφB(p), we have d(w, w')<d(w, v). So rf = d(q\ dΩ)<d(q\ w')<

d(q\w)+ d(w,w')<d(q', w) + d(w,v) = d(q\ v) = r\ which is a contradiction. This proves

On the other hand, suppose q is the center of maximal disk Br(q) in Ω. Then there

exists a unique / such that Br(q) a β f . If Br(q) nAjΦ0 for some j φ /, then by an argument

similar to that above we can derive a contradiction. Since Br(q) is maximal in Ω, Br(q)

is also maximal in β f . Thus we proved MA(β) <= (J ί̂  1 MA(Ωi). Π

We need to compute MA(KS), which is equivalent to computing the cut locus of

KS. But, as KS is iteratively defined as a limit object and mere inclusion is of no help,

it cannot be done directly. However, our specific construction suggests that it can be

done iteratively also. To do so, we need to decompose the domain into simpler pieces

whose medial axis is easier to handle due to Theorem 3.1.

THEOREM 3.2. The closure of the medial axis #/KS is the same as the closure of

the union of that 6>/KSn's at each iteration step, i.e.,

MA(KS)= U MA(KSM).

PROOF. Starting from the center p of KS 1 ? we get the maximal circle passing

through all six dull corners of K S : whose center is/?. By this maximal circle, the object

is decomposed into six equal subdomains as described in Theorem 3.1. The medial axis

of this object is also decomposed into six parts as also described in Theorem 3.1. The

line segments from/7 to the six sharp corners of KSX is contained in the medial axis of

KS. This is proved by simple examination as follows. Let L be one of the six line

segments, and choose a point on L. Enlarge the circle from that point regarding it

as a center of that circle until touching the boundary of the Koch snowίiake. But

then we must get pairs of points touching the boundary by the symmetry of the Koch

snowflake, so it is contained in the medial axis of the Koch snowflake. Thus any point
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FIGURE 2. The interior cut locus of the sixth iteration object of the Koch snowflake.

in L has at least two legs to its boundary so L itself is contained in the medial
axis of the Koch snowflake.

Now observe the object KS2 of the second construction. We can choose six maximal
circles passing through each of six sets each of which consists of four vertices created
in the second iteration. Then by each of these maximal circles, each subdomain of KSi
described above is further decomposed into three equal parts and one large base part.
Each of the three equal parts is then scaled by one-third of the previous one. As in the
first construction, each of these three equal parts has a segment from the center of the
maximal circle to the sharp corner of the second iteration. These line segments constitute
MA(KS2). Similarly, we can show inductively that MA(KSn) belong to MA(KS). (cf.
MA(KS6) is drawn in Figure 2.) Thus we get |J "= t MA(KSW) c MA(KS).

Let us now prove that MA(KS) c (J π°°= 1 MA(KSJ. Here we note that (J ™= λ MA(KSJ
consists of the symmetric line segments which start from the sharp corners of KSn for
each «, bisecting the sharp corners. So it is enough to prove that the point
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which is not in symmetric line segments cannot be a center of the maximal disk of KS.

Suppose that there exists a point />eMA(KS) — (JΓ=i MA(KSJ. There exists m

such that p e int(KSm) (Here int(KSw) means the interior of KSm.) Consider the point

qedKS satisfying d(p, q) = d(p, 3KS) = r > 0 . If #e<9KS, for some /, then the ball Br(p)

is in KSZ and is not maximal. This is a contradiction to the maximality of Br(p) in KS.

So we can assume that qφdKSn for all n. Now for each n>m, take a sequence {#„},

where qnedKSn satisfies that d( p, qn) = d(p, dKSn). Since Bd{pqn)(p) is not maximal in

KSn, we can find a maximal ball Brn(cn) in KSn satisfying Bd{pqn)(p) a Brn(cn) for each n > m.

In a bounded domain KS, we have a sequence of balls Brn(cn), so there exists a converging

subsequence. Denote the limit of this subsequence by BR(c). Then c e (J L̂ χ MA(KSn)

and Br(p)(=BR(c). This is a contradiction to the choice of p. •

Here we note that the Hausdorff dimension of a set is the same as that of the

closure of the set. By this observation, we get the following result.

COROLLARY 3.1. The Hausdorff dimension of the medial axis o/KS is the same as

that of the union of the medial axis ofKS^s at each iteration step, i.e.,

dimH(MA(KS)) = dimH (J MA(KSn)
\n=l

The dimension of the boundary of the Koch snowflake is Iog4/log3, since at

each iteration, the boundary is divided into three equal parts and pasting an equilateral

triangle gives four equal line segments at each side (cf. [6]). Now let us introduce the

method to compute the dimension of the medial axis of the Koch snowflake. Observe

that the medial axis consists of line segments. To look at the increasing procedure of

the line segments, we cut off some region from the Koch snowflake as follows. KSι

has six sharp corners and six dull corners. Draw three line segments from the center p

to one of the sharp corners and two dull corners in the side of the chosen sharp corner,

cut the object by the line to get two congruent triangles, turn over one of them, and

paste them by the line to get a square-like object. The resulting figure has one medial

line segment which divides the object into two parts. In the second construction, two

medial line segments which divide the square-like object is added. In the third step,

four line segments across the object is added, and so on. Here we observe that the

medial axis of this square-like object look like the product of the Cantor ternary set

with an interval. By this observation, we can compute the Hausdorff dimension of the

medial axis of the Koch snowflake by the product dimension of the Cantor ternary set

with an interval. It is also well-known that the dimension of the Cantor ternary set is

Iog2/log3. So we get

log 3
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π π π π

FIGURE 3. The fourth iteration object of the
bifurcated tree.

FIGURE 4. The interior cut locus of the
fourth iteration object of the bifurcated
tree.

We also observe that the Hausdorff dimension of the exterior cut locus of the Koch
snowflake is the same as that of the interior one.

3.2. The bifurcated tree. Here we present an example, which we call the bi-
furcated tree, whose Hausdorff dimension is equal to that of the cut locus of it.

The construction of the bifurcated tree is as follows: It starts from an equilateral
square whose length of each side is 1. Attach two rectangles, whose length of bases are
1/3 and whose length of heights are 2/3, to each of two ends of the upper side of the
first equilateral square, and remove the two intersected bases of the rectangles.
Then, for each rectangles, attach two rectangles, whose length of base is 1/32 and
whose length of height is 22/32, and remove the intersected part. And so on. The resulting
domain is shown in Figure 3, and its interior cut locus is shown in Figure 4, which
consists of line segments and pieces of parabolas.

Now, we shall compute the dimension of them. First of all, we can find that the
dimension of the bifurcated tree is the same as that of its interior cut locus: Roughly
speaking, the number of (5-balls which cover the bifurcated tree, is the same as the
number of the balls covering its interior cut locus, regardless of some constant multiple.
So by the definition of the Haussdorff dimension (Def. 2.3), the dimensions of the two
objects are the same.
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Then let us compute the dimension of the bifurcated tree. The length of the boundary
of the n-th iteration object of the bifurcated tree is as follows:

If we cover the ball of its diameter, δ = 3 ~", the total number N of the balls which cover
the bifurcated tree is as follows:

2 4"<JV<10 4".

So by Def 2.3, the Hausdorff measure H is as follows:

2-4" 10-4"

H'ins ons

Thus as n -• oo, s is given to Iog4/log 3.
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