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ON A TWISTED DE RHAM COMPLEX
CLAUDE SABBAH
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Abstract. We show that, given a projective regular function f: X — C on a smooth
quasi-projective variety, the corresponding cohomology groups of the twisted de Rham
complex (Qy, d—df n) and of the complex (Qyx, dfA) have the same dimension. We
generalize the result to de Rham complexes with coefficients in a mixed Hodge Module.

Introduction.

0.1. Let X be a smooth projective variety over C and (23, d) be the complex of
algebraic differential forms. Hodge theory and GAGA theorem of Serre (see also [7]
for an algebraic argument, or [8] for other references) show that the hypercohomology
spaces on X of both complexes (Q3, d) and (23, 0) have the same dimension (this follows
from the degeneracy at E, of the spectral sequence Hodge = de Rham).

0.2. Denote by Oy the sheaf of regular functions on X and by 23 the sheaf of
differential operators with coefficients in ('g. More generally, let (M7, F) be a mixed
Hodge Module on X as defined by M. Saito [18, §4], where F.M is in particular a
good filtration (increasing and exhaustive) of the Z3-Module M. The (algebraic) de
Rham complex DR(M)= (23 ® 0% M, V)is naturally filtered using F (see [3]): the degree-/
term of F,DR(M) is Q%@FH,M, that is also denoted by

FkDR(M)=<Q§ ® F[—-]M, V) )
0x

The associated graded complex is equal to the complex (23 ®, grf M, grfV), where
grf V=@, [VIi*" and [V]i*! is the degree-1 Og-linear morphism induced by V

QA QegiM— QY Qerf, M.
ox (54

The degeneracy at E; (see [18, (4.1.3)]) now implies that the hypercohomology
spaces on X of the complexes DR(M ) and (Q 7 Qg gr’ M, grf V) have the same dimension.

0.3. Let f: X— P! be a morphism of algebraic varieties and let f: X — A" be its
restriction over the affine line A'. Thus, X is quasi-projective and f is projective.

THEOREM 1. Let (M, F)be a mixed Hodge Module on X. Then the hypercohomology
spaces on X of the complexes (Qx ®q, M,V—dfn) and (5 ®,, gr'M, gr'V—dfn)
have the same (finite) dimension.

0.4. Remark. If ¢, denotes the vanishing cycle functor as defined by Deligne
[6] (see also [10]) and DR®" the analytic de Rham functor, it is well-known (cf. §1.1)
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that one has

dim H"<X, (Q,; ® M,V —dfna )) Y, dimH"'(f " Y(c), ¢, DR*™(M)).
Ox ceC
0.5. One may, after M. Saito [17, (4.1.2)], apply this result to M =0 equipped
with its natural filtration. One then has gr”M = (05 and grf V=0. In this way one recovers
the result of M. Kontsevitch and S. Barannikov which motivated this work.

CoroLLARY (Kontsevitch and Barannikov). The hypercohomology spaces on X of
the complexes (2x,d—df A) and (Qx, df A) have the same (finite) dimension.

0.6. One also may, after M. Saito [17, (4.2.2)], apply this result to M =0,[+D],
if Dis a divisor of X. Assume that D is a divisor with normal crossings. One gets (see §3.2)

COROLLARY. The hypercohomology spaces on X of the complexes (2x(logD),
d—df n) and (Qx (log D), df A) have the same (finite) dimension.

0.7. Letnow f: & — Cbe a holomorphic function on a complex analytic manifold.
Denote by O, the sheaf of holomorphic functions on % and by 2, the corresponding
sheaf of differential operators. Let (.#, F) be a well-filtered coherent Z,-module,
DR*M)=(2x Ry, #, V) its (analytic) de Rham complex, which is naturally filtered,
and (2 ®,, gr’#, gr'V) the associated graded complex.

It will be convenient to use sometimes the perverse shift convention

PDR*™(M): =DR*(M)[dim X ]=(25 4™ * @ 4, V)
and ¢ ,F :=¢,F[—1] for a complex # with constructible cohomology on Z.

THEOREM 2. Let (M, F) be a mixed Hodge Module (according to M. Saito [18,
§2.d]) such that the restriction of f to the support of M is a projective morphism in a
neighbourhood of f~'(0). Then for all ie Z one has

dim H~'(f~1(0), ¢, DR*(.4/))=dim H"( £710), (Q,; ® grf M, gV —df A )) .
Oy

0.8. Letting # =0, in Theorem 2, which is justified by [17, th.5.4.3], one gets

CoROLLARY. If f: & — C is projective in a neighbourhood of f~*(0), one has for
allieZ

dim H='(f~1(0), ¢,C)=dim H'(f ~1(0), (25, df 1)) .

Notice that the corollary is well-known if one only assumes that, in a neighbourhood
of £~1(0), the function f has only a finite number of critical points; one then knows
[16] that the complex (24, df A) has cohomology in degree dim % at most and has
support in the set of critical points; so is then the perverse sheaf ¢ 7C, where
PCy:=Cy[dim Z7; in this case the corollary is consequence of the formula
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u(f, x°)=dim mg‘,xo/<—a-f—‘ ﬂ) )

s
0x4 0x,

where u(f, x°) is the number of vanishing cycles of f at x°.
0.9. Let D be a divisor with normal crossings in & and j: #=% —D <, % the
inclusion. Taking # = 04[+D] (cf. [18, §2.d]) one gets (see §3.2):

CorOLLARY. Under the same assumptions as above one has, for all i€ Z,
dim H'~'(f~1(0), ¢, R}, Cy)=dim H'(f~1(0), (5 (log D), df A)) .

0.10. The proofs of Theorems 1 and 2 are analogous: in the first case this is an
exercise on filtered Fourier transform and in the second one an exercise on filtered
microlocalization, once the results of [17, 18], which are the difficult ones, are known.
One proves in both cases the freeness of the analogues of the classical Brieskorn lattice,
from which the theorems follow immediately.

In an appendix we give the proofs of Theorems 1 and 2 suggested by the referee.
These proofs are simpler than the proofs given below, as they do not use Fourier
transform nor microlocalization.

I thank F. Loeser for letting me know his notes of a talk by M. Kontsevitch and
having raised my attention to this question. I thank the referee for his careful reading
of the manuscript.

1. Proof of Theorem 1. We keep notation of §0.3.
Let (M, F) be a well-filtered coherent Zy-module. Let © be a new variable. One
puts on M ®,C[t, t~!] the filtration

Gk<M® Clt,t~ 1]>= @ F; Mt
c j
so that G, =1*G, and
grg<M® C[x, r"]>=Go/r“GO:ngM.
C

The proof of the theorem relies on the

PROPOSITION.  Assume that the cohomology of the direct image f, M is holonomic
and regular at infinity, and that f (M, F)is strict. Then, for allie Z, the C[t~ ']-module

H‘(X, <Q,} ® Go(M[1, 7t 1)), T 'V —df A >>

is free of finite rank.

1.1. Computation of dimH(X,(Q; ®,, M,V—dfna)). Consider the direct
image f, M. Then the cohomology modules #'f, M of f, M are regular holonomic
(even at infinity) on the Weyl algebra C[t]<{d,>, if ¢t denotes the coordinate
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on the affine line (see e.g. [2]). The Fourier transform m obtained by “doing
t=0,and d,= —t” is therefore a holonomic C[1]<3,)-module with a regular singularity
at T=0 and possibly an irregular singularity at = oo. It has no other singularity, so that
Clr, 7 1] ®cm/f’.\f+M isa Mt, 7~ 1]-module of rank u;. Hence this number p; is
equal to dim #* f, M/(t—1)#" f, M. (One proves this first for C[¢]{d,>-modules of the
form C[¢]<0,>/(P) with Pe C[¢]<d,> nonzero and regular even at infinity, then, by an
extension argument, for any regular holonomic C[t]{d,>-module; see for instance [14,
Chap. V].) o

In order to express this dimension, one first computes the Fourier transform f, M
of the complex f,M. Let A' denote the affine line with coordinate 7, and let pj:
XxA'>X and §: XxA' > A' be the projections. Let M[t]e " be the Dy, ui-
module p* M on which the action of & is “twisted” by e~ */. One then has

FoM =g (M[tle”")

(in order to understand this formula better, it may be useful to consider the direct image
i.M=MI[d,] of M by the inclusion i: X —, X x A defined by the graph of f and to
perform the partial Fourier trangfgr& on i+M ’vlith respect to the ¢ variable).

Moreover, one knows that #' f, M=¢"f, M (see for instance [14, App. 2]). One
deduces from the freeness statement above that

H M=) A [ M=H'G (Me™),
g: X - pt still denoting the restriction to t=1 of 4. In this way one finds that
ui=dimHi<X, (QX HAmXQ M, V—df a >> .
Ox
On the other hand, it is also known (see [4, cor. 8.3] or [ 14, Chap. V, prop. 1.5]) that

=3, dim?¢,_ FDR*"(A'f M),

where the sum is taken at singular points ¢ of #'f,M (at other points c, the
corresponding term is zero), as asserted in remark 0.4.

As the functor P¢ preserves perversity (see [4, cor. 1.7]) and commutes with the
proper direct image, and as R f, commutes with PDR*" in the present situation, one has

pi=Y dim H'(°¢,_,'DR*{ . .40)
_ S dim (%9, R/, "DR™.)
= Zdlm Hi(f_ l(c)a p¢f—chRan'/%) :

One actually gets, as asserted in Remark 0.4,
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dim H*‘(X, (Q,; TAmX @ M, V—df A )): Y, dim Hi(f " *(c), ¢, - " DR* (M),
Ox

ceC
where all the terms in the sum except a finite number of them are zero.

1.2. Proofof Theorem 1. The essential point is that mixed Hodge Modules satisfy
the assumptions of the proposition in the situation of the theorem, as f is projective
(see [18, th.2.14]), so that we will use it to prove the theorem.

We have seen that

Cle, 0 11® m=Hi<X, (Qx HaimX @ Mr, v~ 1], V—tdf A ))
Ox

cr
=H"<X, (Q,; +dim X ® M, 1,77V —df A ))
is a free C[t, 7~ !]-module of rank y;. On the other hand, as the C[t~!]-module
H'(X, <QX ”““‘X((;B GoM[1,t 1)), 1 1V—dfa >>

is free, it is contained (by the natural map) in C[1, 1™ '] ® ¢y m . Also, as it has
finite rank and generates this module over C[t, 7~ 1], it is a lattice in it, hence is a free
C[t~ ']-module of rank ;.

Since the terms of the complex (25 " 4™ ¥ ®,, Go(M[t, 77 ']), t"'V—df ) as well
as the hypercohomology modules are free C[t~']-modules, one gets, tensorizing by
Clz '] 'C[x7 1],

ul:dimH’(X, <Q,}+di"‘x®ngM, grfV—df a >> )
Ox
O

1.3. Filtered direct image. Let (M, F) be a well-filtered coherent £ y-module and
let /: X— A" be a regular function, which is proper on the support of M. If Z 4.y
denotes the transfer module associated to f, one puts fL M=Rf (D 4. x ®%, M). Let
wy=Q%mX be the sheaf of differential forms of maximum degree, equipped with its
natural structure of right Zy-module and denote by ¢ the coordinate on 4'. Then
D g x=wyx[0,] as a Oy-module. The structure of right 2 y-module on wx[J,] is given by

( > w,.a,f>-axi= Y <wj°6xi—%wj~l>6,j

jz0 jz0 i
and the structure of left f~'2 ,-module is given by
6,~< Y wj8{>=< Y a)ja,j“) and t-< Y wja,j)=—< ijja,f-1>.
jz0 jz0 jz0 jz1

Let ZeM:=@ ,FMh*cM[A, 7" '] be the Rees module on the new
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variable 7 associated to the filtration F. As F is good, this is a coherent graded
AP x-module, FZy denoting the filtration by the order of differential operators.
Considering the filtration FZ 4. x defined by F,Z 41 x=® ;< wxd/, one defines in the
same way the filtered direct image by the formula

L
f+‘%FM:=Rf*<'@F@A]‘—X@® '%FM> N
Fox

which is an object of D!, (#9241 (see for instance [17, §§2.1, 2.3]).
The complex

<Q,}+dimx®.9x[0,], V—a,df/\>
Ox

with Vo ® P)=do @ P+ ,dx; Ao ® 0, P, is a free resolution of the (f~'% 4, Zx)-
bimodule 2, _y. One verifies that it is strict for the diagonal filtration G,24[0,]=
i+ joi Fi2x0/, that is, the complex

(Q,} tamX @ R 1 Dx[0.], V—atdf/\>
Ox

is a resolution of #9241 x.
For (M, F) as above, denote by G(M[0,])=),, ;_, F;M0;. One then has

fiR-M=R f*<£2,; FAImX QD R M0, V—a,de> )
Ox

LEMMA. For i€ Z, the following conditions are equivalent:
1. The cohomology module #'f . RpM is a RpD 41-module without Fi-torsion.
2. For all ke Z, the following natural morphism is injective:

fin*<Q;E+dimx®Gk+ .M[0,], V~5tdf/\>
Ox

s yf“Rf*<9,; +aimX @ M8, V—df A >=yfif+M.
Ox

PROOF. As f is proper on Supp M, #'Rf, commutes with direct limit and the
second condition is equivalent to the injectivity of the natural map associated to
localization with respect to 7:

Hf ReM —> inf+<9?FM® Clh, k™ ‘]) .
Cih)
The right-hand term is precisely the localized module (#"f, ZM)® ¢y CLH, 1], as
C[#h, i~ '] is flat on C[#], and the injectivity of this map is then equivalent to the
h-torsionlessness of ' f R M. O



TWISTED DE RHAM COMPLEX 131

Generally speaking, the modules #'f, M come equipped with a natural filtration
denoted by F#'f, M: it is defined as the image of the map introduced in the statement
2 of the lemma. One then has

ReH'f M=H"f, R.M/h-torsion .

So the filtration F#'f, M is good.
When the conditions of the lemma are satisfied for all i€ Z, one says that f, (M, F)
is strict. It is equivalent to saying that one has for all i

%F%if+M=%if+ﬂpM.

1.4. Proof of the proposition. We will identify 2 -modules and C[¢]{0,)-
modules via the global sections functor I'(4', +). Let FC[t]<8,> and FC[t]{8, 8, ')
be the filtrations by the degree in 0,. Then #Z,C[1]{8,, 8,”'> is flat on #C[t]{0,> as
a graded module (the proof is analogous to that of the lemma in §2.1 below).

If the cohomology of f Z;M has no #-torsion (i.e. if f,(M, F) is strict), then so
is that of

RrC[11€0,, 0, ') ® T(A, fLReM)
RFC[1{0c)

because of flatness. Let us compute this complex: because of flatness and using the
projection formula, one has

#rC[11€0, 0, "> ® I(A', fL RpM)

AFClI<0:>

L
=RF<A1, Rf*<f_12%F@Al<atl> ® <'%F@A|‘—X ® ’%FM>>>

RFDat S1RFDP x
_ RF(X, <QX HmXQ o (M0 ), V—Odf A >> .
Ox

As in lemma of §1.3, owing to G(M[0,, 8, '1)=0fG(M[0,, 6, ']), the absence of
hi-torsion is equivalent to the injectivity, for all ie Z, of the map

H’(X, (Q,}J"“m *® G_.(M[0b,, 0, '), V—0odf n ))
Ox

— Hi(X, <Qx +aimX@ A3, 0,1, V—0,df A )) .
Ox

The right-hand side, which can be identified with C[d,, 8, '] ®qa,1m, is
C[0,, 0, ']-free of rank y; if #'f, M is holonomic and regular at infinity.

On the other hand, the image of the map above can be obtained from the good
filtration F#''f, M: it is equal to ), , 8, /a(F;, ;_gym x#'f+ M), where o: H'f M —
H'f,M[0, '] denotes the localization map. This image is then a free C[d,” }]-module
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of rank u; which generates C[d,, 8, '] ®C[a,]m over C[d,, 3, '] (see for instance
[15, prop. 2.1]): by an extension argument, it is enough to prove this for any well-filtered
holonomic C[¢]{d,>-module (N, N.) with N;=0 for j<0 and NJ»=6,"N0 for j=0, such
that N is regular at infinity; for the same reason, it is enough to consider N= C[t]{0,>/(P)
with P=Y7_ dla,(t), a,€ C[t],a,#20 and dega,<dega, for i<d, with the filtration
induced by the degree in d,; in this case the result is easy.

As the map is injective, its source verifies the same properties. Finally, one
has

Hi<X, (Qx X ® G (M8, 0, ']), V—adf >)
Ox

=Hi(X, (QX Haim X @ Go(M[0,, 0, 11), 0,7 'V —df A >> .
Ox
O

2. Proof of Theorem 2. The results of §1.3 can be straightforwardly adapted to
the holomorphic case.

2.1. Microlocalization. Let &¢ be the restriction to C=C x 1< T*C of the sheaf
of formal microdifferential operators: a section of & on UcC is a formal series
Y n<no n()0; where the a, are holomorphic functions on U. This sheaf is filtered by

Fk@&c::gc(k):gc(o)af:atk@?ac(o) s

where &40) is made of formal series Znsoa,,(t)é,". One has &¢(0)/é—1)=0¢ and
grfée=0c[%, £~ '] if 7 denotes the class of 4, in &¢(1)/E0). Let Zpéc=®,8 (k)i be
the Rees ring associated to this filtration.

LEMMA. The ring Rpé is flat on R D¢ as a graded module.

PrOOF. The question is local. Denote & and & the germs at ce C of %, and
é¢. Let L and L' be free Z-modules equipped with filtrations of the kind
(L, F)=®2, F[n]}), L', F)=®,(2, F[n/]). Let ¢: (L', F)—(L, F) be a strict mor-
phism, i.e. such that ImonF.L=¢(F.L'). It is a matter of verifying that 1® ¢:
E®4(L', F)— E®4(L, F) is still strict: indeed, if this assertion is proved, consider an
ideal Z¢l of #r2, where (I, F) is a well-filtered coherent ideal of Z; there exists a
presentation of the kind

Rl Rl — Rl R T
and one wants to show that the sequence obtained after ;€ ® 4, * remains exact; it
is thus a matter of seeing that the sequence (6 ® ,L', F) » (€ ® , L, F)— (&, F) is exact
and strict; exactness follows from flatness of & over & (see for instance [1, 20]) and
strictness is then the assertion mentioned above, that we now show.
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In the bases of L and L' that we have considered, the morphism ¢ is expressed as
righE multip]ication by a matrix A(t, d,) with elementsﬂin 2. Let fz’ ——-Zisio al(t)o} e
F, (6 ®L)=®,6(p’ —n()and assume that 1 ® p(a')e F (6 ® L)= @, é(p—n,). We want
to find a”er((§®L’) such that 1 ® p(a”)=1® ¢(a’).

We may choose i; <i, so that if one sets a’=b'+c’ with b'=3 . ai(t)d;, one has
beF(6®L)and 1@ @b)eF,(EQL).

Let meN be such that d/"c’eL’. Then ¢(d"c)eLnF,, (§Q®L)=F,,,L.
As ¢ is strict, there exists ¢”eF,,,L" such that ¢(c”)=¢(d,"c’). We may then take
a’:=b'+0, """ O

Let (#, F) and f: & — C be as in §1.3. One may microlocalize the filtered direct
image f, %4 by putting

(f+=%pﬂ)”:~@ﬂ§)c ® fiRpM .

RrDc
The projection formula and the lemma above show that
L
(f+9?Fﬂ)“=Rf* <f_ 1%Fgc' ® <'%F°@C<—£l” ® *%F%>> .
S 1\RF9Dc Rr9Dc

As [T Rebc® - 1aracRc(A[0,]) has no fi-torsion (see the flatness lemma above),
there exists a unique filtration G.(f ', ® s-19-4#[0,]) such that

?/?'c<f“‘ro”:c ® ﬂ[at])=f“‘?/?pra@c ®  R(M[0,]) -
f-1oc [ 1RpDc
This filtration is defined by the formula
Gk<f_lfgoc ® ﬂ[az]>: Z image(f‘léac(i) ® Gj(<ﬂ[az])> >
S oc i+j=k f-toc

which shows that for all k€ Z one has

Gk<f—1<§c ® J%[az]>:61’(Go<f_lfgac ® ﬂ[@]) .

S 19c f19¢

On the other hand, the flatness lemma above shows that the exact sequence

0— B M[D,]) > Rl M[D,]) — gr(M[3])— O

remains exact after tensorizing by f~'%;&,, so that one has

M [@]) =fT'g'be ® e

S lgrFac

ng<f_1‘goc ®
fot

2c

=f710J%,t7'] ® (grf 7]
Fo0dR

=grfu[%,t7'],
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where the grading of the right-hand side is the diagonal grading. One deduces in
particular that for all k€ Z one has

grf(f‘lgc ® ﬂ[0,]><f—kgr§<f"f5"c ® //[at]>—~*grpﬂ-

S~ 19c [ 12c

One finally gets
(f+ Ry M) = Rf*<Qa'" TAmT @ By .]< f . ® ﬂ[é‘,]), V—adfn )
[ f

-19c

and

Rf*gr(?(QFdimw@(f_lf‘c ® //[5J>,V—0zdf/\)
Or f

Sioe
=Rf*<§)g;+di"‘% ® grf, gr"V—df a > .
(%]
2.2. Microlocal degeneracy at E,. In order to simplify the notation, we will set
in the following =20, ".

LEMMA. For all ie Z the following conditions are equivalent:
1.

f"Rf*Go<Qf; Tim? ® <f“ 16 ® /%[6,]), V—odf A )
Or S 19c¢

has no 0-torsion.
2. The following natural morphism is injective:

yfin*G()(Qfdimf ® < [l ® /%[6,]), V—3,dfn ) — K M)

f~19c¢

3. H(f.Rp M) has no Fi-torsion.
Moreover, these conditions are satisfied for all i if f,(M, F) is strict.

PROOF. One has for all ke Z

f_lgc ® ﬂ[az]zf_légc ® Go(f_lgac ® f/%[az]>

f1ac - 160) S ac

=C[[9]][9"]C([[>9m1 Go(f"w@cf ® /%[3,]> :

-19¢

Denote by G, the complex which appears at point 1. The map of point 2 may thus be
identified with

H'Rf, Gy —> C[0][07'] ® #'RS,G,.
c[o]
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The equivalence of the statements 1 and 2 is then clear.

The equivalence of the statements 2 and 3 can be shown as in the lemma of §1.3.
Finally, if f,(4, F) is strict, #'f,Rp.# has no h-torsion by definition (for all
ie Z), and from the flatness lemma one deduces that neither has #°(f, % #)", hence
the statement 3 is verified. O

2.3. The holonomic case. If #'f,.# is holonomic (for instance if .# is
holonomic), the microlocal module #(f,.#)" has punctual support in C. We will
assume in the following that this module has support {t=0}. As f,(#p.# )" has coherent
cohomology over Z;&, the image of the morphism of the statement 2 of the lemma
is &¢(0)-coherent, hence is free over C[0], and of rank p;=dimeggyy- 1 (f+ M),
according to the preparation theorem (see for instance [12, §3]). It follows then that,
for a holonomic .#, the conditions of the lemma are equivalent to

1 bis.

ﬂin*G0<Qg{»+dima®<f_lé:'C ® .ﬂ[@,]),V—@,df/\)
O.r S 19c

is free over C[0] of rank u;.
One concludes

LEmMMA. If f, M has holonomic cohomology and f (M, F) is strict, one has
dim Hi<f_ L0), <Ql HAm T arf H | grfV —df A )) =dim H'(f (0), ’¢ ,’"DR*"./) .
Oy

Proor. Indeed, as the cohomology of the complex Rf, G, is C[0]-free and that
the terms of the complex G, have no f-torsion, one has

H'Rf(Go/0Go)=GoH'(f+ MV |0GH(f 1 MY .

As we have seen above, the left-hand side can be identified to the left-hand side of the
lemma, and the right-hand side has dimension y;. It remains to identify u; with the
right-hand side of the lemma. Recall that, according to the index theorem of Kashiwara
(see [9], see also [14, Chap. IV, cor. 4.2]), one has u;=dim P¢,’"DR*(#'f, .#). One
may now conclude as in §1.1. O

2.4. End of the proof. Theorem 2 is now a consequence of the fact that mixed
Hodge Modules satisfy the properties of the lemma above if f is projective on Supp .4
(see [18, th.2.14]). O

3. Some remarks.

3.1. Interpretation of the graded complex. Let f: % — C be as in §0.7. Let
0: X = T*Z be the section defined by the 1-form df. Let O, [TZ]=grf%, be the
sheaf of holomorphic functions on T7*% which are polynomials in the fibres of
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n: T*F > %. Let w,=Q5™*. Consider the 0,[T%]-module o, ,w,: it coincides with
Wy as a Oy-module, when one considers @y as a subring of 0, [T%] via n*.

The Spencer resolution (Q *4™* ®,, D, V) of w, as a right Z,-module, with, in
local coordinates, V(o ® P)=Zl. (dx;r0) ® 0, P, is strictly filtered, when one
equips Q54 ?* ®,, P, with the shifted filtration

Fk<Q§l[+dim X ®@2"> . =Qé.+dim x ®Fk+199f .
Oy O
After gradation one deduces a resolution of w, by locally free gr*Z,-modules:
<Qgg TAm T @ erf D, ngV) S wy.
O

In an analogous way one has

LeMMA. The complex (Qy 4™ @, gt" Dy, grf V—df n) is a gtf Dy-locally free
resolution of 6,w,.

Proof. Inlocal coordinates (x4, ..., x,) on Z, this complex can be identified with
the Koszul complex associated to the regular sequence (¢, —0f/0x, ..., &,—0f/0x,) of
04L&, ..., ¢&,], hence the exactness.

On the other hand, o,w, is equal to the ¢,-module w, on which ¢; acts as the
product by 0 f/0x;; this allows one to conclude. O

Let (#, F) be a well-filtered coherent Z,-module. One deduces from the previous
lemma that

L

0,0y ® grﬂ/%:(!?é*d‘"‘f‘ ®grfu, ngV—df/\>
grF o, 04

in D’ ,(04). The cohomology sheaves of this complex have thus support in the inverse

image by o of the characteristic variety Char.# =Supp grf.#, in other words, in the

intersection of Char .# with the image of the section df.

If # is holonomic, the variety Char .# is Lagrangian. It is then well-known that,
locally on 2, 6~ }(Char .#) is contained in at most one fibre f=constant.

In particular, if f: 2 — C is proper, there exists a neighbourhood of f ~*(0) such
that the complex (24 ¥ 4™ % ®,, grf 4, gr'V—df A) has (,-coherent cohomology with
support contained in f ~(0).

If moreover .# is regular holonomic, one knows (see for instance [4, p. 16]) that
in a neighbourhood of any point x°e ¢~ !(Char .#), the set ¢~ }(Char .#) contains the
support of the vanishing cycle complex ¢, _ ;(,.,’DR*"./.

3.2. Logarithmic complex. Let D be a divisor with normal crossings in a complex
analytic manifold Z. Equip the sheaf 0,[+*D] of meromorphic functions on Z with
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poles along D with the increasing filtration F. by the pole order (cf. [5, p. 80]). Put
Oq[+D][7]=04[*D] ®C[7] and set

G0y [*D][t]= ), F.0,[*D]t'.

i+j=k
One has gré0,[+«D][t]=grf0,[*D] ®C[1] equipped with the diagonal gradation.
One gets a filtration G.(Q7[*D][t], d—1dfA) as in §0.2, using the fact that the
differential d—tdf A has degree 1 with respect to G.. The logarithmic sub-complex
(24(og D)[t], d—1df A) inherits thus a filtration G..

LEMMA. The inclusion of filtered complexes
G.(Qq(ogD)[t], d—1df N) = G .(24[*D][7], d—1df A)
is a filtered quasi-isomorphism.

ProoF. It is a matter of verifying that the induced morphism on the graded
complexes is a quasi-isomorphism. One has

gr%(Q,(log D)[t], d—1df n)=(24(log D)[], —tdf r).

Consider then the filtration induced by F. on the complexes gr’. One shows that the
G-graded morphism induces a F-filtered quasi-isomorphism: take thus the F-graded
object and consider the graded morphism.

One has

gr’ gré(Q4(log D)[7], d—df n)=(R4(log D)[], 0)
and, identifying grf gr0,[«D][t] with gr*©,[*D][], one has

grf gr9(Q,[*D][], d—1df n)= <Qg} ® grf 0, [*D][7], ngd>
Oy

where grfd is seen as a graded operator of degree 1 with respect to F. The quasi-
isomorphism between both complexes now follows from [5, IT 3.13]. O

PROOF OF COROLLARIES 0.6 AND 0.9.  Forget the filtration G. in the previous lemma.
As the terms of the complexes are free over C[t], one deduces from this lemma, after
tensorizing with C[t]/(t—1), a quasi-isomorphism

(@Q;(log D), d—df n) "> (Q;[+D], d—dfn) .

Consider now the quasi-isomorphism at the level of graded complexes given by
the lemma. Then, “‘putting 7=1"" as above, one gets in the same way a quasi-isomorphism

(Q;(log D), —df n) > (er ® gr'Oy[+D], grid—df n >
Oy

and the Corollary 0.9 can be straightforwardly deduced from Theorem 2. O
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The proof of Corollary 0.6 is identical, taking = X" and exchanging above 0,
with Ogen[*D,] with D, =X —X. O

3.3. The Kaihler case. It follows from [19] that Theorems 1 and 2 remain true
if one only assumes that f is proper and Kéahler on SuppM or Supp.#, im-
posing nevertheless that M or .# has quasi-unipotent monodromy along any germ of
holomorphic function g: ¥** - C or g: # —» C, which is the case for mixed Hodge
Modules with geometric origin, according to the monodromy theorem.

3.4. Some questions. (1) Let Crit(f, .#)=0"'(Char .#) be the critical set of f
with respect to .#, where o denotes as above the section of 7*% defined by df. Instead
of assuming that f is projective on Supp.#, assume only that f~(0)nCrit(f, .#) is
projective. Does Theorem 2 remain valid under this assumption?

(2) Isit possible to give a purely algebraic proof, as in [7], of Corollaries 0.5 and
0.6?

Appendix. We give here direct proofs of Theorems 1 and 2 suggested by the
referee.

PrROOF OF THEOREM 2. Let i: & —, & x C denote the inclusion defined by the
graph of f. Identify i, .# with .#[0,]. It is equipped with the good filtration

F(M[O))= )  F;Mof,

jtk=Lk>20

and gr/(.#[0,]) is identified with @, _,gr .#. The relative de Rham complex
DRg‘xc/c(i+rﬂ)=<Qg; S? M[0,],V—0,* df/\)
is filtered by
F,DRy cycliy M) = <Qg; ® Fy. . M[01, V=3, df >
so that |
grlfDRgxc/c(i,L/%):(Qg; ® ( ® grf//l), grfV—dfa ) .

Oy \j<p+t -

The right-hand term is also the p-th term of a filtration G.(Qg ®, gr" 4, gr*V—df ).
The graded complex G,/G,_, is the complex

<Qg} ®gry, .M, ngV>=grfDRﬂ .
Oy

If p is large enough, this complex is acyclic in a neighbourhood of the compact fiber
S ~H0)nSupp # (see e.g. [11, 13]). We conclude, taking inductive limits, that, for p
large enough and any i,
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dimH‘<f_ K0, <Qg ® grf i, grf V—df a >>=dim H{(Z x {0}, grf DRy » ¢;cli M) .
or

Let now F.#'f, # be the good filtration defined as
image R'f(F,DRy « ¢,cli s M) — R (DRy . c;cli+ M) .
The strictness of the Hodge filtration on direct images (see [18, th.2.14]) implies that
dim H{(Z x {0}, grf DRy« ¢/cli + M) =dim gt [ A f , M

for any p. Now, it follows from the local index theorem of Kashiwara (see e.g. [14, p.
67]) that, for p large enough,

dimgry A'f, M =dimP$ DR(A'f, M),

where ¢, denotes the vanishing cycle functor relative to Id: C— C and P¢=¢[ —1].
We conclude by using the same argument than at the end of §1.1. O

PrROOF OF THEOREM 1. By Theorem 2 and Remark 0.4, it is enough to prove that
the natural map

(%) H‘(X,(Q,} ®ng,ﬂ,ngV—de>>—>Hi<X“", <Q;(®grp,/%,ngV—df/\> >
Ox Ox

is an isomorphism for all i. The cohomology of the complex (Qy ®,, gr* 4, gr"V—
df A)*is supported by a finite number of fibers f ~(c) (see §3.1) and, by faithful flatness
of Uxan over (y, the same holds for the complex (2y ®,, gr’#, gr' V—df n). These
complexes can be viewed as having O gan- or O g-coherent cohomology (cf. §0.3 for the
definition of X), and GAGA implies that

H"(X, Jf’((l,} ® grf M, grFV —df a >>—»H"<X"“, Jf’((),} ® grfu, ngV—df/\> )
Ox Ox

is an isomorphism. The analytization morphism is compatible with the natural
spectral sequences with Ej*-term described above. As Ej¥ is finite dimensional, the
spectral sequence degenerates at a finite rank and consequently (*) is an isomorphism
too. O
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