Tohoku Math. J.
51 (1999), 365-389

GALOIS QUANTUM GROUPS OF II,-SUBFACTORS
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Abstract. We give a correspondence between a class of quantum groups (face alge-
bras) and a class of AFD II;-subfactors, which contains both all of those of index less than 4

and all of those of principal graph D,(,l) or E,(,l). Ocneanu’s flat connection and a variant of
Woronowicz’s compact quantum group theory play central roles.

Introduction. It is widely expected that Jones’ index theory is deeply connected with
quantum groups. One of the evidence is an apparent similarity between Ocneanu’s Galois
invariants (flat biunitary connections) of II;-subfactors and Boltzmann weights of solvable
lattice models (SLM). In fact, quantum groups originated from the so-called L-operators of
SLM of vertex type.

Investigating the algebraic structure of L-operators of SLM of face type, the author
found the notion of face algebras, which is an unexpected generalization of bialgebras. Al-
though the definition of face algebras is more complicated than that of bialgebras, many im-
portant concepts in the bialgebra theory—such as antipodes, Haar functionals and universal
R-matrixes—have natural generalization in the theory of face algebras. In particular, the cat-
egory C of (co-)modules of a face algebra still has a binary operation ® which makes C a
monoidal category. In a previous paper [H2], the author used face algebras in order to prove
certain technical lemmas arising from the classification problem of II;-subfactors of index
less than 4.

In this paper, we establish a new relation between II;-subfactors and face algebras. More
precisely, we give a correspondence between a class of irreducible AFD II;-subfactors and
a class of face algebras with specified comodules. The correspondence covers all AFD II;-
subfactors N C M of index less than 4, and gives a “group-theoretic” interpretation of these,
which is just like the construction, due to Goodman, de la Harpe and Jones [G-H-J], of II;-
subfactors of index 4 via subgroups of SU(2).

In consequence of our construction, we obtain new examples of quantum groups & which
have rich representation theory. We classify their irreducible comodules, and compute their
dimensions and fusion (branching) rules with respect to ® When N C M is of type Aj41,
® has fusion rules which coincide with those of SU (2);-WZNW models in conformal field
theory. In a forthcoming paper [H6], we construct face algebras whose fusion rules are the
same as those of SU (N);-WZNW models, using the results of this paper. We will also give
applications of these to quantum invariants of 3-manifolds.
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Our construction of II;-subfactors (Theorem 2.8) is a generalization of that of [G-H-
J] and Wassermann [Wa]. However, the proof is more involved. In fact, it deeply depends
on abstract harmonic analysis of face algebras, which is a variant of Woronowicz’s theory
of compact quantum groups (cf. [Wo]). Category-theoretic properties of comodules of face
algebras also play important roles.

The construction of face algebras & is inspired by Schur’s reciprocity theorem between
GL(N, C) and the symmetric group &,,. The algebras & are defined so as to be satisfied a
reciprocity theorem between & and the string algebras (cf. Proposition 4.4(1)). Ocneanu’s
notion of flatness plays a crucial role.

In Section 1, we recall basic properties of face algebras and their comodules. In partic-
ular, we recall the notion of hollowless compact Hopf face algebras $ and functionals Q on
them, which we call the Woronowicz functionals.

In Subsection 2.1, we define the @-dimension dimg (V) and the Q-trace Trg(f) for each
$-comodule V and its endomorphism f € Endg (V). In Subsections 2.2 and 2.3, we construct
a commuting square for each of three $)-comodules. In Sections 2.4 and 2.5, we construct a
II; -subfactor of index dimQ(V)2 for each irreducible $-comodule V, provided that § is finite
dimensional.

In Section 3, we begin to study flat face models (V, w) which are variants of Ocneanu’s
flat biunitary connections. They also contain Wenzl’s Hecke algebra representations at a root
of unity in some sense. For each (V, w), we define its string algebra Str'” (V) and construct
an action of Str” (V') on the “full” path space. Using these, we define a face algebra Cost(V)
which is called the costring algebra.

In Section 4, we define a quotient & (V') of Cost(V) for each flat biunitary connection
such that its principal graph G is finite and coincides with the dual principal graph. We prove
that &(V) is a finite-dimensional hollowless compact Hopf face algebra and that its irreducible
comodules are labeled by vertexes of G. Using a result of Ocneanu and S. Popa, we verify
that & (V) has enough information to reconstruct the original II;-subfactor.

The author would like to thank Professor M. Izumi for explaining Ocneanu’s notion of
flatness.

We refer the reader to [G-H-J] for basic facts on Jones’ index theory.

NOTATIONS AND TERMINOLOGIES. Throughout this paper, A : § — H ® 9 (resp.
¢ : $ — K) denotes the coproduct (resp. counit) of a coalgebra $) over a field K, and p =
pv 1 V — V&89 denotes the structure map of a right $-comodule V. We also use Sweedler’s
“sigma” notation: A(x) = Z(x) X1 ®x2), (A®id)o A(x) = (iId® A)o A(x) = Z(x) xX1H®
x2) ® x3), pv(u) = Z(u) o) Quqy (x € 9H,u V), etc. (cf. [S]).

1. Preliminaries. We summarize facts on face algebras and their comodules (see
[H4] and [HS5]).

1.1. Face algebras. Let §) be an algebra over a field K, which also has a coalgebra
structure (), A, €). Let V be a finite non-empty set and {e;, ¢ j i, j € V}elements of . We
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say that = (9, {e;, e i} is a V-face algebra if the following axioms are satisfied:

(L.1) A(ab) = A(a)Ab) ,

(1.2) eiej=8,-je,-, 2,‘2‘]':8,']'2',‘, e,'éj=2je,-,
Zek = Z =1,
keV keV

(1.3) A(g,-ej) =Zziek®2kej, 8(2,'6‘]') =4ij,
keV

(1.4) Y e(aer)s(exb) = e(ab)

keV

foreacha,b € Hand i, j € V. If, in addition, {eje j 11, j € V} are linearly independent, then
9 is called hollowless. A subspace J of a V-face algebra §) is called a biideal if it is both
an ideal and a coideal. In this case, the quotient $)/J naturally becomes a V-face algebra. A
V-face algebra becomes a bialgebra if and only if §(V) = 1.

EXAMPLE 1.1. Let G be a finite oriented graph. We denote by V = G the set of
vertexes of G and by G! the set of edges of G. We denote the source (start) and the range (end)
of an edge p of G by s(p) and v(p), respectively. Foreachm > 0,let " = [ [; jev Q{;! be the
set of paths on G of length m. That is, p € g;;! if p is a sequence (py, ... ,pm) of edges of
G such that 5(p) := s(p1) = i, v(p1) = s(P2), ... , t(Pm—1) = 5(Pm), ©(P) := t(Ppm) = j.
We also set G° = [1; ;e G, G = i} (i € V), G = @ G # j)and G" = [];G7,
QT, i= LL g;;’ Let $(G) be the linear span of the symbols

[ )fracemm].

Then, $(G) becomes a V-face algebra by setting
o i i
e,-=Ze<j), ejZZe(j).

P\ (a p-a
e (q) e (b) = 8¢(p),s(a)0r(g),5(b)€ (q -b) ’

(1.5) ” » ;

2(+(6) =2 () e<0)

e(e(’é)) =8¢ P.q€G", a,beg").
Here, for paths p = (p1,... ,pm) and @ = (ay,... ,a,), wesetp -a = (p1,... ,Pm,
ai,...,ay,) if t(p) coincides with s(a). Also, weseti -p =p-j = p foreachi,j € go

andp € (],’;’ It is known that each finitely generated face algebra is isomorphic to $(G)/J for
some G and a biideal 7 C H(G) (cf. [H7]).
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Throughout this paper, we frequently use the notations for graphs defined in the example
above.

Let S be a linear endomorphism on a V-face algebra §). We say that S is an antipode if
it satisfies:

(1.6) Z S(agyap) = ZE(aei)ei ,
(a) ieV

(1.7) Y amSla) =) _elaa)e,
(a) ieV

(1.8) Y " SGaayap Sta) = S(a)

(@)
foreacha € $H. A V-face algebra is called a V-Hopf face algebra if it has an antipode. When
(V) = 1, this definition coincides with the usual one. The antipode is unique if it exists, and
it is both an anti-algebra and an anti-coalgebra endomorphism of §) such that
(1.9) Seiej) = eje; (,j€V).

LEMMA 1.2. ForaV-face algebra 9,1, j,i’, j' € V and a € $, we have the following
formulas:

(1.10) e(ae;) = e(ae;), e(eia) =e(ea),
(1.11) Za(l)e(eia(z)ej) = ¢;jae;j,
(a)
(1.12) Zs(eia(l)ej-)a(z) = Z,-aéj ,
(a)
(1.13) Ze,-a(l)ej ®a(2) =Za(1)®§,~a(2)2j,
(a) (a)
(1.14) A(z’iejaéi/ej’) = Z eiaq e ® ejapye; -

(a)

See [H4] for a proof of these formulas.
1.2. Comodules. For a V-face algebra $), we define linear functionals ;, & € H*
(i € V) by

(1.15) si(a) = e(ae;), &(a) =e(eia) (a€9).
As elements of the dual algebra $*, they satisfy the following relations:
(1.16) sigj = dij&i, §;§j=6;j§i, gi8j=€j§,',

(1.17) Dei=1=) &.

ieV ieV
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Hence each right $-comodule V has a direct sum decomposition given by

(1.18) V=P VGQ.j). Vi j)=mavEe)v),
i,jey

where the representation ry : $* — End(V) is given by

(1.19) Ty (X)) =Y uo(X,uq) @eV,XeH.

(u)
We call (1.18) the face space decomposition of V. When V is finite dimensional, we define
a graph G by g" =Y and u(g}j) = dim(V (i, j)) and call it the dimension graph of V. Let
{uglq € g}j} be a basis of V (i, j). We define a matrix [xfl'] € Mat(G!, ) by

pv(ug) = Zup ®xg
p

and call it the matrix corepresentation of (V, {u,}). The following lemma easily follows
from (1.11) and (1.12).

LEMMA 1.3. Let [xf;] be as above. Then we have
ciejxgee; = bisp)8siq)dep)d ) uia) g

foreachp,q € G' andi,i', j, j' € V.

Let W be another $-comodule. We define an $)-comodule V ® W by

Vew = P Va.he Wk ),
i,j,keV
Pvew@®v) =YY (10 ®v0) @umyvay e V3ik), ve Wk, j)
W) (v)

and call it the truncated tensor product of V and W. For $)-comodule maps f : V — V’
andg: W - W, fQg = (f® g)|v®w gives an $)-comodule map from V@ W into
V'@W'.

Let g be an element of ). We say that g is group-like if the following three relations are
satisfied:

A(g) =) gex ® gex,
keV
2iejg= gz’iej ) 8(921'6;) =34 ({,jeV).
By (1.3) and (1.2), the unit of a face algebra is group-like. For a group-like element g, let Rg
denote the linear span of the symbols {e;g| j € V} equipped with an $)-comodule structure
given by
PRrglejg) = Zeig® geie;j
ieV

Then R := R1 satisfies R®QV ~ V ~ V@R for each $-comodule V. We call R the unit
comodule of §. Explicitly, the isomorphisms are given by

VROV, ume®u, V->VRR: uru®e; WeV(,j).
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Note that R is irreducible if § is hollowless.
Next, suppose that $) has the antipode S and that V is finite dimensional. Then the dual
space V* of V has a unique structure of a right $)-comodule such that

Z(”’ u©))Suay) = Z(U(O),uw(l) ueV,veVh.

(u) (v)
We denote this comodule by V™ and call it the left dual comodule of V. This terminology
is compatible with that of monoidal category theory. That is, there exist comodule maps
%:R—> V@V and$: V' ®V — R such that both of the following two composite maps
are identities (see e.g. [D2]):

. . .

% ®id d®$ V&R 8 V.

v 2 ROV VRV @V

= s . —1
v veRr 225 viavevr 229 reve L v
Explicitly, these maps are given by
%lei) =) ey ®v" (i €V),
%
$S(v®u)=(v,u)e; (veV'(ik), ueVik,j),ijkeV),

where {u,} denotes a basis of V and {v"} denotes its dual basis.

Let W be another finite-dimensional $)-comodule. Then, there exists an §)-comodule
isomorphism (V@ W)” ~ W”® V", which is compatible with the usual linear isomorphism
(V@ W)* ~ W*® V*. We identify the vector space V ® V* with End(V) in the obvious
way. Then, the subspace V ® V" is identified with
(1.20) Ey :={f € End(V) | frv(e) =myv (&) f (i € V)}.

We regard E = Ey as an $)-comodule via this identification. Then we have

(1.21) Endg(V) = !f €E

pE(f) =Y mEE)(f) ® e } :
ieV
1.3. Compact face algebras. Let ) be a V-face algebra over the complex number field
C and x : $ — $) an antilinear map such that (a*)* = a for each a € §). We say that x is a
costar structure of 9 (or §) is a costar face algebra) if the following relations are satisfied:

(1.22) ef=¢ (€V)
(1.23) (ab)* = a*b*, A(ax)=;aé)®a(xl) (@ be9).
a

PROPOSITION 1.4. Let x be a costar structure of ). Then the following hold.

(i) e@*)=c¢@) (ae9).

(i) The dual algebra $H* has a unique x-algebra structure such that (X*, a) = (X, a*)
(X € 9%, a € ). Moreover, we have €} = ¢; and Z*,* = &.

(iii) If $ is a Hopf face algebra, then its antipode is bijective.
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Let V be a finite-dimensional right $)-comodule equipped with a Hilbert space structure
(). Wesay that V = (V, (|)) is unitary if

D wolvuay =) @lve)vy, @veV).

(u) ()
For a unitary comodule V, (1.19) gives a *-representation wy of $* on V. We say that §) is
compact if each finite-dimensional right $)-comodule is isomorphic to a unitary comodule.

PROPOSITION 1.5. Let $ be a compact V-Hopf face algebra and let V and W be
unitary $)-comodules. Then the following hold.

(i) The face space decomposition of V is orthogonal.

(ii) The comodule V@ W is unitary with respect to the following Hermitian inner prod-
uct:

(u®vlu' @ V') = (uju)(v|v')
ueV@, j), veVQ,k), u e Wi, jH, v e W', k).
PROOF. Part (i) follows from Proposition 1.4(ii). Part (ii) is straightforward. O

For a compact V-Hopf face algebra §, there exists the unique linear functional Q on $)
which satisfies the following two conditions:

(i) For each unitary comodule V, wy (Q) is a positive invertible element of End(V),
which satisfies Tr(zwy (Q)) = Tr(mry (Q)_l).

(ii) Foreacha,b € $Hand i, j € V, the following relations are satisfied:

(1.24) $%(a) = (Z):(Q, anap(@' a@),

(1.25) (@, ab) =) (Qsx, a)(Qéx, b) ,
keV

(1.26) s*@=0",

(1.27) Qs =Q, Q¢ =0,

(1.28) (Q, eiej) =& .

We call Q the Woronowicz functional of $ (cf. [H5], [Wol, [Ko]).

1.4. Fusion rules. Let §) be a face algebra which has a coalgebra isomorphism § ~
€D, c 4 End(Ly)* for some $)-comodules {L) | A € A}. We define nonnegative integers N;u
(A, u, v € A) via the irreducible decomposition

Li®L, ~EP Ny, L,
veA
and call them the fusion rules (or the branching rules) of $).

Next, let $ be a compact Hopf face algebra. Since each unitary comodule is completely

reducible, £ satisfies the condition stated above. We define a bijection * : A —> A; A > A~
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by (Ly)” ~ L,-. Since 7,(Q) : Ly = (L) by (1.24), we have . = A (A € A). It
follows from (Ly*® L,,-)” ~ L, ® L) that

(1.29) N;:Mv =N}, .
Moreover, we have
(1.30) N} -=N},, N- =N},

(see e.g., [H4], (4.22)). If $ is hollowless, then there exists the unique element x* € A such
that L, >~ R.

2. Construction of II;-subfactors. Throughout this section, §) denotes a fixed hol-
lowless compact V-Hopf face algebra, and U, V and W denote finite-dimensional unitary
right $)-comodules. In Subsection 2.5, we also assume that §) is finite dimensional.

2.1. Q-traces. Foreach f € Endg(V), wesettrg(f) = ji(V)"lTr(nv(Q)f), and call
it the Q-trace of f. We also set dimg (V) = trg(1), and call it the Q-dimension of V.

LEMMA 2.1. Foreach f € Endg(V) andi € V, we have
Tr(my (£:Q) f) = trg(f) .

PROOF. Let %, {u,}, etc. be as in Subsection 1.2. Since the unit comodule R is irre-
ducible, the map
o - R id [ —~ = oy
R vev L29 vev vev s R
is a scalar multiple, say c - idg. Comparing the image of ), ¢; € R, we see that

v (Q) ®id
=5

cy ei=$ (Z(ﬂv(Q) o f)w) ® v“) =) Tr(rv(&Q) e -
i€V v iey

Comparing the coefficient of ¢;, we get ¢ = Tr(ry (6;Q) f). Summing over all i € V, we find
c-#1(V) = Tr(zwy (Q) f). The last two formulas complete the proof of the lemma. O

As usual, we identify End(V ® W) with gEnd(V ® W)q, where the projection ¢ = gyw
is definedby g = D, mv(6) @ 7w (&;). In particular, for f € Endg (V) and g € Endg (W),
we identify f ® g with g(f ® ).

PROPOSITION 2.2. (i) Foreach f € Endg(V) and g € Endg(W), we have

(2.1) trg(f ® ) = trg(f)trg(g) .

(ii) We have the following formulas:
(2.2) dimg(V @ W) = dimg(V) + dimg(W),
2.3) dimg(V ® W) = dimg (V) dimg(W) ,
2.4 dimg (V") = dimg(V),

2.5) dimg(R) = 1.
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PROOF. By (1.25), we have NV®W(Q) =Y, 7v(Qei) ® mw(Q¢;). Hence

Tr(rwy (6:Q) f) Tr(ww (6:Q)9) ,
ﬁ(V) %;

from which together with Lemma 2.1 the relation (2.1) follows. The relations (2.3), (2.4) and
(2.5) follow from (2.1), (1.26) and (1.28), respectively.

PROPOSITION 2.3. IfV # 0, then dimg(V) > 1. Moreover, dimg(V) = 1 if and

onlyif VRV ~V'®V ~ R.
PROOF. By (2.2)—(2.5), we have dimQ(V)2 = 1+ dimg(X), where X denotes an $)-
comodule such that V® V" >~ R @ X. Since dimg(X) > 0 if X # 0, we get the proposition.
O

2.2. x-structure of Endg (V). Since the category of finite-dimensional right $-co-
modules is equivalent to that of finite-dimensional left $*-modules, we have Endg(V) =
Endg« (V). Since 7y is a -representation, Endg (V) is a -subalgebra of End(V). Moreover,
Ty = dimQ(V)_ltrQ is a faithful tracial state on Endg (V).

tro(f®g) =

LEMMA 2.4. The following map is a x-algebra inclusion:
2.6) Endg(V) ® Endg(W) — Endg(VRW); fQgr f®g.
In particular, VW # 0if V, W # 0.
PROOF. We define Hermitian inner products on End 4 (V)®End (W) and End 5(V®W)
via v @ tw and Ty gy, respectively. Using (2.1), we see that (2.6) gives an isometry. 0
2.3. Commuting squares. By Lemma 2.4, we obtain the following *-algebra inclu-

sions:

2.7 Endg(V) — Endg(V®W); f > fQidw,

(2.8) Endg(W) < Endg(VOW); g+ idy®g.

LEMMA 2.5. Let & be the conditional expectation of the inclusion (2.7) with respect

to ty g w. Then, for each element h = Z# fu® g of Endg (VW) C gEnd(V ® W)gq, we
have

(2.9) E(h) = (W) ZTr(NW(Q)gu)fu

PROOF. We define an $)-comodule map € as follows:

~ oo - id@ Rid®id S = v =
Evaw —> VAW@W @V~ “2TQ@CXeR yopwew eV

488y orev U8 vev S gy
By a direct computation, we see that £(h) formally coincides with the right-hand side of
(2.9) up to the constant factor dimg (W), where h = ) u Ju ® gu is an arbitrary element of

Eygw. On the other hand, using (1.21), we obtain E(Endb(V@)W)) C Endg (V). Hence
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(2.9) gives a well-defined map £’ into Endg (V). Obviously, £’ is an Endg,(V)-bimodule map.
The relation £'(1) = 1 follows from Lemma 2.1, while 7y (£'(h)) = Tygw (h) follows from
(1.25) and (2.3). Thus £’ is the conditional expectation with respect to Tygw- O

Using the lemma above, we obtain the following proposition.
PROPOSITION 2.6. The diagram
Endg(UQV) C Endg(UVEW)
U U
Endg(V) C  Endg(V®W)
is a commuting square with respect to Tygygw. where the horizontal and the vertical inclu-
sions are given by f — f ®idw and g+ idy ® g, respectively.
2.4. Representations of Endg (V). Let L, A, etc. be as in Subsection 1.4. We define
a subset A(V) of A by

A(V) ={Xx € A|Homg(L,, V) #0}.
For A € A(V), we define e, € my(9H*) to be the unique minimal central idempotent such
that e, V is isomorphic to a direct sum of copies of L,. By Proposition 2.2.3 of [G-H-J],
{ex | A € A(V)} is the set of all minimal central idempotents of both 7y ($*) and Endg (V).
For A € A(V), we set K3(V) = Homg(L,, V) and regard it as an Endg(V)-module via
(af)(u) = af (u) (a € Endg(V), f € Homg(Ly, V), u € Ly). Then K; (V) is irreducible
and e, V is isomorphic to Ly ® K, (V) as a wy ($H*) ® Endg(V)-module.

PROPOSITION 2.7. Weregard K,(VRW) (v € A(VRW)) as an Endg(V)®Endg(W)-
module via (2.6). Then, we have:

Kvew =~ @ P MKV K.W).
AEA(V) ueA(W)

PROOF. For algebras A C B, we set Cp(A) = {b € B|ab = ba (a € A)}. Applying
Proposition 2.2.5 of [G-H-J] to ¢ = gyw, F = End(V ® W) and M = 7y (H*) @ w 9%,
we get

Cqrq(gMq) = qCr(M)q = q(Endg(V) ® Endg(W))g .
Hence the inclusion matrix for ¢ (End (V) ® Endg(W))g C End 5(V®W) is the transpose of
the inclusion matrix for 7y gw (9*) C gMgq (cf. [G-H-J, Proposition 2.3.5] and [G, Theorem
6.2]). This proves the proposition. O

2.5. II;-subfactors associated with comodules. Let $) be a finite-dimensional hol-
lowless compact V-Hopf face algebra. Let V. = Lp (O € A) be an irreducible unitary
$-comodule such that dimg(V) > 1. For m > 1, we set B, = Endg(Vy) and Cpy =
Endg (W), where V,, and W, denote $)-comodules defined by

Vi=V, W=V’
Voms1 = Vam @V, Vomyr = Vam 1 ®V7,
Womil = Won ®V™,  Wapio = Womp1 ®V.
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By Proposition 2.6, we have the following ladder of commuting squares:
C Cn C Cnyt C Cuya C

(2.10) N al N
C Bnt1 C Bmy2 C Bmyz C

Here the horizontal and the vertical inclusions are given respectively by f +— f®id and
f > id® f, and the trace on By, is tv,,.
Let M and N denote respectively the weak closures of 7, (11_11)1 Bm) and 7, (1_1_1_1)1 Cm),

where m; denote the GNS constructions with respect to the traces induced by 7y,,. We call
N C M the pair of the von Neumann algebras associated with V.

THEOREM 2.8. Let ) be a finite-dimensional hollowless compact V-Hopf face alge-
bra. Let N C M be the pair of the von Neumann algebras associated with an irreducible
unitary $)-comodule V such that dimg(V) > 1. Then N C M is an irreducible 11-subfactor
of Jones’ index [M : N] = dimQ(V)z.

We will prove this theorem by using Wenzl’s index formula and his estimate of the rel-
ative commutant (cf. [We]). Since % : R < V®V ' and % : R — V'@V~ >~ V'®V,
we have A(V,,) C A(Vijp4+2) and A(W,,) C A(Wy,42) for each m > 0. Since #1(A) < oo,
there exists a positive integer mg such that A(V,,42) = A(V,,) and A(Wp,42) = A(W,,) for
each m > mg. Let n be an even integer such that n > my. For a pair C C B of multimatrix
algebras, let Inc(C C B) denote its inclusion matrix. Using Proposition 2.7 and (1.30), we
then obtain

Inc(By C Bny1) =Y = 'Inc(Bpy1 C Buy2),
(2.11) Inc(Cp C Cpy1) =Y =Inc(Cpt1 C Cuy2) s
Inc(Cp C Byt1) = Z = Inc(Cpt1 C Bn+2) s
where Y = [N}y, and Z = [N} Ty
LEMMA 2.9. All of the matrixes'YY,Y'Y,'ZZ and Z'Z are primitive and irreducible
(cf. [G-H-J, §1]).

PROOF. Let u be an element of A(V,). Since dimQ(L#®V) > (, there exists an
element A € A(V,+1) such that N ;)ID > (. Hence each column of Y is never 0. Considering
similarly, we see that both Y and Z are irredundant. Hence by Lemma 1.3.2 of [G-H-J], it
suffices to show that neither ¥ nor Z is decomposable. We define a bipartite graph H as
follows:

HO =W-= Wodd]_[Weven )
(2.12) Wodd = A(Vn+1) ) Weven = A(Vn) 5
ﬁ(H)ILM) =Yy (A € Wodds 4 € Weyen) -

By induction on m > 0, we obtain A(Vy,) = {A € W|HY, # @}. Therefore H is connected
and Y is not decomposable. The proof of the indecomposability of Z is similar. g
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By computing the Q-dimensions of V" ® V®L,, (u € A(W,)) in two ways, we see that
the Perron-Frobenius eigenvalue of 'ZZ is dimQ(V)z. Thus, we get || Z|| = dimg(V), and
similarly, we obtain ||Y|| = dimg (V). In particular, both of the sequences { By, | m > mg} and
{Cm | m = myg} are strictly increasing. Thus we complete to check all hypotheses of Wenzl’s
index formula.

Finally, we show that the resulting II;-subfactor N C M is irreducible. By Theorem 1.6
of [We], it suffices to show that there exists a projection p € Cy, such that dim(Cp,,, (Cn)p) =
1. Let{ex |A € A(Vp41)} and {f, | € A(W,)} denote the sets of minimal central projec-
tions of By, and Cy, respectively. It is easy to see that Cp, , (Cy) is the direct product of
the simple subalgebras of the form Cp, ,(Cy)h = Cpp,  n(hCyph), h = ey f, # 0 and that
dim(Cp, ,(Cp)h) = (Zw)2 (cf. [G-H-J, p. 43]). The element * belongs to A(W,,), so that
we obtain dim(Cg,,,(Cyn)p) = ZA(NI)‘:I*)2 = 1 for p = f«. We have completed the proof of
Theorem 2.8.

REMARK. If §yis a Hopf algebra (i.e., §(V) = 1), its Woronowicz functional is given by
Q(a) = g(a) (cf. [H5, §5]). Hence dimg (V) = dim(V) for each $)-comodule V. Therefore,
in this case, Theorem 2.8 gives only IIj-subfactors with square-integer indices.

3. Flat face models and face algebras.
3.1. Face models. Let V be a finite-dimensional vector space which is the direct sum
of the subspaces V (i, j) indexed by two elements i and j of a finite set V. We call such a
vector space a V-face premodel. For each i € V), we set
Vi, ) =@PVi.hH., V= Vi.i.
jev jey

For each m > 0, we define a V-face premodel V™ as follows:

. Ke; (i =))
Vo, j) =
=" (7).
vi=v, v"la =@V he vk, ).
keV

Here ¢; denotes a non-zero vector indexed by i € V. By definition, we may regard V"
(m > 1) as a subspace of V®". Let w be a linear automorphism of V2. We say that a pair
(V, w) is a V-face model if w(V2(i, j)) C V2(i, j) for each i, j € V. For a V-face model
(V, w), we define w; € End(V™) (1 <i <m — 1) and wp, € End(V*t") (m,n > 1) as

follows:
wi = (d¥ ' @weidy" )|,
(3.1)

Winn = (WnpWnil* Windgn—1) (Wn—1 Wy -+ * Win4n—-2) - - (Wiwy -+ - Wpy) .

It is sometimes convenient to describe a V-face model via a fixed basis. For a V-face premodel
V, we define an oriented graph G by G° = V), and u(g}j) = dim(V (i, j)), which is called the
dimension graph of V. Let {u,|p € g}j} be a basis of V (i, j). Then, we obtain a basis
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fup |p € G™} of V™ by setting up, ... p,,) = lp, ® - - - ® up,,, which we call a path basis of
V™. We say that a quadraple

or a diagram

. a .
L

b

k —— 1
d

is a boundary condition on G of size m x nifa,d € G", b,c € G™ and s(a) = i = s(c),
t(@) = j = s(b), t(c) = k = s(d), t(b) = | = v(d). For each boundary condition B of size
m x n, we define a scalar w(B) by

(3.2) Wom (Ug @ up) = Zw <c :ll b) ucQ@uqg, (@e Q:j, beg? ., jeV)
cd

and call it the partition function of (V, {u,}), where the summation is taken over all ¢ €
g;';a),_ andd € G" ) such that t(¢c) = s(d). For convenience, we set w(B) = 0 for each
quadraple B of paths, which is not a boundary condition. For example, the above summation
may be taken over all ¢ € G™ andd € G".

Let V = (V, w, x) be a V-face model with a fixed vertex * € V. We assume that V
satisfies the following two conditions:

(A) Foreachi €V, there exists m > 0 such that G} # 0.

(B) Foreachm > 0, there exists i € V such that G; # ¢.
We define sets Ay = Umzo AT, V(m) and an algebra Str™ (V) (m > 0) by

Ay ={(i,m) €V xZso|V™(x,i) # 0},
V(im)={i e V|({i,m) e Ay},

Su™ (V)= €D End(V™(x,1)).
ieV(m)

We call Str™ (V) the string algebra of V. For each m,n > 0, we define an algebra map
L= tpp 2 SE™(V) — Str™ (V) by

(3.3) tnn (X) (p @ ug) = xup @ug (x € SU™(V), pe Gy, g€ Gj).

We say that V = (V, w, %) is a flat V-face model if the relation

3.4) L) W L (V) Wiy = Wyt () Wi £ (X)

holds in Str™*"(V) foreach m,n > 0, x € Str™(V) and y € Str"*(V), where Wnm denotes
the restriction of wy, on V1 (x, —).

Let Epy € End(V™) (p,q € G™) be a matrix unit which corresponds to a path basis
{up |p € G™} of V™, thatis, Epqu, = 8grup. Substituting x = E (e,f € G}) and y = Egp
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(a,beg] j) into (3.4), we obtain

_ a _ e a
Sqez w'(blt’p’)w(fq,t>=8p/§ w1<btp’)w<qq,t>
tegm tegm

foreachp,q € G" andp’, q' € G". Hence (V, w, ) is flat if and only if there exists a function
Y ]_[,,Zo(g,':,_)2 x (G")? — K such that

3.5) 3w (b ‘t’ c) w <v Z t) = 8wy (@, b; c,d)
tegm
for each m,n > 0,a,b € G{ _,c,d € G" andu,v € QL'L such that v(u) = s(c) and
t(v) = s(d).
Next, we will construct an action of Str™ (V') on the “full” path space V™ for a flat V-face
model V = (V, w, ). Foreach j € V,n > 0 and (i, m) € Ay, we define a linear map

(3.6) @y 2 Vi, j) = Homsen vy (V™" (%, ), V" (%, j))

by @,E)n) = n® & (§ € V', j), n € V™(x,i)), where the action of Str” (V) on
V™H (%, j) is given by t;,,. Comparing dimensions, we see that @,, is an isomorphism. By
(3.4), the right-hand side of (3.6) becomes a Str”?(V)-module viax ® f — J)nmt(x) ﬁ;n“”l,f
(x € Str"(V), f € Im(®,,)). Hence, V" (i, j) also becomes a Str”(V)-module. Explicitly,
corresponding representation I” is given by

3.7) I (Ea)uc =) y(@ bic,dug
degﬁ

foreach h,i, j € V,c € g,."j anda,b € gg,h, where y is as in (3.5). In particular, the action
does not depend on the choice of m. We have thus obtained an action I" of Str” (V) on V".

3.2. Costring algebras. For x € Str™(V) and y € Str"(V), we denote the left-hand
side of (3.4) by Vj,u (x ® y). Then, V,,, gives an algebra map from Str™ (V) ® Str” (V) into
Str™t" (V). By definition, we have

(3.8) Voin(1 @ y)(n @ &) =n® I'(y)§,

(3.9 Vi (x @ 1) = tyn(x)

foreachi € V,n € V™(x,i), & € V"(i,—), x € Str"™(V) and y € Str" (V). We also define
an algebra map V9, . from End(V™)®End(V") into End(V"*") by VO (f®9) = ptmno(f ®
9)08mn, where 8, : V™t — V™ QV" is the natural inclusion and pp, : V'QV? — ymin
is given by pmn (Up ® ug) = Se(p)s(q)p @ Ug.

LEMMA 3.1. LetV be a flat face model. Then the following hold.

(1) The family of maps {Vpn |m,n > 0} is associative, that is, Viymn(Vin(x @ ¥) ®
2) = Vimin(x ® Vin(y ® 2)) for each l,m,n > 0 and x € Stt'(V), y € Su™(V), z €
Str (V).
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(ii) We have the following commutative diagram.

SE™(V) @ Str(V) — s Stemtn(v)

I‘®Fl lf

End(V™) ® End(V") L End(V™t7)
PROOF. Using the fact that w;w; = w;w; for |i — j| > 2, we obtain
Wmn = (WpWn—1) (W1 Wimntn—1)(Wn ** * Win4n—2)
co e (Wpe2 e Whgn—3) - (W - - - Wyy)
(3.10) =
= (Wn -+ w1) iy ® Win—1,n)|ymn
= (Wp - W) Wp1 - W2) - (Wingn—1 " W) -

Combining (3.1) with this formula, we obtain

(3.11) Wigmn = (Win ® idyn) o (idyr & Wnn) | yimen -

(3.12) W min = (dym @ wiy) o (Wi, @ idyn)

yli+m+n -

Using these two formulas and the fact that ((y) commutes with (idy» ® w,,1)| Yltmn (g _y» WE
obtain

*~1

* _1 * _l * _l
Wy it (W)™ = (W) ™ Wy

* * * *
WD) Wnmtt = Wintn 1t (Y Whm)

On the other hand, we have

Vit (Vim(x ® ¥) ® 2) = 1)W1 e (Wnt) ™ We g1t (W, 4
= () (W)Y Wn m 418 (2D Wiy by (W) ™

where the second equality follows from (3.4). Applying the above two formulas to the right-
hand side of this equality, we obtain (i).
Using (3.8), we obtain

&V, (IF(x) @ TN ®ENE) = t(Vim(1 ® X)) Vigma(l ® ) @ n®E),

D (I'(Vin(x @ ¥))(n ® £))(&) = Vim+n(1 @ Vin (x @ y))( ® n ® &)
foreachi, j,k e V,¢ € Vik,i),n € V™(@, j), & € V'(j, k), x € Str™(V)and y € Str*(V).
Hence, (ii) follows easily from (i) and (3.9). O

We define a linear map A, : End(V™*") — End(V™) ® End(V") by Apn(f) =
8mn © f o mn. It is easy to verify that the coalgebra (V) := @mzo End(V™)* becomes a
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V-face algebra via the product @m, n>0 Ay and that it is isomorphic to $(G) (cf. Example
1.1). We define a coalgebra Cost(V) by

Cost(V) = @) Cost"(V),  Cost™(V) = Endsum vy (V")*,
n>0
and call it the costring algebra of V.

PROPOSITION 3.2. For a flat V-face model V, Cost(V) becomes a quotient V-face
algebra of H(V).

PROOF. Let x and y be elements of Str™ (V) and Str”(V), respectively. Since I' (x) ®
I" () preserves V™" it commutes with Ay, (1). Using this fact, we calculate

(@)@ I'(y)) o Amn(f) = Amn (1) o (I'(x) ® I'(¥)) © Amn (f)
=8mn o (F'(Vmn(x ® y))) o fotkmn (f € End(vm+n)) ,
where the second equality follows from the lemma above and the definition of A,,,, and A4

Computing A, (f) o (I'(x) ® I'(y)) similarly, we see that I"(x) ® I"(y) commutes with
Amn(f) for each f € Endgym+n(yy (V™ 1), or equivalently,

Amn (Endggmn vy (V™)) C Endgyen vy (V™) @ Endggn(vy (V") .

This proves the proposition. g
As Cost(V)-comodules, V" (m > 0) and VO are isomorphic to V@™ and the unit co-
module R, respectively. Moreover, the definition of V™ (i, j) is consistent with (1.18).
LEMMA 3.3. Let V be aflat face model with dimension graph G. Let $(G) and e (Z)
be as in Example 1.1, and J the linear span of the following elements of $(G):

Y v.gre (i) - vp.gtse (i)

tegm tegm
(m=>0,i€eV, pqegl, rsegm.
Then J is a biideal of $(G) and Cost(V) ~ $H(G)/7J.

PROOF. The assertion easily follows from Cost™ (V) ~ End(V™)*/C*, where C+ =
{X € End(V™)* (X, C) = 0} and C = Endggm(y)(V™). O

3.3. Representationé of Cost(V). Foreach A = (i, m) € AT}, we define an Str™(V)-
module V) and a space L as follows:

Vi =V™(x,i), L= Homgynv)(Vy, V").

Since L) naturally becomes an irreducible Endg(y)(V™)-module, it also becomes an irre-
ducible Cost™ (V)-comodule (cf. Subsection 2.4). Moreover, {L, |1 € A]} gives a set of
complete representatives of irreducible comodules of Cost™ (V).
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For each i, j € V and (k, m) € Ay, we define a non-negative integer Nl.’}c(m) by the
following irreducible decomposition of a Str™ (V)-module:

(3.13) VG )= @ N m) Vi) -
keV(m)

We call the integers Nij}( (m) the fusion rules of V. By definition, we have
(3.14) NI (m) = 8
foreach j € Vand (k,m) € Ay.

PROPOSITION 3.4. For a flat V-face model V, the following hold.

(i) Foreachi,j €V and (k,m) € Ay, we have

dim(L gm0, /) = N}y (m) .
(ii) For each finite-dimensional Cost™ (V)-comodule M, we have

M~ P dim(M(x,i)Lm-
ieV(m)
In particular, we have M ~ L; py if dim(M (x,1)) = 1.
(iii) For each (i, m), (j,n) € Ay, we have
Lim®LGm > € NE®Lamin.
keV(m+n)
PROOF. Part (i) follows from

Lk, m) (i, j) = Homgn (vy(Vie,my, V", 7)) -

For i € V(m), let u; denote the multiplicity of L(; ») in M. Then, using (i) and (3.14), we
obtain

dimM(x, D) = Ny ;0m) = i,

JEV(m)
dim((Li,m) ® Ljm)(*, k) = Y N (m)Nf;(n) = N (n) .
ley
Part (ii) follows from the first formula, while (iii) follows from (ii) and the second formula.

(]

We say that [J € V is the generating vertex of a flat V-face model V if n(g;,.) =60
foreachi e V.

LEMMA 3.5. Ifaflat face model V has the generating vertex O, then V is isomorphic
to L(O,yy as Cost(V)-comodules. Moreover, we have:

(3.15) N =8Gl) G.jeV).
PROOF. The first assertion is obvious and the second assertion follows from (3.13). O

3.4. Unitary flat face models. Let V = (V, w, ) be a flat face model over the com-
plex number field C, and ( | ) a Hilbert space structure on V such that (V (i, j) | V', j)) =0
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unless (i, j) = (i’, j'). We define a Hermitian inner product on V™ by (up |ug) = 8pq
(p,q € G™), where {up |p € G™} (m > 0) denotes a path basis of V™ such that {up |p € Qilj}
is a orthonormal basis of V (i, j). We call such {u,} an orthonormal path basis of V™. We
say that V = (V, (|)) is unitary if w is unitary with respect to (| ). The partition function
and the function y with respect to {u,} satisfy the following relations:

(3.16) w! <c Z b) = w¥! (a ; d) ,

(3.17) y@b;c.d)=y(b,a;dc).

Let ep

{up |p € G™}). By (3.17), Lemma 3.3 and Lemma 2.1(5) of [H5], Cost(V) becomes a com-
pact face algebra via

(3.18) e(lq’) =e<1‘f) (p.geG™, m=>0).

It is easy to verify that the costar structure x does not depend on the choice of {up}.

’ P, q € G™ | be the matrix corepresentation of the Cost(V)-comodule (V™,

4. Galois face algebras.

4.1. The face algebra & (V). Let G be a finite connected non-oriented graph. We
identify G with an oriented graph equipped with a bijection ~ : G! = gl p — p~ such
that p7)~ =pandp™ € gj‘.,. for eachp € g}j andi,j € V=G0 Let V = (V, w, %) be
a unitary flat face model whose dimension graph is G, and {u,| € G™} an orthonormal path
basis of V™. We say that (V, {u,}) is of connection type if its partition function with respect

to {up} satisfies the following renormalization rule:

i —L 5 s [ LA
B u(j)u(k)>
vl I —(u(i)u(l) wls| I
Kk —2 5 l _‘l:_> k
.1 PR
()
- (M(i)u(l)) vl =] Ls
)4

i —
Here, we denote by [u(i)];cy the Perron-Frobenius eigenvector of [n(g}j)]i, jev such that
u(x) = 1, and by B its eigenvalue. We call [« (i)] the normalized Perron-Frobenius
eigenvector of V. For a flat face model V of connection type, we define operators e; and
by =by(g) on VZby
- Vi (EP)u(c(q))
4.2) e;=p" Z Z ‘—(p.—qu-pﬁq-q” ’
‘ | u(i)

ieV p,qeg’,»_
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4.3) by=¢-id+Be ey,

and call e; the Jones projection of V, where ¢ denotes a fixed solution of the equation
€2 +¢724+ B = 0. It is known that e actually is a projection and that (V, by) is a face
model which satisfies the braid relation: (by)1(bs)2(bs)1 = (by)2(bs)1(by)2 in the algebra
End(V?3) (cf. [G-H-J]). Moreover, using the unitarity and the renormalization rule, we find
that b satisfies

4.4) wiwz(by)1 = (by)2wiwr

in End(V3) (see e.g., [Ka, p. 70]).

Let N C M be an irreducible AFD II;-subfactor of finite index with finite principal graph
G. Then, by Popa’s classification theory of II;-subfactors, N C M is completely determined
by its standard invariant (see [P] and also [O1]). Moreover, by Ocnecanu’s theory, the standard
invariant is described by the flat biunitary connection W (cf. [O1], [02], [Ka]). When G
coincides with the dual principal graph, W is a function which assigns a complex number
W(B) to each boundary condition B on G of size 1 x 1. Set V = span{up |p € G 1} and define
w = wip by (3.2). Then, V = (V, w) becomes a flat face model of connection type with
generating vertex []. We call V the flat face model associated with N C M. Let N C M
be either an AFD II;-subfactor of index < 4, or an irreducible AFD II;-subfactor of index
= 4 with finite principal graph. Then, N C M satisfies the conditions stated above and its
principal graph is either A, (n > 2), Doy (n > 2), Es, Es, DS (n > 4) or E{V (n = 6,7, 8).
Except for the case of D,(,l), the corresponding face model is given by w = b (¢) for some
¢. When G is of type D,(,l), there are n — 2 subfactors and corresponding face models. The
explicit formulas of these are given in [I-K].

LEMMA 4.1. Let V = (V,w, %) be a flat V-face model. If b is a linear operator on
V2 such that (V,b) is a V-face model and that wiwab; = bywyw, on V3, then the element
b; = b; Vi (5m) (1 <i <n—1)of St'(V) satisfies I'(b;) = b;.

PROOF. The assertion easily follows from wy,b; = bjymwym (1 < i < n—1) and the
definition of I". O

Applying the lemma above to b = b, we see that b; commutes with the coaction of
Cost(V) on V2, Computing p(bjup) = (by ®id)(p(up)) (p € G?), we find that the following
“L-operator” relation is satisfied in Cost(V):

(4.5) Z by (r?q)-e(‘:.::)z Z by <a;d)-e(;id)
rsegG? c-deG? 9

@b, p-qed,
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where | e I‘; is as in Subsection 3.4 (cf. [R-T-F], [H6]). Hence, by Lemma 7.4 of [H5],

Cost(V) has a central group-like element det which satisfies the following relations:

det = Z det <;) ,

i,jeV
; Orc®) \'? (p-p~
()= X (LOKONTE, (b0
(4.6) e‘(J te; nHucEn)  \rt
T
-y (Mo (1)
Z \kutei@) 9-97)"°

where p and g denote arbitrary elements of Qi{_ and g}’_, respectively. Note that we have
Rdet >~ Im(ey) > L(x,2) as Cost(V)-comodules. By Lemma 7.2 and Lemma 7.4 of [H5], the
quotient (V) := Cost(V)/(det —1) becomes a compact V-Hopf face algebra via (3.18), and

P)) - (“e@rce)) " (f) N
> (e (q)> B (,Uv(s(p))/j,(t(q))> e ~ (P,‘I € g , m> O)

If V is a flat face model associated with a II;-subfactor N C M, we call &(V) the Galois
face algebra of N C M.

4.2. The main results.

THEOREM 4.2. Let (V, w, *) be a flat V-face model of connection type such that its
dimension graph G is bipartite. Then the following hold.

(1)  The compact Hopf face algebra & (V) is hollowless and finite dimensional, and the
fusion rules Ni]k = Nl.’k (m) do not depend on the choice of m.

(ii) Foreachi €V, there exists a &(V)-comodule L; such that dim(L; (x, j)) = &;j
(j € V). The comodule L; is irreducible and unique up to isomorphism. Moreover, we have:

4.7 B(V) ~ @End(Li)* ,
ieV
(4.8) Limy=L; ((i,m)€ Ay),
(4.9) L.~R,
(4.10) Li®L; ~EPNiLe G.jeV),
keV
@.11) dim(Le(G, /) = N}, G, j.keV),

where (4.7) stands for an isomorphism of coalgebras and (4.8)—(4.10) stand for isomorphisms
of &(V)-comodules.

We give the proof of this theorem in the next subsection.
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THEOREM 4.3. Let V be as in the theorem above. Assume also that V has the gener-
ating vertex 1. Then we have:

4.12) dimQ(L,-) =u@) (GeV),
n(j) o

4.13 = ——gi&j,

(4.13) 0 i,_}EEV: u(i)ssj

where [(i)];cy denotes the normalized Perron-Frobenius eigenvector of V.

PROOF. By (4.10) and (2.3), we have

4.14) dimg(L;)dimg(L ) = Z N,.’j. dimg(Ly) .
keV
Using (3.15), we see that [dimg(L;)];ey is an eigenvector of the matrix [u(g}j)],-, jev. Hence

(4.12) follows from the uniqueness of the Perron-Frobenius eigenvector. Let Q be the right-
hand side of (4.13). Using (4.11) and (4.14), we obtain

5 prG)
Trr, @ = Y B2 NG =10 - ).
=, u(@)
i,jev
Similarly, using (1.30) and (2.4) in addition, we get Try, (Q_l) = (V) - u(k). The verification
of the relations (1.24)—(1.28) is straightforward. O

PROPOSITION 4.4. LetV and [ be as in the theorem above.
(i) (A reciprocity of Schur type) For each m > 0, we have

Clrym(B(V)*) = Su™(V), CESu™(V)) = myn(B(V)"),

where C denotes the commutant in the algebra End(V™).

(ii) (cf. [O1]) Let wym be the tracial state on Endgv) (V™) defined as in Subsection
2.2. Then we have

(4.15) tym (I (Egp)) = p(Hpu (@) "6y (m>0,i €V, a,begy).

PROOF. (i) As®(V)*-modules, {Ly |A € A7} are still irreducible and mutually non-
isomorphic. Hence, the map wy» : &(V)* — Cost™(V)* is surjective. This proves the
second isomorphism. The other isomorphism follows from the double commutant theorem.

(ii) Using (4.13), we obtain

! w) Z y(a,b;c,c)

tym (I (Egp)) = ; :
IO 55, 10 g

for each @, b € GJ:. On the other hand, using the unitarity and the renormalization rule, we
obtain

Y o) Y y@bie,e) = nG)n()oam -

key ceg;"k
This proves (ii). d
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For a flat face model (V, w) of connection type, we define another flat face model (V, w)
of connection type via

Ww(g @ up) = Zw(c ; b) Ue ® ug (a-begz).
cd
THEOREM 4.5. Let V, O and (i) be as in Theorem 4.3. For each i € V such that
w(i) > 1, the Jones’ index of the 11j-subfactor N(i) C M(i) associated with L; is (i )2,
where L; is as in Theorem 4.2. If (V, w) is associated with a 111-subfactor N C M which
satisfies the conditions stated above, then N () C M (Q) is isomorphicto N C M.

PROOF. The first assertion is obvious. Let V,,, W,, etc. be as in Subsection 2.5. Using
(1.30) and (3.15), we compute

Soo = Ngr = #Gh,) = 1.

Hence, we have V,, >~ W,, >~ V" as &(V)-comodules. Hence, by the proposition above, we
have B, >~ C,, >~ Str™ (V). Moreover, the inclusions C,, C Cp,+1 and B,, C Bj,+ are iden-
tified with 1,1, and the inclusion C,, C By, is identified with Vy,, : Str'(V) @ Str™(V) —
Str™+1(V). Hence, by (4.15), the ladder (2.10) of the commuting squares is identified with
that of Ocneanu which appeared in [O1, p. 131]. Therefore the second assertion follows from
a theorem of [O1, p. 134], whose proof is given by Popa [P]. ]

Let N C M be an AFD II;-subfactor of index less than 4 with principal graph G. Let &
be its Galois face algebra. By (1.30), we have

(4.16) dim(Homg (Ls, Li® L)) = 8

In [I], M. Izumi shows that the fusion rules of sectors corresponding to subfactors with index
< 4 are computable by means of results which are analogous to (1.29) and (4.16). Hence, the
fusion rules of ® are also computable. For example, in case G = A4, these are given by

NE = I (i—jlsk<i+4+j,i+j+ke2Z and <2I)
Y 0 otherwise,

where the labeling of the vertexes of A;4 is as follows:

x=0 O=1 2 3 -1 l

Al
These numbers are well-known as fusion rules of SU (2);-Wess-Zumino-Novikov-Witten mod-
els (cf. [T-K]). In general, the fusion algebra of & (i.e., the representation ring of &*) is com-
mutative, and the involution * : V —> Vis of order 2 if G = Dy, (n > 1) and is an identity if
otherwise. For the convenience of readers, we write down the fusion rules of & when G = Dj.
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Lo®Lo~L.®L;®L;, Li®LOo~Lg, Li®Lo~Lp,
Li®L,‘2Lj, Lj®Li2L*, Lj®Lj2Li,
Lo ~ L, L,‘VZL]‘, LjVZLi.

It is natural to ask the relation between Izumi’s descendant sectors and the family of II;-
subfactors which is obtained by applying the theorem above to &.

4.3. Simply reducible group like element. Let ) be a V-face algebra such that §) >~
D, 4 End(Ly)* as coalgebras for some irreducible right comodules {L, | » € A}. Let g be
a central group-like element of §). We say that g is simply reducible if there exist a subset
A C A and abijection ¢ : A x Zsg —> A such that Ly ») = Rg"® L, for each A € A and
n € Z>, and that ¢ (A, 0) = A.

THEOREM 4.6. Let 9, g etc. be as above. Then the following hold.
(i) The element g is not a zero divisor of §).
(i) The quottent Y) 9H/9H(g — 1)9 is isomorphic to @AeA End(Ljy)* as coalgebras

(iii) As an $H-comodule, Lyn) is irreducible and isomorphic to Ly. In particular, 9
is hollowless if ) is hollowless.

(iv) The fusion rules of § are given by

L®L.~P (Z Ny "’) Ly,

veA \n=0
where N ; M denote the fusion rules of §).

PROOF. Foreach A € A, let Gy denote the dimension graph of L;. Let {uglq € (g;\)ilj}
be a basis of L, (i, j), and [xqp ] the corresponding matrix corepresentation. Using Lemma 1.3,
we see that [g"xg]pq is a matrix corepresentation of (Rg"® Ly, {esq)d" ® uqlq € g{}).
Hence {g”xg |reApgeGlne Z-0} is a basis of 5. Therefore (i) is obvious.

Since g is central, we have

Hg—DH=(@-DH

= Z }: ZK(g— Dg'xf .

reA pgeG) n>0

Since {x§, (g — l)g”xpi)» € A,p,geGl,neZs}isabasisof H, {xh |ge A,p,qeG,}
gives a basis of §), where xp denotes the image of x" via the projection $ — $. Hence (ii)

follows from span[xp | p.q € Qk} ~ End(L,)*. The proof of the other assertions is now
obvious. O

Now we are in a position to give the proof of Theorem 4.2. Since G is bipartite, we
have A := Ay = [[;ep{(i, m(@@) + 2n) |n > 0}, where m(i) = min{m | (i,m) € A}. We
define a subset A of A and a bijection ¢ : A x Zs A by A = {(i,m@)]i € V}
and ¢(i, n) = (i, m(i) + 2n). Using the second assertion of Proposition 3.4(ii), we see that
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g = det satisfies the conditions of the theorem above. Therefore Theorem 4.2 follows from
Proposition 3.4.
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