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Abstract. The aim of this paper is to compute the cohomology groups of circular units
in the Z »-extensions of a real abelian field of prime conductor. Even though the generators
of circular units are described very complicatedly, their cohomology groups turn out to be as
simple as one can expect compared to the cohomology groups of full unit group found by
Iwasawa.

1. Introduction and notation. Let ¢, be a primitive n-th root of 1 and P, the mul-
tiplicative subgroup of Q(¢,)* generated by {£1} and {1 — {?|0 < a < n}. Then the group
Co(¢,) of cyclotomic units of @(¢y) is defined to be

Coin) = EQ,) N Pr s

where Eq(¢,) is the unit group of @(¢,). The group of cyclotomic units enjoys many important
properties such as the index theorem (cf. [7]). In general, for an abelian field F, Sinnott [6]
defines the group of circular units of F' as follows: For each n > 2, let

F,=FNQ() and Cr; = Now,)/r(Co,)) -

Then the group CF of circular units of F is defined to be the multiplicative subgroup of F*
generated by Cg; for all n > 2 together with —1. Note that if n is prime to the conductor of
F, then F, = Q and so Cr; = {1}. Thus there are only finitely many n’s to be considered in
the definition of Cr.

Let k be a real subfield of Q(¢,) for an odd prime g and ko = (J,,> kn the Z ,-extension
of k = ko for an odd prime p with (p,q) = 1. Here, k, means the n-th layer of the Z,-
extension, not k N Q(&,). For each n > 0, we denote the group of circular units of &, by Cj,.
Then the index theorem of Sinnott says the following:

INDEX THEOREM (Sinnott [6]). Let E, be the unit group of k,, and h,, the class num-
ber of k. Then [E, : C,] = 2" h, for some integer c.

For each integer s > 1, we choose a primitive s-th root ¢ of 1 so that {,’/ § = g if
sit. Let K = Q(), F = Q(p) and K" = Q(¢pg). We denote their cyclotomic Z -
extensions by Koo, Foo, and K/, respectively. Let o be the topological generator of the
Galois group I" = Gal(K/,/K’) which maps ¢, to {;:’ P for all n > 1. Restrictions of

o to various subfields are also denoted by o. Let k() be the decomposition subfield of &
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for p and let A = Gal(K/k), A= Gal(K/Q), Ap = Gal(K/k(p)), Ay = Gal(k/Q) and
Ar,p = Gal(kp)/0Q). Let [k : Q] = d and [k(p) : Q] = [, so there are [ prime ideals in
k above p. Elements of A, A or A p will be denoted by t’s, and those of A; and Ay , by
p’s. The Frobenius automorphism of K for p or its restriction to k is denoted by 7. Let R
be the set of all roots of 1 in the ring of the p-adic integers, i.e., R = {w € Z,|w”™! = 1}.
Then R can be regarded as the Galois group Gal(F/Q) or any Galois group isomorphic to it
such as Gal(F,/Q,), where Q, is the subfield of F, of degree p” over Q. For m > n, let
Gm.n be the Galois group Gal(K,,/K,) and Ny, , the norm map Ng: /x: from K, to K,.
We will abbreviate G,, 0 and N, o by G,, and N,,, respectively. G,, , will also mean the
Galois groups Gal(ky, / k,), Gal(F,,/F,) and Gal(Q,,/Qp). Similarly, N,, , will have various
meanings. Finally we fix a generator v, of the character group of Gal(Q,/Q) such that
Yn(o) = ¢pn. In this paper, we will compute the following cohomology groups of circular
units.

THEOREM. Suppose p1d = [k : Q. Then, for m > n > 0, we have the following.

(1) Cam" = Cy,
) H%Gpony Cm) = (Z/p""2)! !,
3) H™ (Gmn, Cm) = (Z/p""2)\.

Since G, is cyclic, all the other Tate cohomology groups are isomorphic to one of
(2) and (3). Cohomology groups of circular units over arbitrary real abelian fields are still
unknown except when k is a real quadratic field (cf. [4]) and when k = Q(¢, + o 1) is the
maximal real subfield of Q(¢,) (cf. [3]).

We finish this section with a theorem of Ennola on relations of cyclotomic units which
will be useful in subsequent sections.

THEOREM (Ennola [1]). Suppose § = ﬂ15a<n(1 — ¢ is a root of 1 for some in-
tegers xq. Then for any even character x of conductor n, Y(x,8) = 0, where Y(x,68) =

Zl§a<n x(a)xq.
2. Lemmas. In this section, we prove a series of lemmas that we need in the proof of
the theorem in Section 1.

LEMMA 1. Let x be an even character of conductor n, and 81, 82, 8 cyclotomic units
in Q(&n). Then
(D Y(x,8182) =Y(x,81) +Y(x,82),
2 Y(x,8”) = x(¥)Y(x,9) forany y € Gal(Q(5n)/Q).

PROOF. These two follow immediately from the definition of Y.

In computing cohomology groups, we will often see circular units of k, of the forms

[T @wmi-an,  I1 ewa-¢n, and []]]ea —n%.

weR,TEA wER,T€A) a weR
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We summarize their values Y (x 1/f,{ , %) for x € Z; orx € Ek\,,, in the following lemma.
LEMMA 2. For x # 1 and for every 1 < j < p" with (j, p) = 1, we have
(1)

Y (xw,{ I @ - c;")) = (p — DHA)Xbp™t )i (ag) for x € Ay

weR,T€A

€))

v{xvid, I @—¢5 | =0-Diap)x®)viag) for x € A,

w€ER,T€A,

3

Y(xw,{,l"[]’[(; —1>xﬂ> =0 for x € &k

a weR

PROOF. Since the proofs for (2) and (3) are similar to that of (1), we will only prove

1).

Note that
b -—
[T ¢pn-agn=TI gua-gig
weR,TeA weR,TEA
— n+1
= (root of 1) x 1_[ (1—¢ nial)g+brp ).
wER,TEA

Since Y (x 1//,{ , root of 1) = 0, we have

Y(xvfn", [T @, - c;"))

WER,TEA

n+1

I

D YOy, L e

weR,TeA

= 3 xvi(-awq +brp"h)

weR,TEA

= > x®p"yil(ag)

weER,TeA
= (p — D#A) X bp" )Y (ag) .

In the following lemma we solve a system of linear equations involving characters of
Gal(k/Q).
LEMMA 3. Suppose that integers a; k,; satisfy

j I+kp"
> @i @ x ) =0
O<l<p®
O<k<p
pPi€A
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foralljwithl < j < prtl( J» p) = 1 and for all nontrivial characters x € Kk Then

P eni+e ifl=k=0,
LEi= 1 ¢ otherwise

for some integers e; ; and e.

PROOF. Write the equation as

Yo X v, @) | x(o) =0.

Pi€A | O<i<p"
O<k<p

Leth; = Zl, X al,k‘,‘lﬁ,{ 41 (o!t*P"y. As x runs through all the nontrivial characters of E(, we

have d — 1 equations in d unknowns by, - - - , by. Since the (d — 1) x d matrix with entries
x (i) 1s of rank d — 1, the solution space is of one-dimensional. Since by = --- =bg = 1is
a solution, the general solution is of the form by = --- = by = e for some e.

Fix i and put a; x; = c; k. Then we have

k"
Y kb @) =e.

O<i<p"

O<k<p
As j varies, this gives a system of p"*! — p” linear equations in p”*! unknowns {c; x |0 <
I < p" 0 <k < p). Let A be the (p"T! — p™) x p"*! matrix with entries 1//r{+l(al+k1’").
Then the equation reads AX = E, where X = (--- ,¢j,---) and E = (e, - - - , e)". Clearly,
Xo = (e,0,---,0)" is a solution of AX = E. So the general solution for AX = E is given
by X = Xo + Y with AY = 0. Since the rank of A is p"*! — p", the rank of solutions of
AY = O must be p". Foreachs,0 <s < p",letY; = (---, fik, )" be such that

0 ifl#s,
f“‘_{ 1 ifl=s.

Then Y; is a solution since } o ., zp,{ﬂ(a”kp") = 0 forall j. Since {¥; |0 < s < p"}is
independent, this set provides all the solutions to AY = O. Hence, the solutions for AX = E
is
X=Xo+ ) eY;.
O<s<p"

Therefore

ei+e ifl=k=0,

al ki = ClLk = { 0 d .

el otherwise .

In the next two lemmas, we examine C, for n > 0.

LEMMA 4. Form >n >0, Cy = CoNy nCn.
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PROOF. Clearly, C, D CoNm nCm. To prove the converse, note that an element u of
C,, can be written as u = uou; - - - u,, where for each k > 1, uy is of the form

we= [ @ = =2 ™ [ — DT

weR,TeA weR
Since
m—k
Nm,k (l_[@;)m“ - {;)) = 1_[(4':,‘2“ - é.;p )
w,T w,T
we have
m—k _k—m
[Tes = =T1Gun =" H™
w,T w,T
r';,""
= Ninjk (]—[(;;“m+. -4 ))
w,T
T’;’_m Z:0§|'<p"_" oipk
= Nm,n (l—[({;mﬂ - ;qr)) .
w,T
Similarly,
ZOSi<p"”‘k Uipk
[T€5% =1 = Now (H (S 1)) = N <H o = 1))
w€eR w€eR w€ER

So uy € Ny nCy, foreach k > 1 and thus u € CoN,y ,Crr.
LEMMA 5. rank Nk/k(p)Co =[-1.

PROOF. Note that the group of circular units of k() is generated by —1 and N/, Co.
Thus N/, Co is of finite index in the full unit group Ej, of k() by the index theorem of
Sinnott [6]. Therefore, rank Ni/k,yCo = rank Ex,, = -1

3. Computation of Cg'""‘. Clearly, C, C C,(,f""". For the converse, it is enough to

. G G )
check whenm =n + 1, ie., Cn+'”{"" C C,. Take u € Cn+'“{"". We can write u as
I+kp" . . I+kp" b
o w T\Q, o w
U=uUp l_[ (Cpn+2 - ;ql ) Lk l-[ (gpn+2 - 1) L
weR,TEA w,l,k
0<l<p",0<k<p
Pi€A

n
for some u, € C, and integers a; x,;, b k. Since u’” = u, we may assume u, = 1. Now
n .
apply Lemma 1 and Lemma 2 to the relation u°” = u with characters of the form zp,{ X
with 1 < j < p"*!, (j, p) = 1 and nontrivial characters x € A to obtain

Z al.k.i‘/f,J,H(GHkan)X(P"+2Pi) =0.

w,t,l,k,i
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Therefore '
Zal.k,i'//,{+1(01+kp")X(Pi) =0.
Lk,i
Hence by Lemma 3,
{eo,,‘—l-e if l=k=0,
a ki =

eli otherwise .
Thus
I+kp kp"t . i+
w= [T o= TT @052 =g [T G = g0
10 k£0,1=0 1=k=0
k,w,t,i i,w,T i,w,T
1+I(p b
x [T@na @ = phe
w,lk
1+kp kp"
= [T o @ =egon TT @i =00 [T Conee = 607)°
1#0 O<k<p iw,T
kw,t,i i,w,T
l+kp b,
x [T = nr.
w,lk

Note that the first two products in the above expression are elements in C,,, while the last two
are in Q4. Hence u = v, v,y for some v, in Cp, vy41 in @y41. Then apply Lemma 1 and
Lemma 2 again to get u,, | € Q, after similar computation.

4. Computations of H°(G,,.», Cp). Since C,, = CoNpy.nCry by Lemma 4, the natu-
ral map
Co— Cpn = Cp/NpnCn
is surjective. Thus

IA{O(Gm,n» Cp) = Cn/Nm,nCm X CO/CO N Nm,nCm .
Let C,, be the subgroup of C,, generated by circular units of the form [],cz rea ({Z,‘,‘,’ i {;”)

m-—n

with p™*! t a. Then clearly C,, = CoC/, and Ny, ,C., = C.. Hence Ny nCpy = C(’)’ C.
Therefore
A%Gmon, Cm) = Co/CoNCE" " Cly = Co/Cl" " (ConCy) .
Next we claim that
p—1

Cy’ CCoNC, C NCo={u€ Co|Niji,u=1}.
The first inclusion follows from the equality (1 — ;'q)fi’_1 = [lye r(&y — &q). To check the
second one, take u € Cop N C,, and write u as
w=[T TT @i —eHre
a,b weR,TeA
for some integers f (a, b). By taking N,,, we have

uP" — l_[ (;;) _ C:T)g(d) — dl—l(l _ é.;lr)g(d)(r,,—])
T

d,w,t
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for some integers g(d). Therefore Ni p)uP" = 1 and the second inclusion follows. Since

NCo/ CS" ! is annihilated by [k : @], which is prime to p, we obtain

H%(Gpn, Cm) = Co/CL" " (Con C) = Co/CE™ " N Co.

For convenience, we denote Nk, simply by N. By Lemma 5, we know that NCo
modulo {1} is a free abelian group of rank / — 1. Let &, &>, - - - , &1 be elements of Cy such
that {N(&1), N(&2), --- , N(&§—1)} generates NCp modulo {1}, and let Dy be the subgroup
of Cyp generated by {&1, &2, - - - , &—1}. Then

[Co: DonCol =[NCo: NDg][NCy: nCol=1o0r2.

Therefore < bW C
oS 1, »Sl-1 — _
A Gy, Co) ~ — M0~ z/pnrzy!
(€1, &-1)P" " NCy
as desired.
5. Computation of ﬁ_'(Gm‘,,, Cm). Let{pi, -+, pi—1, 01 = id} be a set of coset

representatives of A/A p-Foreach1 <i <[ —1,let

Sni= [ @€ =4 and 7w =[G = 1.

w€eR weR
T€EA,
Then
Toip .
Nn,n~—]3n,i = n (C;;Un - Cq ' )= l_l (E;;u" - qup,)rp = On—1,i
wER weR
T€A), T€A,
and
0 p" T0i P\, —1
Nodwi= [] @y =" =[]a-¢""H7 =1,
weR TEA)
T€A)p

since t, permutes A . Also, obviously N, (w7 H=1.
We claim that H (G, C,) ~ (Z/p"Z)! and is generated by {8, 1, - - , 8,-1, 71}
Then from the inflation-restriction sequence

Gm.p inf res

0— HY(Gp, Cn™") = H' (G, Cp) —> H' (Gmon» Cy)

we obtain
0— (Z/p"2)' — Z/p"Z)' - H'(Gmn. Cm),

since the first cohomology group H' is isomorphic to H! by the cyclicity of the Galois
groups. Thus (Z/ p’"‘"Z)’ injects into H 1 (Gm.n, Cpy). Since the Herbrand quotient for the
unit group E,, is #(Gp.n) = p™ " and since E,, /C,, is a finite group, the Herbrand quotient
for Cy, is also p™~" (cf. [5]). Thus #(Z/p™"Z)} = #H'(Gp.n, Cm) = p™ ™. Therefore
H! (Gmny Cm) (Z/p”"”Z)’ and is generated by

(1e5(Bm,1)s -+, 1e8@m1—1), tes(mg ™)) = (8] TH/EOTD L gl IO el

m *“m,l—1
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It remains to justify the claim: If 5", - - »52’1‘_'17r,$°_1)a’ = uZ~! for some u, € C,, then

ay =---=a =0mod p".

We will prove this by induction on n. For simplicity, write §; for é; ;, and suppose that
LI 81“’_“1'71,(”_1)“’ = u®~! for some u € Cy. As in the proof of Lemma 4, we can write
u = uguq, where ug € Cp and u; is of the form

i p.ea, i i pj _(0=1)Y; bio!
N S
w€ER,TEA

We apply Ennola’s theorem with the character vyx, x € A’k\,p, to the equation

& 5;"_—1‘7;1("")“’ = u‘l"1 to obtain
D aY@ix,8) = @(e) = DY Yy, u).
I<i<l-1
Thus by Lemma 2,
(p— DEAYIQ) Y aix(p) = (o) — D(p — DHA)a(x)
I<i<i-1

for some algebraic integer a(x) depending on x. Since p { #(A,/A), we get
> aix(p) =0mod(g, - 1).
1<i<i-1

By letting x vary over all nontrivial characters of A ,, we have a linear equation MA =
O mod(¢, — 1), where M is the (! — 1) x (I — 1) matrix with entries x(o;) and A =

(ar, -+ ,ai—1)". Let N be the (I — 1) x (I — 1) matrix with entries X(pi_l). Then since
det(NM") = I'=2, p { det M. Therefore A = O mod(¢, — 1), and hence mod p. Since each
g, =0modpforl <i<I—1,we getn'l(”—l)a’ = vf_l for some vy in Cy. This implies that
nf’ = v1ag for some ag € k. As ideals, we have (nf’) = (ap), which is impossible unless

a; = 0 mod p, since primes of k above p ramify totally in k. This proves the claim forn = 1.
Now we prove the claim for n assuming the result for n — 1. Suppose

ay . oaI-1 (c—-Da _ ,0—1
Spt 8y =1 7Tn =uy

for some u, € C,. By applying N, ,— to both sides, we have

— -1 - —
8ulin "531—11,1—1”5(11 = (Nonru)” ' € ok
Then by the induction hypothesis, a; = --- = @ = 0 mod p"~!. Leta; = p"~'b; for

1 <i <. Note that

n—1

p

n—1| .
877 = Nnani) i = 81,48

ZOS,K,,,,_](1—0“’)/«:—1))0—1
" (Nn,18n,1)

n,i

and
n—1¢._ _kpy\o—1
e = nf_l(n,,z"(l 7 )) .
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Therefore 8" - - 8,/ | a4 = 4o reads

by b1 _(o-Db _  o-1
IR I WARELS = Uy

for some v, € C,. By the injectivity of the inflation map

inf

H™Y(Gy,C1) ~ HY(G1, C\) = H'(Gy, C) ~ H™ (G, Cn)

8 6[1”1'17[1 —Db mustbeinC‘l" .Thusby=---=b;=0mod pandsoa; = --- =

= 0 mod p”. This finishes the proof.

REMARK. Let I' = Gal(kso/k) = imG, and Coo = Unz() C,. Then by taking the
limit under the inflation maps, we have H W, Co) ~ Qp/Z p)l. On the other hand, Iwasawa
[2] found that H'(I", Exo) = (Qp/Z )" @ M for some finite group M, where Eoo = U,~0 En-
Therefore the cohomology groups of circular units are as simple as one can expect. Moreover,
the natural inclusion Co, — E induces a homomorphism H I, Cso) = HU(TI", Es) and
it is natural to ask if this map is injective. Recently, however, this map was found not to be
injective in general (cf. [4]). The kernel of this homomorphism seems to be related with the
capitulation, but not well understood by the author so far.
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