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Abstract. Let W be an irreducible subvariety of codimension r in a smooth affine

variety X of dimension n defined over the complex field C. Suppose that W is left pointwise
fixed by an automorphism of X of infinite order or by a one-dimensional algebraic torus action

on X. In the present article, we consider whether or not X is then an affine space bundle over

W of fiber dimension n — r. Our results concern the case r = 1 or the case r = 2 and n < 3.

As by-products, we obtain algebro-topological characterizations of the affine 3-space.

0. Introduction. Let k be an algebraically closed field of characteristic zero, which

we fix as the ground field throughout the present article and assume to be the complex field

C whenever we have to depend on the topological arguments. Let β be an algebraic auto-

morphism of the affine space A n of dimension n and W an irreducible hypersurface of A n.

We call W a coordinate hyperplane if there exists a system of coordinates (x\,... , xn} of A n

such that W is defined by x\ = 0. We first pose the following question:

QUESTION. If β is of infinite order and leaves W pointwise fixed, is W a coordinate

hyperplane after a suitable change of coordinates onAnl

Indeed, the answer is affirmative if n = 2 (see Corollary 1.10).

We consider the question in the case n = 3 with an additional hypothesis. Namely, we

prove the following (see Corollary 2.9):

THEOREM. Suppose n = 3. If β is dίagonalizable (see Section 2 below for the defini-

tion), then W is a coordinate hyperplane after a suitable change of coordinates onA^.

As a by-product, we obtain the following algebraic characterization of the affine space

of dimension 3 (see Theorem 2.10).

THEOREM. Let X = Spec A be a nonsingular affine threefold. Then X is isomorphic

to the affine space of dimension 3 if and only if the following conditions are satisfied:

(1) Pic X = (0) and A* = k*, where A* is the set ofinvertible elements of A.

(2) There exist an irreducible hypersurface W ofX and a diagonalizable automorphism

β of infinite order such that β leaves W pointwise fixed and that W has Kodaira dimension

—oo.

We next consider the case of codimension two. Let W be an irreducible subvariety of

codimension 2 in a nonsingular affine variety X of dimension n defined over the complex field
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C. Suppose that a one-dimensional algebraic torus Gm acts on X in such a way that W is the
fixed-point locus XGm. Our main result in the codimension two case is Theorem 4.2, which
characterizes the affine 3-space among the acyclic affine threefolds. In this article, we say that
a nonsingular algebraic variety X is acyclic if all the reduced integral homology groups of X
vanish. An acyclic surface is called a homology plane.

We are indebted to R. V. Gurjar for various suggestions and ideas in Sections 3 and 4,
especially the proof of Theorem 3.1.

1. The case n = 2. Let C be an irreducible curve on the affine plane A 2 = Spec k[x, y]
and / e k[x, y] an element which generates the defining ideal of C. Let X be the complement
of C in A 2 . So, X = SpecA:[;c, y, f~1]. Letβ be an algebraic automorphism of A 2 of infinite
order which stabilizes the curve C, i.e., β(C) = C. Then β induces an automorphism on X
and on the coordinate ring k[x, y, f~l] of X. We denote the induced ^-algebra automorphism
of k[x, y, f~l] by the same symbol β. We denote by κ(X) the Kodaira dimension of X. First
of all, we note the following result (cf. litaka [6, Theorem 11.12]).

LEMMA 1.1. I f κ ( X ) = 2 , then Aut (X) is a finite group.

Since X has an automorphism β of infinite order, it follows that κ(X) < 1.

LEMMA 1.2. Ifκ(X) — —σc, then f = x after a suitable change of coordinates. The
automorphism β is written as

β(x)=ax, β(y)=by + g(x)

with β, b G fc* and g(x) e k[x].

PROOF. Since k(X) = — oo, there exists an A l -fibration φ' : X -> B', which extends
naturally to an A ^fibration φ : A2 -^ B, where B' is an open set of a smooth curve B.
Then the curve C is contained in a fiber of φ. Hence C is isomorphic to A ^ since every
fiber of φ is a disjoint union of finitely many smooth components which are isomorphic to
A 1 (cf. [12, Lemma 4.4]). By a theorem of Abhyankar-Moh-Suzuki (cf. [11]), we may and

shall put / = x after a change of coordinates. Since β(C) = C, it follows that β(x) = ax
with a e k[x, y ] . Since β~l(C) = C, we have β~l(x) = bx with b e k[x, y ] . Then a is an
invertible element of k[x, y], i.e., a e k*. Write

β(y) = 9oWy" + 9iMyn~l + + gnW
with g t ( x ) G k[x]. Considering the Jacobian determinant J of β ( x ) , β(y) with respect to
jc, y, we have

J = a(ngQ(x)yn-1 + + gn-\(x)) e k* .

This implies that n = 1 and go(x) = b e k*. So we are done. Q.E.D.

LEMMA 1.3. Suppose κ(X) = 0 and X is NC-minimal (see [4] for the definition).
Then f = x y H- 1 after a suitable change of coordinates. The automorphism β is written as

β(x)=ax,β(y)=a-ly or β(x) = ay, β(y) = a~lx

with a e
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PROOF. By Fujita [4, (8.13), (8.64)], X is isomorphic to either P2 - (tγ + £2 + ̂ 3) with
non-confluent lines i\ , £2^3 or P2 — (C -\-i) with a smooth conic C and a line t meeting each
other in two distinct points. In the former case, X is isomorphic to A^ xA^1, where A J denotes
the affine line A λ with one point deleted off and the reduced multiplicative group Γ(X)*//:*
is a free abelian group of rank two, where Γ(X) is the coordinate ring of X. Meanwhile, since
Γ(X) = k[x, y, f~l] with an irreducible element /, Γ(X)*/k* has rank one. So, the latter
case takes place. Then / = xy + 1 after a suitable change of coordinates. We shall determine
the automorphism β. Since β(f) = cf with c e k*, we have

β(x)β(y) + 1 - c(xy + 1)

or

where the right side is irreducible unless c = 1. So, c = 1 and β(x)β(y) = xy. The result
follows readily from the unique irreducible decomposition of β(x)β(y). Q.E.D.

If X is not yVC-minimal and ic(X) = 0, then X is obtained from an TVC-minimal one
by applying the sub-divisional blowing-ups or half-point attachments (cf. [4]). Then it is easy
to see that X has an A J -fibration. In the case of ic(X) = 1, by Kawamata's theorem [7, 12],
X has an A J -fibration. So we consider the case where X has an A J -fibration p : X -> B.
Considering the possible extensions of p on A 2 and also making use of the classification of
the standard forms of generically rational polynomials with two places at infinity (cf. [20,16]),
we have the following result (see [1] for the detail).

LEMMA 1.4. Let X be the complement in A 2 of an irreducible curve C defined by
f = 0. Suppose that k (X) > 0 and X has an A J -fibration p : X -> B. Then, after a suitable
change of coordinates, the polynomial f is written in one of the following forms:

(I) Case where the given A* -fibration p : X -> B extends to an A j -fibration p :
A2-+B:

(1) / = χmyn -f 1, where m, n > 0 and gcd(m, n) = 1. In this case, B = A j and
B=Al.

(2) / = χm(χly + /?(*))" + 1, where l,m,n > 0, gcd(m, n} = 1 and p(x) e k[x]
with deg p(x) < I and /?(0) φ 0. In this case, B = A J and B = A 1 .

(II) Case where the given A I -fibration p : X -> B is not extended to an A £ -fibration
on A2:

(3) f = ao(x)y+aι(x), where a G ( x ) , a ι ( x ) £ k [ x ] , g c d ( a Q ( x ) , a ι ( x ) ) = l,degαι(*)

< deg^oC*) ana ao(x) has two or more distinct linear factors. In this case, the
A^ -fibration p : X —> B extends to an A1 -fibration p : A 2 — > B, where
B = B =Al.

(4) / = xm — yn with m, n > 0 and gcd(m, n) = 1. In this case, the closures
of the fibers of the A j -fibration p : X —> B form a linear pencil {xm — λyn]
parametrized by λ e P 1 = A ; U { o o } , which has the point of origin as a base
point. Furthermore, B = A 1 .
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Note that the case (4) above is obtained by Lin-Zaidenberg's theorem [5] which asserts

that an irreducible curve C on A 2 , defined over the complex field C, which is topologically

contractible is defined by xm = yn in terms of a suitable system of coordinates [x, y] on A 2.

We shall look into the automorphism β in each of the above four cases.

LEMMA 1.5. In the case (1) in Lemma 1.4, an automorphism β stabilizing the curve

C is written as

β(x)=ax, β(y) = by

with a,b e k* and ambn = 1. We can write a = un , b = ζmu~m with u e k* and an mn-th

root of unity ζ. So, β is of finite order if and only ifu is a root of unity.

PROOF. As in the proof of Lemma 1 .3, we have

withe e k*. So,

where the right side is irreducible unless c = 1. Hence c = 1 and β(x)mβ(y)n = xmyn .

Since gcd(m, ή) = 1, we have

β(x)=ax,β(y) = by with a,bek*,

where ambn = 1. The rest of the assertion is readily verified. Q.E.D.

LEMMA 1 .6. In the case (2) of Lemma 1.4, an automorphism β stabilizing the curve

C is written as

β(x)=ax, β(y)=a~ly

with am = 1. So, β is of finite order.

PROOF. Note that xly + p(x) is an irreducible polynomial. Write

p(x) = cox1'1 + c\xl~2 + + Q-i

with c/_ι φ 0. As in the proof of Lemmas 1.3 and 1.5, we have

β(χ)m(βWlβ(y) + p(β(χW = χm(*ly + />(*))" .

Since gcd(w, n) = 1, we have β(x) = ax with a e k*, and

am'n(alxlβ(y) + p(ax)) = ζ(xly + p ( x ) ) ,

where ζn = 1. Hence it follows that

al+m'nβ(y) = ζy , i.e., β ( y ) = a~(l+m"»ζy .

Furthermore, by comparing constant terms, we have

^/«Q_i = ζ Q_! , i.e., am/n = ζ ,

whence am = 1, and β(x) = ax, β ( y ) = a~ly. Then βm = 1, and β is of finite order.
Q.E.D.
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LEMMA 1.7. In the case (3) in Lemma 1.4, an automorphism β stabilizing the curve

C is of finite order.

PROOF. Note that k(X) = 1 (cf. [1, Lemma 3.11]) and that the Aj-fibration p : X ->

B is canonical for the surface X in the sense that it is determined by a log pluri-canonical

system \n(D + Kγ)\ for n ^> 0, if (V, D) is a smooth compactification of X with boundary

divisor D of simple normal crossings. Hence the automorphism β preserves the A^-fibration

p (cf. [1, Lemma 3.3] for the detail). This implies that a fiber x = λ of p is transformed to a

fiber jc = μ. Namely,

0(jc - λ) = c(jc - μ) and c G k* .

Hence we have

β(x) = ex + d with c,d e k and c ̂  0.

The fibration p has singular fibers, which are by definition not isomorphic to Aj , over the

points a with ao(a) = 0. If β is of infinite order and if a$(x) φ k, then there would be

infinitely many singular fibers. Hence a$(x) = ao ε k or β is of finite order. In the former

case, the curve C is isomorphic to A l, and κ(X) — —oo by a theorem of Abhyankar-Moh-

Suzuki. So, β is of finite order. Q.E.D.

LEMMA 1.8. In the case (4) of Lemma 1.4, an automorphism β stabilizing the curve

C is written as

β(x)=ax, β(y) = by,

where a, b ε k, ab φ 0 and am = bn.

PROOF. Note that β preserves the pencil [xm — λyn} with λ e P1 by the same reason

as in the proof of Lemma 1.7. The pencil has two multiple fibers mA and nB, where A and B

are defined by x = 0 and y = 0, respectively. Since gcd(m, n) = 1, it follows that β(x) = ax

and β(y) = by with a, b ε k and ab φ 0. Since β ( f ) = cf with c φ 0, we have am = bn.

Q.E.D.

Summarizing the above results, we obtain the following result:

THEOREM 1.9. Let β be an automorphism of A 2 of infinite order such that β stabilizes

an irreducible curve C defined by f = 0. Then, after a suitable change of coordinates, β and

fare written in one of the following forms:

(1) / = x\ β(x) = ax, β(y) = by 4- §(x) with a, b e jfc* and g(x) e k[x].

(2) / =xy + l\β(x) =ax,β(y) = a~lyorβ(x) = ay, β(y) = a~lx,wherea ek*.

(3) / = xmyn + 1; β(χ) = ax, β(y) = by, where mn > I, gcd(m, n) = 1, a, b ε k*

andambn = l.

(4) / = xm -yn,gcά(m,n) = I; β(x) = ax, β(y) = by with a, b ε k* andam =bn.

COROLLARY 1.10. Let β be as in Theorem 1.9. Suppose, furthermore, that β leaves

C pointwise fixed. Then β and fare written as

f=x', β(x) = ax , β(y) = y + χh(x),
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where h(x) e k[x]. In particular, the curve C is a coordinate line after a change of coordi-

nates on A2.

2. Higher-dimensional case. Let X = Spec A be a nonsingular affine variety of

dimension n such that Pic X = (0) and A* = fc*. We shall begin with the following result:

LEMMA 2.1. Let W be an irreducible hypersurface of X, and let β be a nontrivial

automorphism ofX such that

(1) β leaves W pointwise fixed, and

(2) β induces a nontrivial action on 7//2, where I is the defining ideal ofW.

Then W is nonsingular.

PROOF. (I) Since A is factorial, the ideal / is principal. Let u e A be an element

such that / = (u). Since β(W) = W, one may write β(u) = au with a e A. Since β~l also

leaves W pointwise fixed, one may write β~λ(u) = bu. Then we have

u = β~\β(u)) = β~\au) = β-\a)β-\u) = β~\a)bu ,

whence β~l(a) e A* — fc*. So, a e /:*. Since β induces a nontrivial action on 7//2, it

follows that a φ 1 .

(II) Let Q e W be a closed point and {x\ , . . . , xn } a system of local coordinates of X

at Q. In the completion OX,Q = k[[x\ , . . . , *„]], write

where M/ is the z-th homogeneous part and m > 1. Since β(Q) = β, one can write

n

β(xi) = Ύ^bijXj H- (terms of degree > 2).

7=1

Then we have

/ " " \
jS(w) = um I y , b i j X j , . . . , y,bnjXj I H- (terms of degree > ra + 1)

= β

Hence

\7=1 7=1 /

This implies that the matrix B = (/?/7) is not the identity matrix.

(Ill) Suppose that β is a singular point of W. Then we have

where mw Q, mx Q are the maximal ideals of the local rings OW,Q, Oχ,Q, respectively, and

the automoφhism β induces the identity automorphism on mw Q/rn^ ^, while β acts on
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ULx Q!™?X Q v^a me matrix B. This is a contradiction to a conclusion in the step (II). Hence

W is nonsingular. Q.E.D.

We denote by Gm a one-dimensional algebraic torus.

PROPOSITION 2.2. Let Gm act nontrivially on an n-dimensional nonsingular affine

variety X = Spec A defined over the complex field C with Pic X = (0) and let W be an

irreducible hypersurface such that the Gm-action leaves Wpointwise fixed. Then W is non-

singular. Suppose, furthermore, that X is a contractible threefold with A* = C*. Then

X = W x A l. If κ(W) — —oo or X = A3 in particular, we have W = A 2, and X is

ίsomorphic to the affine space of dimension 3 with W as a coordinate hyperplane.

PROOF. Let w be a generator of the defining ideal / of W. Then we have t u — x (t)u

for t e Gm with χ ( t ) e A* = C*. Then x is a multiplicative character of Gm. Write

χ ( t ) = tm, where m / 0. In fact, if m = 0, then the Gm -action is trivial near the points of

W. But this is not the case. Hence W is nonsingular by Lemma 2.1 (see also Fogarty [3]).

For any point P e X, we have

lim t P e W if m > 0

and

lim t P e W if m < 0.
ί->oo

Hence W is the fixedpoint locus XGm and, by Bialynicki-Birula [2], X is an A ^bundle over

W. Meanwhile, W is also the algebraic quotient X//Gm, since Gm acts on X along the fibers

of the A ^bundle. So, W is a contractible surface by Kraft-Petrie-Randall [9], because so is

X by the hypothesis. Then Pic(W) = (0) by [4, 1.20]. This implies that the A ^bundle over

W is trivial. Namely, we have X = W x A *. Write W — Spec B, where B is identified with

the Gm-invariant subalgebra of A. Note then that B is a factorial domain with #* = C*. If

k(W) = —oo in particular, W is isomorphic to A 2 by the characterization of the affine plane

(cf. [12]). If X = A 3, then W = A 2 by the cancellation theorem [12]. Q.E.D.

We extend Proposition 2.2 to a case where Gm is replaced by a single automorphism

of infinite order. Let A be an affine domain over k, i.e., a fc-algebra domain which is finitely

generated over k. A ^-automorphism β of A is called rational if, for every w e A, the A:-vector

space Σ/>o kβl (w) is finite-dimensional. A fc-automorphism β of A is called diagonalizable

if β is rational and if the action of β on Σi>Qkβl(w) is diagonalizable, i.e., there exists

a certain A -basis {v\,... , vr] of Σi>okβl(w) sucn tnat β ( υ ΐ ) — aivί wim ai ^ ^* f°r

1 < i < J*. Note that given a Gm action on X = Spec A the automorphism c M» t x of X,

with t a general point of Gm, induces a diagonalizable ^-automorphism of A. We shall begin

with the following simple but useful result.

LEMMA 2.3. Let A be an affine domain and β a diagonalizable automorphism of A.

Let I be an ideal of A such that β ( I ) c /. Then, for any element υ e A such that β(v) = υ

(mod /), there exists an element vf E A such that β ( v f ) = υf and v' = v (mod /).
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PROOF. Let V = Σi>$kβl(v). Then V is finite-dimensional. Since β is diagonaliz-

able, we may choose a fc-basis { ι > ι , . . . , vr] of V such that β ( v j ) = ajVj (1 < j < r) for

dj e &*. Note that βl (v) = v (mod /) for every i > 0. Since Vj is a A:-linear combination of

[βl(υ)}i>Q, it follows that β ( v j ) = Vj (mod/) for every I < j < r. Let ϋj be the residue

class of Vj modulo /. Since β ( v j ) = ajVj, we have aj = 1 provided ~vj ^ 0. After a change

of indices, suppose that ϋj / 0 for 1 < j' < s and ϋj = 0 for s + 1 < j <r. Write

υ = c\υ\-\ \-csvs + c5+ιυ5+ι H h csυr,

and let

v = c\v\ H \-csυs.

Then 0(ι/) = vf and ι/ = i; (mod /). Q.E.D.

We need the following lemma in the subsequent argument.

LEMMA 2.4. Let C be an irreducible nonsingular affine curve with an automorphism

β of infinite order. Ifβ has a fixed point, then C is isomorphic toA^. Furthermore, if we write

A l — Spec k[t], then β is given as β ( t ) = ct with c € k*.

PROOF. lfic(C) = l,thenAut(C) is a finite group. Hence ic(C) < 0. Ifκ(C) = 0, then

C is either a complete elliptic curve or is isomorphic to Gm. The first case is obviously not the

case. In the second case, every automorphism β of Gm of infinite order is a translation. Hence

it has no fixed points. So, the second case is not the case either, and we have κ(C) = —oo.

Then C = A l. The last assertion is clear. Q.E.D.

In what follows in this section, we shall work in the following set-up:

Let X — Spec A be a nonsingular affine variety of dimension n with Pic(X) = (0) and

A* = &*. Let W be an irreducible hypersurface ofX and β a nontrίvial automorphism ofX of

infinite order. Assume that

(i) β leaves W pointwίse fixed, and

(ii) the induced k-automorphism βonA is dίagonalίzable.

Let L = Q(A) be the function field of X. Then the automorphism β extends to L in a

natural fashion. We define a subalgebra B of A and a subfield K of L by

B = {a e A; βm(a) = a for some m > 0}

and

K = {ξ G β(Λ); βm(ξ) = ξ for some m > 0}.

It is clear that B = A Π K. Since Pic(X) = (0), the defining ideal / of W is principal. Let u

be a generator of the ideal /. Then β(u) — au with a e k*.

LEMMA 2.5. The following assertions hold:

(1) The element a is not a root of unity, and β acts nontrivίally on I / I 2 . Hence W is

nonsingular.

(2) K is the quotient field Q(B) ofB, and u is transcendental over K. Furthermore, K

is algebraically closed in L.

(3) B is k-isomorphic to A / I . In particular, B is finitely generated over k.
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(4) B is a normal subalgebra of A of dimension n — 1.

PROOF. (1) Let P be a smooth point of W and let v\,... , υn-\ G A be the elements

such that the residue classes £ > ι , . . . , ϋn-\ form a local system of parameters of W at P.

Then β ( υ i ) = vι (mod/) for 1 < / < n — 1. By virtue of Lemma 2.3, we may assume

that β(Vi) = Vi after a suitable change of the elements υ/. Then {υi, . . . , υrt-ι, «} is a local

system of parameters of X at P such that β ( v i ) = υ/ for 1 < / < n — 1 and β(w) = au with

fl G /:*. We shall show that α is not a root of unity. Indeed, the function field L of X is a finite

algebraic extension of the field k(v\,... , υn-\, w). If α is a root of unity, we may replace

β by some power /3m and assume that β acts on L as an & ( ι > ι , . . . , vn-\, w)-automorphism.

This is impossible because β is of infinite order. Hence a is not a root of unity. Then β acts

nontrivially on 7//2. By Lemma 2.1, W is nonsingular.

(2) We shall first show that u is transcendental over the field K. Indeed, if u were

algebraic over K, u satisfies a nontrivial algebraic equation

(t) uN+ξiuN-l + . +ξN=0 with ξi€K.

By replacing β by βm with some m > 0, we may assume that β(ξι) = £/ for 1 < i < N. Then

β permutes the roots of the above equation (t). But this is impossible because β(u) = au,

where a is not a root of unity. Hence u is transcendental over K. On the other hand, we may

choose a system of elements { υ i , . . . , vn-\} of B such that { ϋ i , . . . , vn-\} is a local system of

parameters of W at a point Q. This implies that k(v\,... , vn-\) c K and tr.deg^ K = n — 1.

Hence # is algebraic over <2(#). Let 77 be an element of L such that η is algebraic over Q(B).

Then 77 satisfies a relation

(tt) aoηN+a\ηN~λ + +0# =0 with Λ / G 5 .

Replacing /3 by /3m for some m > 0, we may assume that β ( a j ) = aj for every j. Then β(η)

is also a solution of (tt). Since there are finitely many solutions of (tt)» we have βm(η) = η

for some m > 0. Namely η £ K. Hence ^ is algebraically closed in L. If η G L is, in

particular, integral over B, then we have η e A Γι K = B because A is normal. The relation

(tt) implies that a^η is integral over B and hence aoη G β. Therefore 77 € β(#). This

implies that A: = Q(B).

(3) Restricting the residue homomorphism A -> A/7 onto 7?, we have a A:-algebra

homomorphism p : B —> A / I . Since /3 induces a trivial automorphism on A/7, it follows

from Lemma 2.3 that p is surjective. We shall show that p is injective. Namely, we show that

7 Π B = (0). Let w e I Π 5, and write w = MU I with u i e A. Then ^m(w;) = w for

some m > 0. This implies that βm(w\) = a~mw\. Meanwhile, since β(w\) = w\ (mod 7),

we may express βm(w\} — w\ + uz with z e A. Hence we obtain (am — \)w\ = —amuz.

Since a is not a root of unity, am — 1 φ 0. So, we have MI = ^1^2 with w;2 G A and

w — u2W2 Applying the same argument as above to the expression w = u2W2, we can show

that w = w3iu3 with 1̂ 3 G A. Thus w G Π/>o^' Now, applying the intersection theorem

of Krull [18, Theorem 3.11], we know that Π/>o ?' = (°) Hence w = 0. Alternatively, we
could argue that since A is a factorial domain, w cannot be divided infinitely many times by
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an irreducible element u unless w = 0. We have thus shown that B is isomorphic to A/I . In

particular, B is finitely generated over k. If n = 3, Zariski's lemma [17] also implies that B is

finitely generated over k because B = A Π K.

(4) Since we know that B is an affine domain and B = A Π Q(B), it is clear that B is

a normal A -subalgebra of dimension n — 1. Q.E.D.

Since B is finitely generated over k, there exists an integer m > 0 such that βm(b} = b

for every b e B. By replacing β by βm, we may and shall assume without loss of generality

that β(b) = b for every b e B. Let Y = Spec(#) and π : X —> Y a morphism induced by

the inclusion B °-> A. Then the general fibers of π are nonsingular irreducible curves. The

automorphism β acts on X along the fibers of π .

LEMMA 2.6. The morphism π:X-^YisanA l-fibration, and the generic fiber of

π is given as Spec K[u].

PROOF. It follows from the assertion (3) of Lemma 2.5 that W is a cross-section of the

morphism π. Let C be a general fiber of π. Then C meets W in one point transversally, and

the automorphism β induces an automorphism of C of infinite order. The intersection point

of C with W is a fixed point under this automorphism. By Lemma 2.4, C is then isomorphic

to A l. Hence π is an A 1 -fibration.

Write the generic fiber XK := Spec A (8>β K as Spec ^[/] with some parameter ί. Then

β acts on Xtf by β(t) = ξt with £ e £*. We shall show that t = ηu with η e K*. Write w as

u = ηotm + ηιtm~l + - + ηm with 77,- e K ,

where 770 7^ 0. Since β(u) = au and β(r\i) = ηt, we can readily show that u = ηotm.

Choose a general fiber C of π so that the function 770 is regular and nonzero at the intersection

point P = C Π W. The argument in the proof of Lemma 2.5, about lifting a local system of

parameters [v\ , . . . , ϋn-\ } of W at the point P to a system of elements {υ\ , . . . , vn-\ } of B,

shows that

mxp = (u, υi , . .. , vn-\) and m w P = (υ\, . . . , υ π _ι),

where m_x P and m_w P are the maximal ideals of the local rings Oχ,p and OW,P, respectively.

Since u φ rn}χ p, it follows that m — 1. Hence we conclude that XK = Spec K [ u ] . Q.E.D.

Note that β(b) = b for every element b e B. For c e A:*, set

Mc = {w G A I β(tf) = cw] ,

and let

Φ = {c e k* I Mc φ (0)} .

LEMMA 2.7. The following assertions hold:

(1) Φ = { f l

/ | / > 0 } .

(2) Maι = Bul for every I > 0.

(3) A = 0 / > 0Λf f l/ ££[«].
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PROOF. By Lemma 2.6, A <g)# K = K [ u ] . Suppose u; e Mc. Then w = ξul for some

ξ £ K and / > 0. Hence c — a1 for some / > 0. This implies that

φ = [a1 I / > 0} .

Write ξ = Z2/z\ with z\\ Z2 £ B Then we have

Note that w is an irreducible element of A. Suppose w is a factor of z\ and write zi = uz\.

Then 0(z',) = fl-y,. So, a~λ e Φ, i.e., a~{ = am with m > 0. Hence am+{ = 1, a

contradiction. So, w7 divides w; in the equality (*). Hence ξ e A Π AT = 5. Namely, u; € Bw'.
It then follows that Mc = Bul, where c = a1 .

Now we shall show that A = φ/>0 Λf f l /. Let w be anew any nonzero element of A.

Since β is diagonalizable, we have

w = c\w\ + + crwr

with βO/) = diWi and α/ e Φ. So, w e φ/>o^^ Hence A c 0/>0Mβ/. The converse

inclusion 0/>0 Maι c A is clear. Q.E.D.

Summarizing the above lemmas, we have shown the following result:

THEOREM 2.8. Let X = Spec Abe a nonsίngular affine variety of dimension n with

PicX = (0) and A* = k*. Let W be an irreducible hypersurface ofX and β a nontrivίal

automorphism of X of infinite order. Assume that

(i) β leaves W pointwise fixed, and

(ii) β is diagonalizable.

Then X = W xA ! . Hence Wis a coordinate hyperplane after a suitable change of coordinates

ofX if W is ίsomorphic to A n~ 1 , and X is accordingly ίsomorphίc to A n .

Hence Theorem 2.8 implies the next result:

COROLLARY 2.9. Let X = A 3 be the affine space of dimension 3. Let W be an

irreducible hypersurface of X and β a nontrivial automorphism ofX of infinite order. Assume

that

(i) β leaves W pointwise fixed, and

(ii) β is diagonalizable.

Then X = W x A 1 and W is a coordinate hyperplane after a suitable change of coordinates.

PROOF. If X is the affine space of dimension 3, the cancellation theorem (cf. [12])

implies that W is isomorphic to the affine plane A 2 . Hence W becomes a coordinate plane

after a suitable choice of the coordinates. Q.E.D.

REMARK. Theorem 2.8 shows that an automorphism β on X extends to a Gm -action

on X which has W as the fixed-point locus. In fact, the property of β being diagonalizable is

immediate if β extends to a Gm -action. We do not know, in general, under which conditions

β extends to a Gm -action.
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As stated in the introduction, we obtain an algebraic characterization of the affine space

of dimension 3.

THEOREM 2.10. Let X = Spec A be a nonsingular affine threefold. Then X is the

affine space of dimension 3 if and only if the following conditions are satisfied:

(1) Pic(X) = (0) and A* = k*.

(2) There exist an irreducible hyperplane W and a nontrivial automorphism β o f X o f

infinite order such that

(a) β leaves W pointwise fixed,

(b) β is diagonalizable,

(c) W has Kodaira dimension —oo.

PROOF. Suppose X is the affine space of dimension 3 with the coordinates x, y, z.

Then we can take a linear hyperplane x = 0 as W and an automorphism β defined by β ( x ) —

ax, β(y) = y and β(z) = z with some a e k* which is not a root of unity. We shall show

the converse. By Theorem 2.8, X = W xAl. Write W = Spec B. Then Pic(W) = (0) and

B* = k*. If W has Kodaira dimension -oo, then W = A 2 (cf. [12]). Hence X = A3.
Q.E.D.

We note that there is an algebraic characterization of the affine space of dimension 3

obtained by the second author [13]. The hypersurface W has Kodaira dimension — oo, for

example, provided there is a Ga-action commuting with the given automorphism β.

3. An algebro-topological characterization of the affine plane. In the present and

next sections, W is an irreducible subvariety in a non-singular affine variety X of codimension

two such that W is the fixed-point locus under a given effective Gm -action on X. A closed

orbit O is called a multiple orbit if the isotropy group is a nontrivial finite group. We consider

first the case where X is a surface and W is a point P. Considering the tangential representa-

tion of Gm at the point P, let a and b be the weights. Then ab φ 0 because the fixed-point

locus consists only of P. We have the unmixed case ab > 0 and the mixed case ab < 0. We

obtain the following algebro-topological characterization of the affine plane.

THEOREM 3.1. Let X be a nonsingular affine surface with an effective Gm-action.

Assume that the fixed-point locus consists of a single point P. If one of the following conditions

is satisfied, X is then isomorphic to the affine plane.

(1) The Gm-action is unmixed.

(2) The Gm-action is mixed and X is a homology plane.

(3) The Gm-actίon is mixed, the algebraic quotient T := X//Gm is a curve isomorphic

to the affine line and any closed orbit is not a multiple orbit.

PROOF. (1) If the Gm-action is unmixed, the result is immediate by [2]. An elemen-

tary proof is given as follows. We may assume that a > 0 and b > 0. Let A be the coordinate

ring of X. Then A is a graded fc-algebra
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Let A+ = 0/>0 A/. The fixed-point locus is defined by the ideal A+. Hence AO = A/A+ =
&, where k is the ground field. By the hypothesis, A+/(A+)2 = kx + ky with Gm -action
given by

t x = tax , t y = tby .

By the complete reducibility of the Gm -action, we find elements x e Aa and y € A^ such
that t x = tax and t - y = tby.

We shall show that A is generated over k by these elements x and y. The proof proceeds
by induction on the weight of each element of A. Let z be an element of A. We may assume
that z is homogeneous because z is a sum of homogeneous elements. Then the residue class z
of z by (A+)2 is a linear combination

z = ex + dy with c,d tk .

Hence z — (ex -f dy) e (A+)2. So, we may write

z- (cx+dy) =

where z/, z e A+ are homogeneous elements with degfo) < deg(z) and deg(z ) < deg(z).
Here the degree of each element is the one in the graded ring A. Hence it is the weight of
a semi-invariant element. By the induction hypothesis, we may assume that z/ , z e k[x, y].
Then z e k [ x , y]. Thus A = k[x, y] and X is isomorphic to the affine plane A2 .

(2) Note that X is then a homology plane with A^-fibration. Since the Gm -action is
mixed, by [2], there exist two curves C\ and C^ isomorphic to A l and meeting each other
trans versally in the point P. By a general result on the number of the lines contained in a
homology plane [15, Theorem 13], we conclude that X is isomorphic to the affine plane A2 .

(3) Since the Gm -action is mixed, as in the case (2) above, there are two affine lines
Ci, C2 meeting transversally in P. Let π : X -» T be the quotient morphism, and let
a\,aι be the multiplicities of Ci, C^ in the fiber π~l(Q), where Q = π ( P ) . We claim that
d :— gcd(αι , ai) = 1. Suppose otherwise that d > \. Choose a parameter t of Γ so that Q
is defined by / = 0. Let T' — » T be the branched covering of degree d which totally ramifies
at the point Q and the point at infinity. Then T' is the affine line. Let X' be the normalization
of the fiber product T' XT X Then X' -+ X is etale, the projection πT' : Xf -> T' is an
A^-fibration, and the fiber πγ}(Q') is a disjoint sum of d copies of a[C[ + a^C^, where C(
and C'2 are affine lines meeting transversally in one point and a\ = at/d for i = 1, 2. This is,
however, impossible by [14, Lemma 4]. So, d = 1.

We shall next show that π\(X) = (1). For this purpose, set X\ = X — €2 and XΊ =
X - Q. Let pi := π |χ. : X, -> Γ and C* = C/ - {P} for i = 1, 2. By the hypothesis

that any closed orbit is not a multiple orbit, /?, : Xz -> 7 is then an A^-fibration with only
one singular fiber which is α/C*. Consider p\ : X\ -> Γ, and let T\ —> T be the branched
covering of degree a\ which totally ramifies at the point Q and the point at infinity. Let X[ be
the normalization of T\ XT X\ Then (p\)τλ '• X[ -> T\ is an A^-bundle over T\. Indeed, the
natural moφhism X\ -> Xi is a finite etale covering and the inverse image of the multiple
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fiber βj C* is a reduced fiber of the A^-fibration X[ -> T\ , which consists of several connected

components isomorphic to A* . By [14, Lemma 4], it consists of only one connected reduced

fiber isomorphic to A£. So, X[ — >> T\ is an A ^-bundle over T\. Since any A ^-bundle over

the affine line T\ is trivial, we have π\(X\) = π \ ( A * ) = Z. Since X\ -> X\ is a cyclic etale

covering of degree a\, we obtain an exact sequence:

-> π\(X\) -> Z/miZ -> 0,

where m\ \a\. (We may apply also a result of Nori [19] to (p\)τ{ '• X\ ->• T\ to obtain the

above exact sequence.) This yields an exact sequence

τrι(Cι) -> τrι(X) -> Z/raZ -> 0

with m I <?ι because the natural homomorphism ττ ι(Xι) -> π \ ( X ) is a surjection. Similarly,

we have an exact sequence

τrι(C2) -> πι(X) -> Z/nZ -> 0,

where n | 02- Since gcd(«ι , 02) = 1, we end up with a surjection

π\(Cι UC 2) -* πι(X) -» 0.

Since Cj U C2 is simply connected, we have τrι(X) = (1). On the other hand, it is easy to

see that the Euler number e(X) = 1. Hence X is a contractible surface. Since X contains two

affine lines, X is isomorphic to the affine plane (cf. [15, Theorem 13]). Q.E.D.

REMARK. In the unmixed case, we have only to assume that X is a reduced algebraic

A:-scheme with a Gm -action and that P is the unique fixed point at which X is nonsingular. In

fact, let Q be an arbitrary point of X. Then the closure of the Gm -orbit Gm - Q passes through

the point P. Hence the orbit Gm - Q contains a nonsingular point, whence Q is nonsingular

onX.

4. The affine 3-space as an acyclic threefold. We extend the unmixed case of The-

orem 3.1 to the higher-dimensional case.

LEMMA 4.1. Let X be a reduced affine algebraic k-scheme and let W be an irreducible

closed subscheme ofX of codimension two. Suppose the algebraic torus Gm acts on X in such

a way that W is the fixed-point locus. Furthermore, assume that W is nonsingular and X is

nonsingular near W. We assume that every orbit of a point not in W is non-closed. Then X is

an A ^-bundle over W.

PROOF. Note that the hypothesis implies the smoothness of X. Let A be the coordinate

ring of X. Then we may assume that A is a graded ring

ί>0

Then AO is the coordinate ring of W. Let P be a point of W and p the prime ideal of AQ

corresponding to P. Then A/> := A ®^0 AQ/P is the coordinate ring of the fiber π-1(P),

where π : X -+ W is the morphism associated with the inclusion AQ °̂  A. By Theorem
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3.1 and the subsequent remark, π~l(P) is nonsingular and is isomorphic to A 2 . Now X is

nonsingular and is an A 2-bundle over W by [2]. Q.E.D.

The arguments using the acyclicity and a Gm -action lead us to an algebro-topological

characterization of the affine 3-space among the acyclic threefolds.

THEOREM 4.2. Let X be a nonsingular affine threefold defined over the complex field

C. Then X is isomorphic to the affine 3-space A3 if and only if the following conditions are

satisfied:

(1) X is acyclic and endowed with an effective Gm-action.

(2) There exists a nonsingular irreducible subvarίety W of codimension two which is

the fixed-point locus under the given Gm-actίon.

(3) X has the logarithmic Kodaίra dimension ic(X) — — oo.

The subvariety W then becomes a coordinate line.

PROOF. The "only if" part is clear. We have only to consider a Gm-action on A 3 —

Spec k[x, v, z] given by

t . (*, y, z) = (fjt, ry, z) or t - (*, y, z) = (t~γx, ty, z),

where t e Gm. So, we prove the "if" part. Our proof consists of several steps.

STEP (I). W is an affine line and any closed orbit has the trivial isotropy group unless

it is a fixed point.

Indeed, let p be a prime number and Hn the subgroup of Gm consisting of pn-lh roots

of the unity. Let Wn be the fixed-point locus of X under the induced Hn -action. Then Wn

is a closed subset and W = f\>ι W/ι Hence W — Wn for some n > 0. By the Smith
theory applied to the Hn -action on X with p varying, it follows from the acyclicity of X

that Wn is connected and acyclic. Since W is a curve, W is then an affine line. Suppose

that there exists a closed orbit O = Gm P with a nontrivial finite isotropy group G. Let

p be a prime number dividing the order of G. Again, by the Smith theory, the acyclicity of

X implies that the fixed-point locus under the H\ -action on X is connected. Hence we may

assume that there exists an irreducible subvariety, say V, of codimension one such that V

contains W and the orbit O and that V is left pointwise fixed by HI . Let P be a point of

W and let t (w, υ, w) = (tau,tbυ,w) be the induced Gm-action on the tangent space Γχ,p

(cf. the step (II) below). Since W is contained in V, it follows that p divides both a and b.

Then Gm acts non-effectively on an open neighborhood of P, hence everywhere on X. This

is a contradiction on the effectiveness of the Gm -action. So, we conclude that there are no

multiple orbits.

STEP (II). Let P be a point of W and let a, b be the weights of the induced represen-

tation of Gm on the tangent space Tχ,p. Namely, after diagonalizίng the representation, it is

given as

t (u, υ, w) — (tau,tbv, w}.
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Then the weights a, b are independent of the choice ofP, and gcd(α, b) = 1. Furthermore, if

ab > 0, then X is ίsomorphίc to the affine 3-space A 3.

Indeed, by Luna [10, Lemme, p. 96], there exists a Gm-equivariant morphism φ : X ->

7χ?p such that φ is etale in P and φ(P) = 0. Then we may assume that the affine line W

is mapped isomorphically to the w-axis according to the above notation. Then the tangential

actions of Gm at the points on W near P are the same as the one at the point P. So, the

weights a, b are constant in a neighborhood of the point P on W. Since W is connected, they

are constant on W. Suppose gcd(α, b) = d > 1. This implies that there exists an orbit whose

isotropy group is a finite nontrivial group. But this is not the case by Step (I). If ab > 0, then

X is an A2-bundle by [2]. Since W is isomorphic to A ^ the A2-bundle is trivial, and X is

isomorphic to A 1 x A2 = A 3.

Hereafter we assume that ab < 0 and call the Gm-action mixed.

STEP (III). Let Y be the quotient variety X//Gm and π : X —> Y the quotient mor-

phism. Then we have:

(1) Y is a nonsίngular, acyclic surface,

(2) π w : W —>> π(W) is an isomorphism and π(W) is a closed subvariety ofY,

(3) Y is an affine plane andπ(W) is a coordinate line.

With the notations in Step (II), we may and shall assume that a > 0 and b < 0. Then the

completion of the local ring Oy,π(p) is isomorphic to C[[u~bυa, w ] ] . It then follows that π

embeds W in Y as a nonsingular closed subvariety and that Y is nonsingular near π(W). This

proves the assertion (2). The smoothness of Y follows from Luna's etale slice theorem [10]

if one notes that every closed orbit has a trivial isotropy group unless it is a fixed point. The

acyclicity of Y follows from [9]. This proves the assertion (1). For the proof of the assertion

(3), we apply Kawamata's addition theorem [8] for π : X -> Y

k ( X ) >ic(F)+ic(Y),

where F is a general closed orbit. Since F is isomorphic to Gm, we have k ( F ) = 0. Since

k ( X ) = —oo by the hypothesis, it follows that k ( Y ) = —oo. Then Y is an affine plane [15].

By a theorem of Abhyankar-Moh-Suzuki (cf. [11]), π(W) is a coordinate line in Y. We write

Y = Spec C[ξ, η] with π(W) defined by η = 0.

STEP (IV). Let p : X -> π(W) be the composite ofπ and the projection (ξ, η) h-> ξ

from Y to π(W). Let Q be a point of π (W), Z = p~l(Q) the fiber over Q, and let P be the

intersection point ofZ and W. Then the following assertions hold:

(1) Z is a nonsίngular affine surface with a Gm-action.

(2) The point P is the unique fixed point on Z and the induced Gm -action on the tangent

space TZ,P has weights a,b.

(3) Z has no multiple orbits.

Let L be the line ξ = ξ(Q) on Y. Consider π |z : Z —> L. Since π is a smooth

morphism outside π(W) C Y, Z is nonsingular outside π~l(Q). With the notations in (II)

and (III), we may assume that ξ = w near the point Q and that Z is a hypersurface u~bva — η
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in the (u, υ, ^)-space near the point P. Then it follows that P is a nonsingular point of Z.

Note that π~l(Q) is a union of two affine lines meeting at the point P and that two affine

lines with the point P removed off are the Gm-orbits. Hence it follows that Z is nonsingular

along π~l (Q). This proves the assertion (1). The assertion (2) is now clear. The assertion (3)

follows from the corresponding property of X.

STEP (V). By the step (IV) and Theorem 3.1, we know that each fiber of p : X -*

π(W) is the affine plane. By Sathaye [21], it is then anA2-bundle. Since any A 2-bundle over

the affine line is trivial, we conclude that X is isomorphic to the affine 3-sρace.

This completes the proof of Theorem 4.2.
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