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Abstract. We give a transparent description of the one-fold smooth suspension of

Fintushel-Stern's exotic involution on the 4-sphere. Moreover we prove that any two invo-

lutions of the 4-sphere are stably (i.e., after one-fold suspension) smoothly conjugated if and

only if the corresponding quotient spaces (real homotopy projective spaces) are stably dif-

feomorphic. We use the Atiyah-Patodi-Singer eta-invariant to detect smooth structures on

homotopy projective spaces and prove that any homotopy projective space is detected in this

way in dimensions 5 and 6.

1. Introduction. In this paper, following an idea of Gilkey [13], we study exotic ho-

motopy projective spaces in dimensions 4, 5 and 6 by means of the eta-invariant. In particular

we prove that the eta-invariant of certain Dirac-type operators completely detects homotopy

projective spaces (or, equivalently, smooth fixed point free involutions on homotopy spheres)

in dimensions 5 and 6. Moreover we give a very explicit geometric construction of these in-

volutions. This gives more insight in exotic involutions than standard methods of surgery and

homotopy topology (compare [20]), which provides information about the set of homotopy

projective spaces as a whole but rarely about a given member of the set. In particular, we are

able to identify one of our involutions as a smooth suspension of the Fintushel-Stern and the

Cappell-Shaneson exotic involutions on S4. Thus we get a transparent description of the one-

fold smooth suspension of both the Fintushel-Stern and the Cappell-Shaneson involutions,

and prove that, after forming the one-fold smooth suspension of both of these involutions, we

get equivalent involutions of S5. Moreover those suspended involutions are equivalent to an

involution obtained by gluing Z2-equivariantly S2 x D 3 and D3 x S2 (both equipped with the

ordinary "antipodal" Z2 action (JC, y) «•> (-x, -y)) along their common boundary, with the

help of a Z2-equivariant autodiffeomorphism /13 of S2 x S2. We give a simple and transpar-

ent description of the diffeomorphism /13 (being a composition of three copies of some other

diffeomorphism h of S2 x S2), and prove that any involution of S5 can be obtained (up to

equivalence) by the same construction with /13 replaced by the n-th power of λ, n = 0,1, 2, 3.

As a byproduct we also get a similar (although more complicated) description of all (up to

smooth conjugation) smooth involutions of S6. An explicit form of our involutions enables

us to compute the Atiyah-Patodi-Singer eta-invariant of certain Dirac-type operators on cor-

responding homotopy projective spaces.
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This paper is organised as follows. In Section 2 we formulate main theorems of the paper

and give, for readers convenience, some basic material concerning involutions on manifolds

and exotic involutions on S4. This section is concluded by a sketch of the proof of main

theorems. In Section 3 we gather some basic facts about Pin+ and Pirf operators and their

eta-invariant. In Section 4 we study involutions on S5 and S6. We give here an explicit and

simple description of all (up to smooth conjugation) smooth involutions on these spheres, and

prove that all these involutions can be detected by the eta-invariant. This will prove Theorem

A of Section 2. We also include here some auxiliary technical lemmas which explain how the

eta-invariant is affected by doing surgery on a given manifold. Section 5, being the core of the

whole paper, is devoted to a more profound study of Fintushel-Stern's exotic involution. We

describe here a "stratified" surgery, which is the key tool for the proof of main theorems, and

prepare some auxiliary topological propositions. This surgery provides an alternative method

for constructing exotic involutions on S4 and, possibly, for describing them by a transparent

formula (see Remark 2 in Section 5). In the final section we apply the methods described in

the preceding Sections, to prove main theorems.

Let us note that some results of this paper have far-reaching generalisations. In particular,

any number of the form ±(2k+l)/2n+1 mod Z can be realised as the value of the eta-invariant

of the Pirf operator on certain homotopy projective space of dimension In for all n > 3,

and analogous results are valid for Spirf operators and odd-dimensional projective spaces

(compare [25]).

2. Main theorems. In this section we formulate our main theorems of the paper. We

precede these theorems by some background material concerning smooth free involutions on

manifolds and exotic involutions on S4 of Cappell-Shaneson and Fintushel-Stern.

First let us establish notation which will be used throughout this paper. AuBis the

disjoint union of spaces A and B, and kA is the disjoint union of k copies of A. A#B is

the connected sum of manifolds A and B, and &#A is the connected sum of k copies of A.

Given a manifold Mn

9 let M", / = 0, 1,. . . , be copies of Mn and apply a similar convention

to other objects (maps, subsets etc.). If Mn is a manifold with a free involution Tn, then

Mn = Mn/Tn. Rn, Dn and Sn~ι denote the Euclidean space, the unit disc and the unit

sphere, respectively. We denote by ant the usual antipodal map on Rn as well as on its

subspaces. Thus RPn = Sn/ant and RPk x Dm = Sk x Dm/anU and Dm x RPk has an

analogous meaning. / = [0, 1] and ant : Sn x / -» Sn x / is given by (JC, t) -> (—JC, t).

Sn x / will be viewed as an invariant collar neighbourhood of Sn in D π + 1 . Fix(Γ) is the set

of fixed points of a map T : X ->- X.

Given an imbedding φ : Sk x Dm -> Mn, k + m = n, we denote by M%φ the manifold

obtained from Mn by doing surgery on φ. If additionally Mn c 3M / Z + 1, then Λ/^+1 is

the trace of the surgery on φ, i.e., Λf"+1 U^ D π + 1 , and AfJ+1' is the manifold M " + 1 U^

Sn x /; thus Mn

φ+
V c M^ + 1 in a natural way, and dM%+1' = dM^1 U Sn. Given Z 2-

manifolds (ΛΓ, Tn) c 3(M W + 1 , Tn+ι) (i.e., Mn is an invariant submanifold of d(Mn+x) and
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^ a n d g i v e n a n equivariaπt imbedding Φ : Sk x Dm -> Mn with the quotient

imbedding φ : RPk x Dm -+ Mn, M%φ, M j + 1 and M j + 1 ' will have an obvious "equivariant"

meaning. Thus M^φ (resp. M j + 1 ) comes with a naturally defined involution denoted by T£φ

(resp. Γφ+ 1), which is free if Tn+ι is free, and we write M\φ (resp. M^+ 1) to denote the

corresponding quotient manifold. Let us also note that dMφ

+ι = (dMn+ι\Mn)UM%φURPn,

where M%φ is obtained from Λf n by deleting the interior of φ(RPk x Dm) and then attaching

Dk+\ χRpm-i w i th the help of the quotient map φ : RPk x D m -> Mn. Moreover M^ + 1

is obtained by attaching RPn x / to Mn+ι with the help of the map φ.

As this paper deals only with smooth manifolds and fixed point-free smooth involutions,

we agree that "manifold" will mean smooth manifold and "involution" will mean fixed point-

free smooth involution unless otherwise stated.

Let Tn be an involution on a manifold Mn (possibly with non-vacuous boundary). A Tn-

invariant submanifold Mn~λ c Mn is called a characteristic submanifold provided that it cuts

Mn into two connected components, say A and A', permuted by Tn; thus M = AUA\ where

A! = Tn(A), and A Π A! = Mn~ι. Such a characteristic submanifold always exists and one

can find a connected characteristic submanifold for n > 3 ([20]). Let Tn be an involution of

a homotopy sphere Σn. It is said to desuspend if it admits a characteristic submanifold which

is a homotopy sphere. There is a "surgery type" obstruction (Browder-Livesay invariant)

a(Tn, Σn) which, for involutions of spheres of dimension n > 5, vanishes if and only if

the involution Tn desuspends ([20]). Later in this paper we generalize this theorem to all

dimensions > 5. Then the quotient manifold Σn/Tn is a homotopy real protective space, and

any homotopy protective space FRPn is of this form. Therefore classifying free involutions

on homotopy spheres is equivalent to classifying homotopy projective spaces. Two involutions

(Tf1, X1"), / = 1, 2, are called equivalent if there is an equivariant diffeomorphism g : Σ" ->

Σ% or, equivalently, if the quotient manifolds FRPf1 are diffeomorphic.

We will also need the notion of the smooth suspension of smooth free involutions of

spheres. Assume Σn to be diffeomorphic to the ordinary sphere Sn. Then form a smooth

manifold Σn+ι as follows: Fix a diffeomorphism g : Σn -> Sn and glue two copies of

~ι :the standard rc-disc Dn+\ say D£ + 1 and £>"+ 1, with the help of the involution gTng

dDn

a+
ι -+ dDn

z+
x. Then we define a (free smooth) involution ΣTn of Σn+ι by the formula

The Z2 manifold (depending on g) (Σn+ι, ΣTn) is called a smooth suspension of

the involution (Σn, Tn), and it is clear that (Σn, Tn) is a characteristic submanifold of

( Γ w + 1 , ΣTn). If Σn+ι is diffeomorphic to the ordinary sphere Sn+{, we can repeat this

procedure and form the double suspension (Σn+2, Σ2Tn) of the involution Tn. The double

smooth suspension depends strongly on the identifications Σk ~ Sk used in its construction,

and Σn+2 needs not to be the ordinary sphere 5 Π + 2 . However, in this article, we shall not

deal with this problem, since we confine ourselves to involutions of low dimensional spheres.

Namely, we have the following simple proposition (this justifies our notation (Σ I / ί + 1 , ΣTn)

which does not take care of the diffeomorphism g):
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PROPOSITION 2.1. Let Tn be a smooth involution of a homotopy sphere Σn. There

exists precisely one (up to smooth conjugation) smooth suspension (Σn+ι ^ S π + 1 , ΣTn)

provided that n < 5. Moreover there exists precisely one double suspension (Σn+2 ~

Sn+2, Σ2Tn) provided that n < 4.

This follows immediately from the well-known fact that any autodiffeomorphism of the

sphere Sn extends to an autodiffeomorphism of Dn+X for n < 5 ([17], [9]).

Now let us recall some basic facts concerning exotic involutions on S4. Let us start with

the Fintushel-Stern involution ([10]). In [10] it has been proved that the Brieskorn sphere

Σ(3, 5, 19) bounds a contractible 4-manifold U whose double is S4. Moreover the involution

t3 "contained" in the natural Sι action on 17(3, 5, 19) extends to a smooth fixed point-free

involution on S4 = U4 UΣ U4, which permutes the two copies of U4. This is the Fintushel-

Stern exotic involution 7>s, and S4/Tfs = FRP£S is the Fintushel-Stern exotic projective

space. Thus (Σ(3, 5, 19), ί3) is a characteristic submanifold for 7>£.

Now let us turn to the Cappell-Shaneson involution on S4 ([8]). Let us fix a matrix

A G GL(3, Z) (a CS-matrix) subject to the relations det A = - 1 , det(l - A) = 1 and det(l -

A2) = ± 1 , and consider A as an (orientation-reversing) diffeomorphism of the torus T3 =

Sι x Sι x Sι = R3/Z3 which leaves the "origin" [0] e T3 fixed. Let M 4 = T3 x //((*, 0) ~

(Ax, 1)). Thus M4

A is a smooth non-orientable manifold (the mapping torus of A). Note that

the normal neighbourhood Na in M4

A of the image a of the segment [0] x / C T3 x /

is diffeomorphic to the normal neighbourhood N of RP1 in RP4. Fix a diffeomorphism

Na —> N, and let hcs be its restriction to the boundary of Na. Then form a (smooth, closed)

manifold FRP4

S(A) by gluing RP4 \ intN and M 4 \ intNa with the help of hCs> In [8]

it has been proved that FRP£S(A) is a 4-dimensional homotopy real projective space which

is never diffeomorphic to the ordinary projective space RP4. It is not known if the universal

covering space of FRP£S(A) is always diffeomorphic to the ordinary sphere S4.

Now let us confine ourselves to the case of the matrix

" 0 1 0 "
0 0 1

- 1 1 0

Ao is a CS-matrix and we denote by FRP£S the Cappell-Shaneson exotic projective space

associated to this matrix. In [14] Gompf proved that the universal covering space of FRP£S

is diffeomorphic to S4, and therefore FRP^S can be viewed as the quotient manifold of the

form S4/Tcs, where Tcs is a (smooth fixed point-free) involution on S4. The author does

not know if the Cappell-Shaneson exotic involution Tcs is equivalent to the Fintushel-Stern

involution Tf$. However, we shall prove that the smooth suspensions of these two involutions

are equivalent and that both of them are given by a simple formula.

In order to formulate main theorems of this paper we shall need also some knowledge

of 5 and 6-dimensional homotopy projective spaces. For any non-zero vector x e Rn+ι, let

Rx e O(n -h 1) be the reflection through the hyperplane perpendicular to x. Let e\,... , en+\

be the standard orthonormal basis of Rn+ι and cn : Sn ->• SO(n + 1) be given by cn(x) =
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RxReι Then cn is the clutching map for the tangent bundle to Sn+1 ([16]); hence cn is null-

homotopic for n = 2, 6. Observe that cn(—JC) = cn(x), and let C2 : S3 -> 50(3) be an

extension of C2 such that C2(—x) = C2(x).

Now let us define some auxiliary maps which will play an important role in this paper.

Let G : S2 x D3 —> S2 x D3 be the autodiffeomorphism given by G(JC, y) = (JC, C2(x)y).

Then G : S3 x D3 -> S3 x D3 defined by G(JC, y) = (JC, c2(jc)y) is an extension of G. Let

Γ : D3 x S2 ^ D3 x S2 be the composition ίGί, where t is the permutation (JC, y) «> (y, JC).

Then Γ:D4xS2-+ D4xS2 defined by Γ((yu yi, ys, )>4), *) = ((c2(*)(yi, yi, ys), 3*), *)

is an extension of Γ. Let dG : S2 x S2 ^> S2 x S2 be the restriction of G, and apply similar

notation to the other maps. All the diffeomorphisms G, Γ, G and Γ are Z2-equivariant with

respect to the usual "antipodal" Z2-action (JC, y) ^> (—JC, — y) so that they descend to maps

g : /?P2 x D 3 ^ # P 2 x D 3 , y : / ) 3 x flP2 -> D3 x RP2, g : RP3 x D3 -> Λ P 3 x D 3 ,

and y : D 4 x /?P2 -> D 4 x RP2, respectively. Let us also note that the maps G, Γ and Γ

(but not G) are all isotopic to identity, since C2 : S2 ^ S 0(3) is null-homotopic, but they are

not Z2-equivariantly isotopic to identity. This property of these maps enables us to construct

Z2-manifolds diffeomorphic to the ordinary spheres, but the quotient manifolds of which are

not diffeomorphic to the ordinary projective spaces.

Lcth = 3ΓodG :S2xS2 -> S2 xS2 andh = dfodG : 5 3 x 5 2 ^ S3 x S2. Let A/ be
the /-th power of h and similarly for h\ in particular ho = id. Let Σ? = S2 x D3 Uht D

3 x S2

and Σf = S3 x D3 U .̂ D4 x S2. Let T? be a (smooth, fixed point-free) involution on Σ?

defined uniquely by the requirement that T? \S2 x D3 : S2 x D3 -+ S2 x D3 and T? \D3xS2 :

D3 x S2 -> D3 x 5 2 , and these restrictions are both given by (JC, v) —• (—JC, —y). Let T?

be an involution of Σf given by an analogous construction. It is clear now that Γo

5 (resp.

TQ) is just the ordinary antipodal map on ΣQ = S5 (resp. on Σ$ = S6). Let us denote

FRP* = ΣP/TP and FRP? = Σf/T?. Natural imbeddings FRP? c FRPf are now
apparent, and it is clear that (Σf, T?) is a characteristic submanifold of (Σf, Tf).

Now we have gathered all topological facts that we shall need to formulate our main

theorems. However, as we mentioned above, we are going to apply the analytical eta-invariant

to detect homotopy projective spaces. So let us introduce the following notation (for more

detailed information concerning the eta-invariant and generalized Dirac-type operators, see

[3], [13] and also Section 3 of this paper). Let M2k be a smooth closed Riemannian Pinc

(resp. Pm+)-manifold, and let φ (resp. ψ) be a Pinc (resp. Pm+)-structure on M2k. Then there

exists a Dirac-type, first-order elliptic differential operator Dc (resp. D + ) on M2k determined

by the Riemannian metric and the Pinc (resp. Pm+)-structure on M2k. Note that D (= Dc or

D + ) is self-adjoint and the Atiyah-Patodi-Singer eta-invariant of D is well-defined. The mod

Z (resp. mod 2Z) reduction of the eta-invariant of Dc (resp. D + , provided that k = 2 mod 4)

is a Pirf (resp. Pm+)-bordism invariant, and we denote it simply by η(M2k, φ) mod Z (resp.
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Now we can formulate main theorems of this paper. We are forced to start with involu-

tions of 5 and 6-dimensional spheres. Recall that, up to diffeomorphisms, there exist precisely

4 homotopy projective spaces in dimensions 4 and 5 ([20]).

THEOREM A. (al) Σ? is a homotopy 5-sphere for any i = 0, 1,... , and hence

FRPf = Σ? /T? is a homotopy projective space.

(a2) Any involution of a 5-dimensional homotopy sphere is equivalent {i.e., smoothly

conjugated) to precisely one of the involutions TQ — ant, T5, T5, T5.

(bl) Σf is a homotopy 6-spherefor any i =0,1,... , and hence FRP6 = Σf/T6 is

a homotopy projective space.

(b2) Any involution of a ^-dimensional homotopy sphere is equivalent to precisely one

of the involutions T6 = ant, T6, T6, T6. Moreover, η(FRP6, φ) = ± ( 2 ί + 1)/16 (mod Z)for

any Pinc-structure φ on FRPf. (In fact, [FRPP] = ±(2i + l)[RP6] in the cobordίsm group

Ωζιn ). Thus the eta-invariant of the Pinc-operator completely detects homotopy projective

spaces in dimension 6.

This theorem gives a complete and particularly simple classification of involutions of

homotopy 5 and 6-spheres.

THEOREM B. The one-fold smooth suspension ΣT^S of the exotic Fintushel-Stern's

involution is equivalent (smoothly conjugated) to the involution Γ3

5 constructed above.

Thus the one-fold suspension of the Fintushel-Stern involution is given by a simple con-

struction and can be described by a transparent formula.

COMMENTARY 2.1. We could have used the eta-invariant (mod Z) of the tangential

operator of the S/?mc-complex with coefficients in the virtual representation po — p\ (where

po (resp. p\) is the trivial (resp. non-trivial) 1-dimensional representation of Zi) to detect

some odd-dimensional homotopy projective spaces in dimension 5 (compare [5, Lemma 2.3]).

However, the range of the eta-invariant of this operator (being Z[l/8]/Z) is too small to de-

tect all homotopy projective spaces in dimension 5. Namely, suspending an involution on S5

one sees easily that any 5-dimensional homotopy projective space FRP5 is the image under

the Smith homomorphism of a 6-dimensional homotopy projective space FRP6. Therefore

η(FRP5) = 2η(FRPβ) by [5, Lemma 3.3]. But any such FRP6 is Pmc-bordant to an odd

number of copies of the ordinary RP6 (see the proof of Theorem A below, but this follows

also by a simple argument using characteristic numbers and Ωζιn° = Z\β Θ Z4 generated by

RP6 and RP2 xCP2). Thus η(FRP5) = (2ι+ l)/8 mod Z for some integer /. Consequently,

there are only four possible values for the eta-invariant of 5-dimensional homotopy projective

spaces. However, to any homotopy projective space there correspond precisely two mutu-

ally inverse values of the eta-invariant corresponding to mutually inverse Spinc-structures.

Therefore one can detect at most two 5-dimensional homotopy projective spaces using the

eta-invariant. Topologically, the image of FRP6 = (2i + \)RP6 in Ω6

inC under the Smith

homomorphism lies in the subgroup of ΩpinC(BZ2) generated by RP5, which is isomorphic
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to Zδ, and is too small to detect 4 exotic projective spaces of dimension 5 by an argument

similar to that given above.

Thus, instead of applying the eta-invariant of the Spin?-operator, we define, for a ho-

motopy projective space M 5, another invariant (^-invariant) derived from a 6-dimensional

projective space which contains M5 (see Definition 3.1 below). This also makes the paper a

bit more concise. Similar remarks apply to the suspension of an involution of S4. We cannot

apply directly the above-mentioned results of [5], concerning the Smith homomorphism and

the eta-invariant, to establish a satisfactory relation between TpS, ΣT£S and Σ2τ£s, since

the eta-invariant of the Pmc-operator does not detect homotopy projective spaces of dimen-

sion 4. The method of proving Theorem B in this paper is based on constructing explicitly

some "stratified" cobordisms, and provides a detailed picture of the involution τ£s, as well

as of its suspension. In fact, this method enables us to establish a connection between the

eta-invariant (mod Z) of certain Pinc-manifolds of dimension 6 and the eta-invariant (mod

2Z) of their image under the Smith homomorphism in Ωpin+, but this is done only for a very

special kind of manifolds (compare also [26]).

In order to formulate the next theorem, let us recall that two smooth closed 4-manifolds,

say M 4 and Λί4 , are called stably diffeomorphic if they become diffeomorphic after forming

the connected sum with sufficiently many copies of S2 x S2.

THEOREM C. Let Γ 4 and Γ2

4 be any two involutions on the standard 4-sphere S4.

Then the projective spaces S4/ T4 and S4/ T4 are stably diffeomorphic if and only if the

suspended involutions Σ T4 and Σ T4 are equivalent.

As an immediate corollary of Theorems B and C we get the following

THEOREM D. The one-fold suspension ΣT£S of the Cappell-Shaneson exotic invo-

lution is equivalent to the one-fold suspension Σ T^s of the Fintushel-Stern involution, and

these suspended involutions are both equivalent to the involution T^ described above.

PROOF. It has been proved in [23] that the Cappell-Shaneson exotic projective space

FRP£S is stably diffeomorphic to the Fintushel-Stern projective space FRP^S. Now we use

Theorems B and C to complete the proof.

It is well-known that a smooth involution Tn of a homotopy sphere Σn desuspends if

and only if the Browder-Livesay invariant a(Tn, Σn) = 0, provided that n > 5 ([20]). As an

immediate consequence of our theorems we get an extension of this theorem to all dimensions

> 5 .

THEOREM E. A smooth involution Tn of a homotopy sphere Σn, where n > 5, desus-

pends if and only if the Browder-Livesay invariant a(Tn, Σn) vanishes. In fact, the smooth

suspension ΣT4 of any smooth involution T4 of S4 is equivalent to precisely one of the invo-

lutions TQ and T^.

PROOF. It is well-known [20] that the Browder-Livesay invariant vanishes for precisely

two (up to equivalence) involutions on S5, and hence at most two of them desuspend. But two
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of our involutions Γo

5, Γj5, Γ2

5, Γ3

5 certainly desuspended, namely Γo

5 = ant and Γ3

5 which

desuspends to Fintushel-Stern's involution on SA. This proves Theorem E.

Here is a brief outline of the proof of main theorems of this paper. First we use the

eta-invariant of the Pmc-operator to classify involutions on S5 and S6. This is the first step

of the proof of Theorem B. Then we form the double suspension Σ2τ£s of τ£s and regard

it as an involution of the quadruple (Σ(3, 5, 19), S4, S5, S6). Next we perform a few series

of stratified and equivariant surgeries on this quadruple of Z2-manifolds. The first series of

surgeries is intended to simplify Σ(3, 5, 19), but at the cost of making the 4-dimensional

member of the quadruple topologically more complicated. More precisely, the first series of

surgeries provides us with a stratified cobordism from (JC(3, 5, 19), S4, S5, S6) equipped with

the involution (ί3, T*s, ΣT$S, Σ2τ£s) to eight copies of (S3, S4, S5, S6), each of which is

equipped with the standard antipodal Z2 -action, and a quadruple of manifolds of the form

(S 3, S#(S2 x S2), S5, S6) equipped with an involution of the form (ant, / 4 , /α

5, fy. Next

we perform another sequence of surgeries which provides us with an equivariant cobordism

from (S3, 8#(S2 x S2), S5, S6) to a quadruple of the form (S 3, S4, S5, S6) equipped with the

standard antipodal involution. We use the eta-invariant to detect the position of the quotient

manifolds FRPn = Sn /involution in the cobordism group Ωpinc This enables us to identify

the suspended involution ΣT£S as the involution Γ3

5.

REMARK. We could apply a different method for proving Theorem B. Namely we

could compute the Browder-Livesay invariant of our involutions T? and then apply Theorem

C (using the fact that FRP4

S is not stably diffeomorphic to RPA) to identify Σ Ύ 4

5 as Γ3

5.

However, we prefer to apply the method of building explicitely appropriate cobordisms, since

this provides a much more detailed picture of the exotic involution on S4 and its suspension.

3. Pin-structures, Dirac-type operators and the eta-invariant. For convenience of

the reader we collect in this section some basic facts concerning Pm-structures on manifolds,

Dirac-type operators and the eta-invariant. Since the material presented here is now standard

and can be found in many papers (see [3], [5], [13]), we will omit proofs.

Let a denote one of the symbols +, — or c and ε = ± 1 . Then a Lie group Pin01 is well-

defined (see [16], [3], [5]). Let ξ be a ^-dimensional vector bundle over a paracompact space

X. ξ is said to admit a Pina -structure if and only if the classifying map ξ of this bundle (we

identify here the vector bundle with its classifying map) fits into the following commutative

diagram:

BO(n)

A Pina-structure on the vector bundle ξ is a fibre-homotopy class of a map ξa : X -»

BPina(n) as in the diagram above. A manifold M is called a Pina-manifold if and only if
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its tangent bundle TM admits a Pin01 -structure, and a Pmα-structure on TM is called simply

a Pina-structure on M. The following proposition gives a useful characterization of Pina-

bundles and Pina-manifolds.

PROPOSITION 3.1 ([5], [13], [28]). Let ξ be an n-dίmensional vector bundle over a

paracompact space X, and wn(ξ) be the n-th Whitney-Stiefel class ofξ.

(a) ξ has a Pin+ (resp. Pin~)-structure if and only ifw2(ξ) = 0 (resp. W2(ξ)+w\(ξ) =

0). ξ has a Pinc-structure if and only if W2(ξ) is the modulo 2 reduction of an integral

cohomology class.

(b) If ξ has a Pin8 -structure (resp. Pίnc-structure), then Pin8 (resp. Pinc)-structures

on ξ are in a one-to-one correspondence with cohomology classes in Hx(X,Zι) (resp.

H2(X, Z)).

For example, even-dimensional projective space RP2n is a Pmc-manifold which admits

precisely two mutually inverse Pmc-structures, and it is a Pm+-manifold (with two mutually

inverse Pin+ -structures) for dimensions In = Sk + 4. As an immediate consequence of

homotopy invariance of Whitney-Stief el classes of closed manifolds, it follows that any closed

manifold homotopy equivalent to a closed Pina -manifold is also a Pina -manifold.

Now let us turn to Dirac-type Pm + and Pmc-operators (see [3], [13], [28]). Let M2n be

a Riemannian Pmα-manifold, and Φ be a fixed Pmα-structure on M. Φ determines a Pina-

vector bundle Φ(ACί(n)) over M whose fibre is a suitably chosen irreducible Ca(R2n+ι)-

module Δa(ή) (where Ca(R2n+ι) is a suitable Clifford algebra). There is a Dirac-type opera-

tor Dφ : Coo(Φ(ACί)) -• Coo(Φ(Aa)) determined by the Riemannian structure on M and the

Pin01 -structure Φ; we call this the Pin01 -operator on M (corresponding to the Pin01 -structure

Φ). This is a first-order elliptic self-adjoint differential operator given in a local orthonormal

frame (e\, e2,. . , £2Λ+I) on M2n x [0, 1) (equipped with an obvious product Riemannian

metric) by the formula

The dot in this formula denotes the Clifford multiplication, and V is the covariant derivative

on Φ (Δa (n)) determined by the Levi-Civita connection on M. Thus the Atiyah-Patodi-Singer

eta-invariant of Dφ is well-defined; we denote this invariant by η(M2n, Φa). The following

proposition justifies this notation.

PROPOSITION 3.2 ([13], [28]). (a) η(M2n, Φc) mod Z is a Pinc-bordism invariant.

It takes values in Z[l/2n+ι]for non-orientable M and in Z[l/2]for orientable M. Similarly,

η(MSk+4, Φ + ) mod 2Z is a Pin+-bordίsm invariant.

(b) η(RP2n, Φc) = ± 2 ~ ( / 2 + 1 ) mod Zfor any Pinc-structure Φc. Similarly, η(RP*k+4,

Φ + ) = ± 2 ~ ( 4 * + 3 ) mod 2Z for any Pin+-structure Φ+.

We shall also need the following result concerning exotic 4-dimensional projective spaces

([23], [28]):
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PROPOSITION 3.3. (a) η(FRP£s, Φ+) = ±7/8 mod 2Z for any Pin"-structure

Φ + on FRP*S. Similarly, η(FRP*s, Φ + ) = ±7/8 mod 2Z for any Pin"-structure Φ + on

FRP*S.

(b) FRP£S is stably dijfeomorphic to FRPpS, but not to the ordinary projective space

RP4.

The eta-invariant (mod Z) of the Pinc-operator proves to be a useful tool for detecting

exotic projective spaces (or, equivalently, exotic involutions of spheres) in dimension 6. How-

ever, it is completely useless in the case of odd-dimensional (orientable) projective spaces

due to its limited range (see also Commentary 2.1). The following definition introduces an

invariant, which will extricate us from this unpleasant situation.

Let FRP5 = S5/T5 be a homotopy projective space. Let ΣT5 : Σ6 -> Σβ be the

smooth suspension of Γ 5, and let ΣFRP5 = Σβ/ΣT5. ΣFRP5 is a homotopy projective

space which contains FRP5 and has precisely two mutually inverse Pinc-structures, say Φ\

and Φc

2. Therefore η(ΣFRP5, Φ\) = -η(ΣFRP5, Φc

2) mod Z by Proposition 2a.

DEFINITION 3.1. With the notation above, define an invariant (the etac-invariant)

ηc(FRP5) to be the (unordered) pair of numbers ηc(FRP5) = {η(ΣFRP5, Φ\) mod Z,

η(ΣFRP5, φC) mod Z}.

We will prove that the ^-invariant completely detects homotopy projective spaces of

dimension 5.

4. Homotopy projective spaces of dimensions 5 and 6 versus the eta-invariant.

In this section we apply the eta-invariant of the Pinc-operator to classify 5 and 6-dimensional

smooth projective spaces. In particular, we prove Theorem A of Section 1. We also prove

some auxiliary propositions which explain how doing surgery affects the eta-invariant.

Let us start with a version of Z2-equivariant plumbing and surgery, which are the main

tools in this paper.

Equivariant plumbing. For i even (resp. / odd) let ξi be an oriented k (resp. ^-dimen-

sional Z2-vector bundle over Sn (resp. Sk) with a Z2-action covered by the Z2-action on ξi,

where i = 0, 1, . . . ,/ . Let Dξi be the unit disc bundle of ξi with respect to a Z2-invariant fibre

metric. Then Dξi is a Z2-manifold in a natural way. Let /, be the involution of Dξi given by

the action of the non-trivial element of Z2. Identify Sm, where m = k or n depending on the

parity of i, with the zero section of Dξi as its invariant submanifold. Let /?/,#,• e Sm C Dξi

be two distinct isolated fixed points of //. For / even (resp. / odd), fix orientation-preserving

equivariant imbeddings with disjoint images kPi,kqi : Dn x Dk (resp. (Dk x Dn)) -> Dξi

(where Z2 acts on Dn x Dk by ( c, y) \-+ (—JC, —y)) such that kPi (0) = /?,-, kqi (0) = #,-, and

for any x e Dn (resp. x e Dk), kPi(x x Dk) (resp. kPi(x x Dn)) is precisely a fibre of the

bundle Dξi -+ Sn (resp. Sk), and similarly for kqi. For i even, let Dn

p. x Dk

p. (resp. Dn

q. x Dk.)

be the image of kPi (resp. kq.), and similarly for / odd.

Then we define the Z2-equivariant plumbing of Dξo,... , Dξi to be a manifold DξoΠ

ODξi obtained by identifying Dn

q. x Dk. 3 (JC, y) ~ (y, x) e Dk

p.+] x D^.+]. It is clear that
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DξoΏ UDξi comes with a naturally defined involution 7QD D// extending all the invo-

lutions /,- and Fix(/nΠ •//) D {po, qo = P\, , qi-\ = Pi, qι} DξoΠ dDξi is not

a smooth Z2-manifold, but this can be easily fixed by applying a Z2-equivariant smoothing

corners process.

Let at : Sn~[ -> SO(ifc) (resp. α, : S*"1 -> SO(n))be the clutching map for the

bundle ξi for / even (resp. i odd). Let βi(x, y) = (JC, (Xi(x)y) for (JC, y) e Sn~] x D* (or

£*-i χ Dn depending on the parity of i), and T \ Dn x Dk -+ Dk x Dn be the permutation

( c, y) -+ (y, x). It is not hard to see that d(DξoΠ ΏDξi) = (dDξo)dx, where χ =

kqoTkpχ

ιβ\kqι . . . kqι_x Tk-χβιkqι : .S""1 xDk ^ dDξ0 or : Sk~ι xDn ^ 3Dξ0 (depending

on the parity of/).

Now we can give two alternative descriptions of the involutions Tt

5 of Σ? and T? of

Σf described in Section 1. An advantage of both of these constructions over the one given

in Section 2 is that they provide us with a suitable stratified equivariant cobordism from

((27?, Γ.5), (Σf, 7}6)) to 2/ + 1 copies of ((S5, ant), (S6, απί)). This cobordism will play

an essential role in our computation of the eta-invariant and determination of ΣT£S.

Let us fix concordant decompositions S3 = Sι x D2 U D2 x Sι, S4 = Sι x D3 U

D2 x S2, S5 = S2 x D3 U D3 x S2 and S6 = S3 x D3 U D4 x S2, which are all in-

variant with respect to the usual "antipodal" Z2-action. Let DSn be the disc bundle of

the tangent bundle TSn, and let Z 2 act on DSn by the differential of the map Rn+ι 3

(x\, JC2,... , Xn+\) |~>> (-̂ l» —*2, , ~ ^Λ+I) Denote by DTn the involution on DSn given

by the action of the non-trivial element of Z 2 . Then DTn has precisely two fixed points

p = ((1,0, . . . , 0), (0 , . . . , 0)) and q = ( ( - 1 , 0, . . . , 0), (0 , . . . , 0)). Let DSn be the disc

bundle of the stable tangent bundle TSn Θ 1, and DTn be an involution on DSn given by

DTn(x, t) = (DT(x), -t). A natural equivariant imbedding DSn C DSn is now apparent,

and Fix(DTn) = Fix(DTn) = {p, q}. We will need also another 3-dimensional disc bundle

over S4, namely ΔS3 = D4 x D3 U ό D4 x D3 (see Section 2 for the definition of G). Then

ΔS3 comes with a naturally defined involution ΔT3 which, when restricted to any copy of

D4 x D3 C ΔS3, is just the antipodal map (JC, y) H> (—x, —y). A natural equivariant imbed-

ding (DS3, DT3) ^ (ΔS3, ΔT3) is now apparent and Fix(ΔT3) = Fix(DΓ3) = {/?, q}.

A. This construction uses the equivariant plumbing as described above.

For / = 1, 2 , . . . , we define

Wf = DS

For i odd, define

W] = ΔS^ΠDS

For / even, define

W? = ΔS3ΠDS
i 1

3Π - ΠDS3 ,

IΠ- -ΠΔS3,

| D • • D D 5 3 ,

jf = D T 3 Π -ΠDT3.

]J = ^Γ,3DDΓ2

3D DZ\7;

y7 = ^η3DDΓ2

3D...DD7;.

Observe that (Wf, jf) is a characteristic submanifold of (W], 7/

7) in a natural way, and

both of these Z2-manifolds can be assumed to be smooth. Note that Fix(/^) = J
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consists of precisely k + 1 isolated points, namely p\,q\ = pi,... , #£-1 = Pk,<Jk Let

(v, 5,/|) = a(wf, j f), (v,6,/,6) = d(wΊ

k,j
Ί

k).

It is not hard to see (compare Proposition 1 below) that for even k Vj* (resp. Ϋ£) is a homo-

topy sphere. We will prove that the involution /^ of V^ *s equivalent to the involution T?

constructed in Section 2. An analogous statement is valid for V^ and /|z .

Now we turn to yet another construction of the involutions T? and 7)6.

B. This construction uses surgery in place of the plumbing.

Let G, +i : S2 x D?+ 1 C 5?+1 -> S2 x £>? C S? be a copy of the map G, and let

: D 3 x 5?+1 -• Z)3 x 5? have an analogous meaning. Then

and for even / > 0

while for odd i

(\^ p^

where G (resp. Γ) stands for G, +i (resp.

Similarly, let us put

and define

depending on the parity of /.

Z2-manifolds (Xj, P^) and (X/+p ^/+i) are defined analogously with G (resp. Γ) re-

placed by G (resp. f ) . Natural imbeddings ( X ^ p P]'+x) C (Xf+1, ^ + 1 ) , n = 6,7 are

apparent, and it is clear that Z" is obtained from X" by deleting small invariant discs around

all fixed points of the involution P. Note that (Xf+V P*+x) (resp. (Xf+1, Pf+{)) is a charac-

teristic submanifold of (X}'+v P]'+ι) (resp. (X/+1, ^ + i ) ) and

9(Xf, Pf) = d{Xl Pt

k) u (i + DίS*" 1 , βπί).

Denote ( ί ^ " 1 , β f " 1 ) = 3(Xf', P?), k = 6,7. Using the notation in Section 2, one sees

that F ^ = Yfdg or 4 y , and ^ ^ = l^6

a- or Y*d-, depending on the parity of /.

The following Proposition is elementary and its statements (a) and (b) are essentially

well-known (compare [6]).

PROPOSITION 4.1. (a) (W£, φ is diffeomorphic to (Xn

k, P£), k = 0 , 1 , . . . , n =

6, 7. Therefore, (V^"1, Z^"1) is diffeomorphic to (Ϋ£-\ Qn

k~
X).

(b) W^ — X.\k is α stably framed 2-connected manifold, and V^k ί>iS a h°m°topy sphere.

(c) Wjfi. — X\k is 2-connected, and V^. is a homotopy sphere.

(d) The involution 1^ ofV^ is equivalent to the involution Tk of 'Σj*.

(e) The involution I%k ofV^ is equivalent to the involution Tk of Σ%.
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PROOF. Observe that DS3 is obtained by gluing two discs, say D3 x D3 and D3 x D\,

with the help of the map G : S2 x D3 -> S2 x D\. Both the disc bundles DS3 and ΔS3 are

obtained by a similar construction—we use the maps G and Γ, respectively. This observation

immediately yields the assertion (a).

It follows from the very construction of X6

k that Ϋ2k = dX2k is obtained by gluing

D3 x S% and S2 x D3

2k with the help of the map Γ2k o G2k-\ o - - o Γ\oG\\S2 x S2, which

is nothing but the map hk defined in Section 2. It is also clear that Ϋ6

k = dX^ *s obtained by

gluing D 4 x S$ and S3 x D3

2k with the help of the map Γ2koG2k-γo oΓ\oG\\S3 x S2 = hk.

Moreover, Z2 acts on the above-indicated two components of Ϋ2k (resp. Ϋ2k) by the ordinary

"antipodal" action. Now the assertions (d) and (e) follow (with the exception of the statement

concerning the homotopy type of the manifolds V).

It is a standard fact that V2k is a homotopy sphere ([6]). In order to prove that V6

k

is a homotopy sphere, let us note that Hι(Wjk; Z) = 0 for / φ 3,4, while ^ ( W ^ ; Z)

(resp. H\(βίΊ

lk\ Z)) is free abelian of rank k generated by elements υ\, υ2,... , vk (resp.

w\, w2,... , wk), where υ, (resp. ιy£ ) is represented by the zero-section Sf (resp. S*) of the

bundle DSf -> Sf (resp. AS3 —> Sf) contained in Wjk. Moreover, Vi ιu, = ±1 and

Vi -Wj = 0 for |ι — j I > 0. Therefore any homology class Vi is primitive and can be killed by

surgery. Therefore dW^ = V^ is a homotopy sphere, as claimed. This concludes the proof

of Proposition 1 as well as of that of the statements (al) and (bl) of Theorem A in Section 2.

Thus ((Xf^, P2

6^), (X^, P^)) is anequivariantcobordismfrom ((Σ^ Γ^5), ( l £ , Γ^6)) to

2A:+1 copies of ((5 5, αnί), (5 6 , αnί)). Hence (X^, X^) is acobordism from (F/?P^5, F/^^ 6)

to 2k + 1 copies of (RP5, RP6). We are going to use this cobordism to compute the eta-

invariant of the Pίrf -operator, so we shall need the following

PROPOSITION 4.2. X ^ is a Pinc-cobordism.

Proof of this proposition is a simple calculation in cohomology and hence is omitted.

Thus XΊ

2k is a Pmc-cobordism from FRPk to 2k + 1 copies of RP6. In order to compute

the eta-invariant of FRPk, we have to detect the Pirf -structure inherited by any copy of

RP6 c 3X^ from a given Pmc-structure on XΊ

2k. The next proposition provides us with an

appropriate tool for doing this.

Let us from two auxiliary manifolds which are elementary pieces of the manifold XΊ

2k,

namely A1 = (RP6 x /)'- and B1 = (RP6 x /)'-. To be more precise, A7 (resp. BΊ) is

obtained by gluing two copies of RP6 x / with the help of the map g : RP3 x D3 x O2 C

RP6 x I2 -* # P 3 x D 3 x 0i C # P 6 x /1 (resp. γ : D4 x RP2 x O 2 C flP6 x h -+

DA x RP2 x 0i c RP6 x h). Note that both the manifolds A7 and B1 are Pmc-manifolds

by Proposition 2 above. Let us also note that 3A7 (resp. dBΊ) contains two copies of RP6,

namely RP6 x li and RP6 x h , and denote these two copies of RP6 by RP6 and RP$,

respectively.
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PROPOSITION 4.3. Let ΦA (resp. ΦB) be a Pinc-structure on A1 {resp. B1). Let ΦAΪ

(resp. ΦBi), i = 1, 2, be the Pinc-structure on RPf C dλΊ (resp. RPf C dBΊ) induced by

ΦA (resp. Φβ). Then the Pinc-structures ΦA\ and ΦAI (resp. Φβ\ and ΦBΪ) coincide.

PROOF. We prove the proposition for the manifold B1 and the Pmc-structures Φβ\

and Φβ2 on RP6. The proof for AΊ is completely analogous. So let us assume, on the

contrary, that the Pinc-structures Φβ\ and Φβ2

 o n RP6 a r e mutually inverse. Then they

extend simultaneously to a Pmc-structure Φ on the "tube" RP6 x [0, 1]. Consequently, the

manifold BΊ obtained by attaching to BΊ the "tube" RP6 x [0, 1] by a map which identifies

in an obvious way the "ends" RP6 x 0 and RP6 x 1 with the two copies of RP6 c dBΊ is a

Pmc-manifold. We will show that B1 is not a Pmc-manifold, thus arriving at a contradiction

and proving the proposition.

The following simplified description of BΊ will be useful. Take the "tube" RP6 x [0, 1]

and glue RP6 x 0 and RP6 x 1 with the help of the map γ : D4 x RP2 x 0 c RP6 x 0-+

D4 x RP2 x 1 c RP6 x 1. This manifold is easily seen to be diffeomorphic to BΊ and we

denote it by the same symbol. In order to prove that B1 is not a Pirf -manifold it sufficies

to indicate a 7-dimensional submanifold of B1 which is not Pinc. Let E1 = D4 x RP2 x

[0, 1]/(JC, 0) ~ (γ (JC), 1). Thus E1 is the mapping torus of the map γ and the natural inclusion

EΊ c B1 is apparent. We will prove that EΊ is not a Pmc-manifold.

Recall that γ is the quotient of the map Γ : D4xS2 —• D4xS2 given by ((ji, y2, y$9 374);

•*) *-• ((C2(x)(y\9y2,y3),y4)\x). Therefore,}/ : D4 x RP2 -> D 4 x / ? P 2 is given by

([(Ji,y2, J3, J4)]; M) H> (d2([^])[(yi, J2, B , 3*)]; W), where J 2 : RP2 -• SO (4) is the

composition of the quotient map of C2 and the natural imbedding SO(3) ^+ 5Ό(4). In par-

ticular, γ is an authomorphism of the bundle D4 x RP2 -> RP2, and hence E1 is a disc

bundle of a 4-dimensional vector bundle ξ4 = RP2 x [0, 1] x R4/(x, 0, v) ~ (JC, 1, ^2( ̂ )^)

over /?P2 x Sι. Let υ, (resp. μ 2 ) be the canonical generator of Hι(RP2\ Zj) — Z 2 for

i = 1,2 (resp. of H2(RP2; Z) = Z2), and v\ (resp. μi) be the canonical generator of

HX(SX\ Z2) = Z 2 (resp. of HX(SX\ Z) = Z). Note that # 2 ( £ 7 ; Z2) = H2(RP2 x Sx\ Z2) =

H2(RP2\ Z2) Θ HX(RP2\ Z2) 0 / / ^ S 1 ; Z2) = Z2 Θ Z2 generated by v2 and vi ® vi, and

H2(EΊ\ Z) = H2(RP2 x SX\Z) = Z 2 generated by μ 2. It is clear that v2 is the mod

2-reduction of μ2, while v\ (g) v\ is not in the range of the mod 2-reduction operation.

We will show that W2(EΊ) = v2 + v\ <g>ϋ\, thus proving that E1 is not a Pmc-manifold.

It sufficies to compute w2(T(RP2 x Sx) Θ ξ) = v2 + w\(T(RP2 x Sx))w\(ξ) + w;2(f) =
2̂ + w2(§), since u;i(§) = 0 because d2 takes values in SO(4). Let us put w2(ξ) = av2 +

Z?vi (8) vi It is clear that a — 0, since ξ\RP2 x t is trivial; thus u;2(§) = &vi <8> v\ and

we must show that b = 1. Let f = ξ l ^ P 1 x S1. Observe that for [*] e RPX, d2([x])

is the rotation in the plane {^i,x} by the angle a between the vectors e\ and JC. Identify

RPX with Sx = [0, 2π] with identified ends. It is clear now that ζ = ζ\ φ 2, where 2

stands for the trivial 2-dimensional bundle and ζ\ = Sx x [0, 1] x R2/(a, 0, (ι»i, υ2)) ~

(of, 1, (v\ cos of — υ2 sin of, v\ sin or + υ2 cosα)). Thus the Euler class of ζ\ is the generator of

H2(RPX x Sx\ Z) cz Z, andω 2(fi) = iy2(f) = w2(ξ\RPx x Sx) is the non-zero element of
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H2(RPX x S1; Z2) ~ Z 2 . Consequently, w2(§) = vi ® ϋj and w2(DΊ) = v2 + v\ <8> vi. This

concludes the proof of Proposition 3 for the manifold # 7 .

As mentioned above, the proof of the corresponding statement for the manifold AΊ is

similar and hence is omitted.

As an immediate consequence of this proposition we get the following

COROLLARY 4.1. (a) Let Φc be a Pinc-structure on x\k, and Φf, i = 1, 2 , . . . , 2k+

1, be the Pinc-structure induced by Φc on the i-th copy of RPβ contained in ^X\k- Let

ΦQ be the Pinc-structure induced by Φc on FRP% C dX^k Tnen al1 t n e PinCstructures

Φf, i = 1,2,... ,2k + 1, coincide. Therefore, [(FRP£,Φ%)] = (2k + l)l(RPβ, Φ\)}

in the cobordism group ΩpinC. Consequently, η(FRPk,Φ^) = ±(2k + 1)/16 mod Z and

ηc(FRPj?) = ±(2k + \)l16 mod Z.

(b) The ηc-invariant (resp. the eta-invariant of the Pinc-operator) completely detects

homotopy projective spaces in dimension 5 (resp. 6).

In order to prove this corollary and to finish the proof of Theorem A of Section 2, it

sufficies now to recall that there exist, up to equivalence, 4 involutions of homotopy spheres

in dimensions 5 and 6 ([20]). Therefore they must be our involutions 7̂  5 (resp. 7}6), i =

0, 1,2, 3. This concludes our study of 5 and 6-dimensional homotopy projective spaces.

5. Fintushel-Stern's exotic involution on S4. In this section we give a detailed study

of the Fintushel-Stern exotic involution on S4. In particular, we prove a fundamental techni-

cal proposition (Proposition 4 below), which gives a link between the Fintushel-Stern ex-

otic involution on S4 and involutions on higher-dimensional spheres. Roughly speaking, this

proposition states that there exists an equivariant cobordism from (S4, T^ s) to eight copies of

(S4, ant) and some explicitely described Z2-manifold (Λfg ~ 8#S2 x S2, Γ8

4), which imbeds

appropriately into an equivariant cobordism from (S5, ΣT£S) to eight copies of (S5,ant)

and some Z2-manifold of the form (Σ5, / | ) . In a further section of this paper, we identify

(Σ5, IQ) as (S5, ant), and this, together with an explicit form of the cobordism, enables us to

identify (S5, ΣTpS) as our involution (S5, Γ3

5). Some of the results given in this section can

be found in [23], [25].

Let us introduce the following conventions and notation which are more convenient for

our present purposes. Let β : Sι x Sm —• Sm x Sι be the permutation (x, y) H> (y, x). Using

β we fix concordant and Z2-equivariant decompositions Sn = D / + 1 x Sm Uβ D m + 1 x Sι

(abbreviated to S3 = T\ Uβ Γ2 for n = 3 and / = m = 1). Let us note that all the "surgery"

constructions performed in Sections 2 and 3, with the help of the maps G, G, Γ and Γ, can be

translated into the language of these new decompositions by replacing these maps by suitable

compositions β~xFβ, where β : D / + 1 x Sm -* Sm x D / + 1 is an obvious extension of β and

F stands for one of the maps G, G, Γ or Γ. In particular, we use the same symbol F instead

of β~xFβ, and again we talk about the surgery on F and keep the same notation M$f, Mf

and so on. Let Λf" be a smooth submanifold of a manifold Vv, and let φ : Z) / + 1 x Sm -> Nn
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and ψ : Dt+ι x Ss -» Vv be smooth imbeddings, where m +1 + \ = n, s + t + 1 = υ and

s > m, t > I.

DEFINITION 5.1. With the notation above, we say that ψ essentially extends φ (and
write ψ ~ φ) provided that there exists, for the first, an autodiffeomorphism g of the disc

Ds+t+2 D Sj+r+i = D r + i χ Ss Uβ Ds+\ χ st s u c h t h a t t n e restriction g : S*+ ί + 1 -> ^ + ί + 1

o/# mfl/7,s D ί + 1 x S5 onto itself; and, for the second, an autodiffeotopy ht of Vv from ho =

id to h\, such that h\ o ψ o g : D ί + 1 x S5 -> Vυ conicides with φ on D / + 1 x Sm, and

h\oψ og(Dt+ι x Ss) ΠNn = φ(Dι+ι x Sm).

Let us note that if Φ : Z ) ω + 1 x Su -> ί/M+u;+1 D Vυ essentially extends ψ, then Φ

essentially extends φ. We will also use an obvious equivariant version of this notion (and

write ψ ^z2 Φ) i n t n e c a s e of Z2-manifolds Nn and Vυ and equivariant maps (as usual, we

take the ordinary "antipodal" Z2-action on Sn and D / + 1 x Sm, and use equivariant maps g

and ht). In this case we say also that the surgery on ψ essentially extends the surgery on φ.

The following proposition is a simple consequence of the definition above.

PROPOSITION 5.1. With the notation above, if an imbedding ψ essentially extends an

imbedding φ, then there exists a manifold nV£ψ diffeomorphic to the manifold V£,, which

contains N%φ as a smooth submanifold. Moreover, if Nn C dKn+ι and Vυ C dWn+ι,

where Kn+X is a proper submanifold of a manifold Wυ + 1, there exists a manifold nWl+

diffeomorphic to Wl~*~ , which contains K^~ as a smooth submanifold. In fact, it sufficies

to take nV£ψ = V£φ and n W^~ι = W^~l for Φ = h\ o ψ o g. An analogous statement is

clearly true for the "punctured" bordίsm WL. Moreover, all these statements have obvious

Zi-equivariant analogues.

REMARK 5.1. The following notational and terminological convention will be applied

in forthcoming sections of this paper. An imbedding Φ = h\ o ψ o g d& described above

will be said to be φ-good and equivalent to ψ. Assume we are given two increasing n-

tuples ( M i , . . . , Mn) c (dN\,... , dNn) of smooth manifolds and a sequence φ = {φι :

Dli+X x Smi -> Mi] of smooth imbeddings such that 0, +i essentially extends φ[. Form a

sequence Φ = {Φ; : D / / + 1 x Smi ->• Λf/} of smooth imbeddings such that Φ\ = φ\ and Φ +i

is Φ -good and equivalent to 0/+i, and form the manifolds M^φi and Niφt (denoted shortly

by Midφ and Niφ respectively). Then M^φ c M +i^φ and Niφ c M'+I,Φ m a natural way.

We will usually neglect the replacement of φ by Φ and write (M\,... , Mn)dψ to de-

note the n-tuple of manifolds (M\dφ,... , Mn^φ), and analogously (Λ^i,... , Nn)φ to de-

note (N\φ,... , Nnφ). Thus Niφ is obtained from Ni by attaching a handle of index ra;,

and we will say that (N\,... , N^)φ is the trace of a surgery on (N\,... , Nn) of the type

(mi , . . . , mn). An analogous notation will be used in the case of Z2-manifolds and their quo-

tient manifolds and punctured manifolds NL. Of course the manifold Niφ itself depends on

the choice of Φ, but its diffeomorphism type does not. In fact, any two such manifolds are

diffeomorphic in a natural way, and we can find a diffeomorphism between them, which is

diffeotopic to identity while restricted to Ni C N/Φ
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If χ 3 : D2 x Sι -> S3 is an orientation-preserving imbedding such that χ 3 ( 0 x Sι) is a

trivial knot, then the isotopy class of χ 3 is determined by the linking number of χ 3 ( 0 x Sι)

and χ3(x x Sι) for any D2 a x φ 0. We denote by χ(k) such an imbedding with the

corresponding linking number k. The surgery on χ 3 will be called Dehn's surgery.

Now let us formulate two simple technical lemmas, which will be needed later.

LEMMA 5.1. (a) Let χ 3 ( ± 2 ) : D2 x Sι -> D2 x S1 c S3 be equivαriαnt. Let an

equivariant orientation-preserving imbedding χ4 : D3 x S1 —• S4 satisfy χ 4 ^ z 2 X3(±2).

77ιe« χ 4 w (non-equivariantly) isotopic to the standard imbedding D3 x Sι -• D3 x S1 U^

D2 x S2 = S4, and both of the maps G and Γ : D3 x S2 -> S5 essentially extend χ 4 .

Therefore the surgery on G (resp. Γ) essentially extends the surgery on χ4 and hence the

surgery on χ3.

(b) Let φ3 : D2 x Sι -> D2 x Sι C S3 = D2 x Sι Uβ D2 x Sι be the natural

imbedding. Letφ4 : D3 x Sι -> D2 x S2 C S4 = D2 x S2 Uβ D3 x Sι satisfy φ4 - z 2 Φ3.

Let φ5 : D3 x S2 -> D3 x S2 C S5 = D 3 x S2 U^ D 3 x 5 2 be the natural imbedding. Then

Φ5 -z2 Φ4.

The assertion (a) follows from the fact that G : D3 x S2 -> D3 x 5 2 is a bundle-

moφhism and G | D 2 x S1 : D 2 x Sι ->- D 2 x 5 1 is given by (u, JC) —• (ci( c)ι , ̂ c), which is

easily seen to be of the form χ 3 (2). Similar observations apply to prove this assertion for Γ.

(b) follows by an easy "isotopy" argument.

Let χ3(2A;) : D2 x Sι -• D2 x Sι c S3 be equivariant. Let χ 4 : D3 x Sι -+ D3 x Sι C

S4 satisfy χ 4 - z 2 X3 Let (M 5, Γ 5) = (S4 x Iuant) U~4 (5*4 x /2,5nί), where χ 4 is

understood as a map: (D 3 x 5 1 x 1)2 —• (£>3 x 5 1 x l)i. Then dM5 contains two copies

of RP4, namely RPf = S4 x 0ι/ant and RP$ = S4 x 02/ant. Moreover, M 5 is obtained

by gluing two copies of RP4 x [0, 1] by the quotient imbedding χ 4 : D 3 x / ? P 1 x l 2 C

RP4 x h-+ D3 x RP1 x li c /?P4 x I\.

LEMMA 5.2 (see [23]). With the notation above, we have the following:

(a) M 5 is a Piri^ -manifold.

(b) Let Φ+ be a Pin"-structure on M 5 , and Φ+ be the PinΛ-structure on RPf CdM5

induced by Φ+. Then Φj1" coincides with {resp. is inverse to) Φ^ if and only ίfk is odd (resp.

even). Consequently, η(RP4, Φf) = η(RP4, φ£) mod 2Z if and only ifk is odd.

(c) The isotopy class of an imbedding γ : D3 x RP1 -> RP4 representing the non-

trivial element ofπ\ (RP4) is detected by the eta-invariant of the "source" RP4 equipped with

the Pin^-structure transfered by γ from the standardPin+-structure on the "target" RP4.

PROOF. Proof of the assertion (a) is similar to that of Proposition 4.2. The assertion (b)

is nothing but Lemma 6 in Section 4 of [23] and its proof is similar to that Proposition 4.3. The

assertion (c) follows from (b) and the well-known fact that there exist precisely two isotopy

classes of imbeddings γ : D3 x RP1 —• RP4 representing the generator of π\(RP4), which

differs by the (unique) non-trivial automorphism of the bundle D3 x RP1 -> RP1.
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Now, let us recall that the Brieskorn sphere Σ (3, 5, 19) is a characteristic submanifold

for the Fintushel-Stern involution on S4 ([10], [23]). It is a Seifert manifold over S2 with

associated unnormalized Seifert invariants ((1, 1); (3, -1) ; (5, -2) ; (19, -5)) . Let P3 be the

involution on 17(3, 5, 19) "contained" in the natural S]-action. In Proposition 5.2 below we

will apply the following convention. A diffeomorphism Θ3 : D2 x S1 —• D2 x Sι, i =

2, 3 , . . . , will be considered also as an imbedding Θ3 : D2 x S{ x 1/ C S3 x // -> D2 x

S1 x l/_i C 5 3 x //-i; for <93 - z 2 ®ΐ : D3 x Sι C S4 -+ D2 x S2 C S4, i = 2,3,... ,

we apply a similar convention. Moreover, an imbedding (Θ3, Θ4) : (D2 x Sι, D3 x Sι) ->

(17(3, 5, 19), S4) will be identified with its copy: (D2 x Sι x l i , D3 x Sι x \\) c (S3 x

I\,S4 x Λ) -> (17(3,5, 19) x l,S4 x 1) c (17(3,5, 19) x /, S4 x /) .

PROPOSITION 5.2. There exist a sequence of equivariant maps Θ3 = (Θ3,... , 6>g),

where Θ3 : (T\,ant) C (S3,ant) -> (17(3,5, 19), P 3 ) αnJ 6)3 : (T\,anή C (S3,ant) -+

(Γ2, Λnί) C (5 3 , ant) /or / > 1, fl«(i ί/ẑ  associated sequence of equivariant maps Θ4 =

(Θ4 - z 2 6 ) 3 , . . . , Θ4 - z 2 Θ3), where Θ4 : (D 3 x S\ant) -> (5*4, Γ 4

5 ) and Θ4 : (D 3 x

S\ant) C (S4,ant) -> (D 2 x S2,ant) C (S4, ant) for i > 1, such that the following

conditions are satisfied:

Let two sequences of Z2-manifolds defined to be

and for 1

and for 1

< i

< i

< 8

( Λ>4 p 4 x _

< 8

Then the following hold.

(a) Any map <93, / = 2, 3 , . . . , 8 satisfies Θ3 = Θ3(±2).

(b) TV4 is the connected sum ofi copies of S2 x S2.

(c) (Λ ĝ, 7^) contains, as a characteristic submanifold, a Zi-manifold (N%, Pg

3) which

is diffeomorphic to (S3, ant).

It is to be stressed that N% need not to be obtained from 17(3, 5, 19) by doing the Dehn

surgeries on the maps Θ3.

PROOF. We have to define appropriate maps Θ3, Θ4. In [23, pages 19-21] we proved

that there exist two sequences of equivariant imbeddings ( χ 3 , . . . , χ | ) and (χ^,... , χ | )

(resp. ( x 4 , . . . , χ4) and (x^,. . . , χ g )) , such that the following conditions are satisfied:

(1) χ 3 (resp. χ 3 ) : (D2 x Sι,ant) -* (17(3, 5, 19), P3) C (S4, TFS) is a diffeomor-

phism onto Γ(19, —5) (resp. Γ(3, —1)) c 17(3, 5, 19), an invariant normal neighbourhood

of the singular orbit corresponding to the Seifert invariants (19, —5) (resp. (3, —1)).

(2) For any i = 2, 3, 4, 5, 7, 8, χ 3 : (D2 x Sι, ant) -> (D2 x Sι, ant) c (S3, ant) is a

diffeomorphism of the form χ 3 ( ± 2 ) .
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(3) χ 4 : (D3 x S1, ant) -+ (S4, TFS) satisfies χ 4 ~z 2 Xp and similarly for χ 4 .

(4) For any ί = 2, 3, 4, 5, 7, 8, χ 4 : (L>3 x Sι,ant) -* (D 2 x S2, αnί) C (S4, α/iί)

satisfies χ 4 - z 2 X,3.

(5) Consider the map χ 3 (resp. χ | ) as a map from T\ x \\ c S3 x I\ (resp. T\ x \^ c

S3 x h) onto Γ(19, -5) c 27(3, 5, 19) x l 0 C 17(3, 5, 19) x [0, l ] 0 C 5 4 x [0, l ] 0 (resp.

Γ(3, -1) C 17(3, 5, 19) x l 0 ), and let χ 4 ~ Z 2 χ 3 , χ 4 ~z 2 X^ Similarly, consider the map

X?, i = 2, 3,4, 5, 7, 8, as a map T\ x 1/ c 5 3 x 1/ -* Γ2 x l/_i C S3 x / - i , and let

xf - z 2 X? : D 3 x S ι x 1/ ̂  D 2 x S 2 x l , _ i . L e t

and for 1 < / < 8

(κf,i?) = (κ'i_ι.rii_ujif).
Also, let

(L 4 , 70

4) = ( 5 4 x lo, TA

FS),

and for 1 < i < 8

(L4, jf) = (L^jtf, J^jtf).

Then ΛΓ| is a Pm+-bordism from FRPJS = S4xθo/τ£s to eight copies of /?P4 (namely S4 x

Oi/ant) and some manifold Lg. Moreover, (Lg, 7g) contains, as a characteristic submanifold,

a Seifert manifold Mg which is Z2-equivaliantly difΐeomoφhic to (S3, ant).

Note that any Kf is a Pm+-manifold by Lemma 5.2(a). Therefore, any L 4 is the con-

nected sum of / copies of S2 x S2 by standard arguments. Thus (Lg, j£) satisfies the con-

ditions (b) and (c), and all the maps (χ 4 , χ 3 ) but (x^, x^) satisfy the condition (a). Define

θf = χ 3 and let Θ 4 ~ Θf for i φ 6. In order to define ((9^, Θ|) , let us observe that there ex-

ists an equivariant diffeotopy ht : L 4 —> L 4 such that ho = id, and Θ% (=by definition h\ oχ^)

maps D 3 x 5 1 x U into D2 x S2 x I5 C L 4 and satisfies the condition that θ\ ^Z2 @\ f° r

some Θ\(±lk) Γ i x ^ — • ^ x l s C S ^ x l s , where k = 0 or 1. (In fact, use 1-connectivity

of L 4 to build an equivariant diffeotopy which "moves" χ£(D3 x Sι x lβ) from its initial po-

sition to D2xS2xl5 C L\\ next observe that θ\ ^Zl <93(0 : Ά x lβ -> T2 x I5 C S3 x 15

for some /, which must be even since θ£ is equivariant; then use the fact that there exist pre-

cisely two equivariant isotopy classes of automorphisms of the bundle D 3 x S{ -> Sι). It is

clear now that (M|, N£) is diffeomoφhic to (K%, Lg) and therefore (N%, P^) contains, as a

characteristic submanifold, a manifold (Λ |̂, Pg

3) ~ (S3, ant), since Lg enjoys an analogous

property. This proves the assertion (c).

In order to complete the proof of the assertion (a), it sufficies now to show k = ± 1 . But

Ml = FRP4

FS x / U D 3 ^ p , x l ^ 4 x / | U .. U D 3 * ^ RP4 x 78 .

Therefore, by Lemma 2(b), (c) above, it sufficies to prove that the Pm+-structures φf =

Φ+\RP4 x 0/ C 3Mg, i = 5, 6, induced by any Pm+-structure Φ + on M | coincide; or,

equivalently, that for a fixed Pm+-structure Φ + on K% the Pm+-structures Φf = Φ + | / ? P 4 x
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0/ C ΘĴ f, i = 5, 6, coincide. In order to prove this assertion, let us note that Lg is the

connected sum of RP4 and some 1-connected S/?m-manifold L 4 and L\ = L 4# — L4 (the

connected sum of L 4 with some fixed orientation and L 4 with reversed orientation). We claim

that the manifold L 4 is a S/?m-boundary. In fact, L\ is obtained from S4 by doing eight

surgeries on some imbeddings D3 x Sι —• S4, therefore Lg is the connected sum of eight

copies of S2 x S2 (the possibility of appearing here S2 x S2, the S2-bundle over S2 with

W2(S2 x S2) φ 0, is excluded, since L\ is a Spm-manifold). Thus L 4 is a Spm-manifold with

the second Betti number = 8, and hence sign (L4) = 0 by Rohlin's theorem. Therefore L 4 is

a 5/7/n-boundary, as claimed.

Consequently, η(L%, φ£) = η(RP4, Φ+) mod 2Z, where Φ ^ is the Pm+-structure on

Lg determined by Φ + and Φ+ is the Pin+-structure on RP4 determined by the restriction of

Φ + to the RP4-part of Lg. Now, using Lemma 2(b) above, one sees easily that

η(RP4, Φj+) = η(RP4, Φ+) = = r;(/?P4, Φ5

+) mod 2Z

and

η(RP4, Φ£) = η(RP4, Φf) = η(RP4, Φ$) mod 2Z

(see the definition of χf and θf). In [23] we proved that η(FRP^s, Φ) = ±7/8 mod 2Z for

any Pm+-structure Φ. Without loss of generality we can assume that η(FRPpS, ΦQ") = 7/8

mod 2Z, where Φj" = Φ+\FRP4

S. Thus

7/8 = η(FRP4

s, Φ+) = 5r/(/?P4, Φ5

+) + 3η(RP4, Φ+) + ?7(/?P4, Φ + ) .

Since ^(/?P4, Φ) = ±1/8 mod 2Z, it follows that η(RP4, Φ%) = η(RP4, Φ$) mod 2Z.

Thus Φ^" = Φ^ and the assertion (a) is proved.

The argument for (b) is the same as the analogous statement for Lg given above. Now

Proposition 2 is proved.

REMARK 5.2. Proposition 3 above shows that the Fintushel-Stern involution on S4

can be obtained from an involution on 4#S2 x 5'2#4#5'2 x S2, which permutes the two copies

of 4#S2 x S2 and "desuspends" to the ordinary antipodal involution on S3 by killing H2(4#S2 x

S2#4#S2 x S2) by an equivariant surgery. We suspect that a bit more detailed description of

this surgery could provide a transparent formula for TFS

Now we can formulate the main technical proposition of this section, which provides us

with a suitable tool (an equivariant stratified cobordism), that will enable us later to identify

ΣT4

S. Let

= G : D 3 x S2 x 1, c S5 x /,- -> D 3 x S2 x l, _ i c S 5 x 7, _ i

and

Θf = G : D 3 x S3 x 1, c 5 6 x /,- -* D 3 x ^ x l/_i c 5 6 x //_i

for i = 2, 4, 6, 8. Similarly,

Θf = Γ : D3 xS2 x h c S5 x U ^ D3 x S2 x l/_i C S5 x //_i,
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and

θf = Γ : D4 xS2 x 1; C Sβ x U ^ D4 x S2 x l;_i C S6 x 7;_i

for ί = 3,5,7. In order to define Θ\ \ D3 x S2 x \\ -> D3 x S2 x lo and <9f =:

D4 x S2 x li -» D 4 x S2 x lo, we proceed as follows. There exist precisely two isotopy

classes of smooth imbeddings h : D3 x Sι -> S4 detected by the trace of the surgery on

h, and h extends to an imbedding D3 x S2 -> S5 if and only if the trace of the surgery

on h is S2 x S2. This is precisely the case of the map Θ4 of Proposition 2, and we define

Θ\ : D3 x S2 x \\ C S5 x l\ ->• D3 x S2 x lo C S5 x lo to be an equivariant extension

of θ\ such that θ\(Ό3 x S2) Π S4 = Θ4(D3 x Sι). Next we define θ\ : D4 x S2 x
l\ C S6 x \\ -> D4 x S2 x lo C S6 x lo to be an equivariant extension of Θ\ such that

Θ\(D4 x S2) Π S5 = Θ\(D3 x S2). It follows from Proposition 2 and Lemma 1 together with

the definition of the maps G, Γ, G, Γ that <9" essentially extends Θf~λ for ί = 1,... , 8 and

« = 5,6.

Thus, using Propositions 1 and 2 and Remark 1, we can form a triple of Z2 -manifolds

( ( Λ f ? , η 5 ) , ( A f f , η 6 ) , ( M / , η 7 ) ) , f = 0 8

such that

(Mo"+ 1, Γo"
+1) = (5" x 7o, Σn~4T4

s x id),

where n = 4 , . . . , 6, and £ ° Γ 4

5 = Γ 4

5 , and

Similarly, a triple of Z2-manifolds

((TV4, P 4 ) , (TVf, P^5), (Nf, i^ 6 ) ) , ί = 0 8

such that

and

It is clear that (Mf, 7}π) (resp. (Λ^f-1, P/1"1)) is a characteristic submanifold of (Af?+1,

7)π + 1) (resp. (iV/1, P/1)), n = 5, 6, 7,1 = 0, . . . , 8. An argument completely analogous to the

one used in the proof of Proposition 1 in Section 4 shows that N? is a homotopy sphere for

any even integer i. Moreover, an easy homological argument shows that Nf is a homotopy

sphere for even /. Thus we get the following

PROPOSITION 5.3. There exists a smooth Z2-manifold (M 7, TΊ) {where T1 is fixed

point-free) such that the following conditions are satisfied:

(a) 3(M 7 , T1) = (S 6 , Σ2T4

S) u 8(S 6 , ant) u (N6, P 6 ) , where P 6 w an involution of

a homotopy sphere Λf6'.
(b) P 6 desuspends to an involution P 5 of a homotopy sphere N5 C Λ^6.
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(c) (TV5, P5) has a characteristic submanifold (TV4, P4) such that N4 is diffeomorphic

to the connected sum of eight copies of S2 x S2. Moreover, (N4, P4) has a characteristic

submanifold (N3, P3) ~ (S3, ant). Thus N3, N5 and N6 are homotopy projective spaces.

(d) dMΊ = FRPβ

FS u SRPβ u Nβ, where FRP%S = S6/Σ2T4

S. Moreover, M1 is a

Pinc-manifold and any Pinc-structure Φc on M1 induces the same Pinc-structure on any of

two copies ofRP6 C dM1. Consequently, η(FRP6

FS, ΦC

FS) = Sη(RP6, Φ\) + η(N6, ΦC

N)

modZ, where Φ\ (resp. ΦC

N, resp. ΦC

FS) is the Pinc-structure on RPβ (resp. N6, resp. FRPFS)

induced by Φc.

PROOF. We define (M 7, TΊ) to be (Λfg, Γg

7) of Proposition 2 and apply Propositions

1 and 2 to prove (a), (b) and (c). The assertion (d) follows immediately by Proposition 3 of

Section 4.

6. Proof of main theorems. In this section we prove Theorems B and C in Section

1, thus establishing all the results of this paper. Let us start with two technical lemmas which

will be needed later.

LEMMA 6.1. Let Tn be an involution on Sn which desuspends to an involution Tn~x

on a homotopy sphere Σn~ι c Sn, where n = 4,5,6. If n = 4, assume additionally

that Σn~ι cuts Sn into two submanifolds diffeomorphic to the ordinary disc D4 {note that

an analogous condition for n > 4 is always satisfied). If (Σn~ι, Tn~ι) is equivalent to

(Sn~ι, ant), then (Σn, Tn) is equivalent to (Sn, ant).

This follows from the fact that any autodiffeomorphism of Sn~ι extends to an auto-

diffeomorphism of Dn for n = 4, 5, 6 ([9],[17]). Now we can formulate a technical lemma

which enables us to detect certain involutions of 5-dimensional spheres basing on some data

about their characteristic submanifolds.

LEMMA 6.2. Let P5 be a smooth fixed point-free involution of S5 such that the fol-

lowing two conditions are satisfied:

(a) There exists a characteristic submanifold (X4, P4) C (S5, P5) such that X4 is

diffeomorphic to the connected sum of Ik-copies of S2 x S2 for some integer k < 8.

(b) There exists a characteristic submanifold (X3, P3) C (X4, P4) such that (X3, P3)

is diffeomorphic to (S3, ant).

Then P5 is smoothly conjugated to the ordinary antipodal map ant: S5 -> S5.

PROOF. We give only a brief outline of the proof. The details, which are standard and

rather dull, could be provided by the reader without undue difficulty.

First, let us note that X4 = L$ U53 L'Q for some 1-connected S/?m-manifold LQ and

LQ = P4(Lo). Thus X4 is the equivariant connected sum of two copies of some 1-connected

5/?m-manifold L. Moreover, the second Betti number of L is < 16 by the assumption (a).

Consequently, |sign(L)| < 16, and therefore sign(L) = 0 by the Rohlin theorem. Thus L is

stably diffeomorphic to the connected sum of k copies of S2 x S2 by a well-known theorem

of Wall ([30]).
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Now we build an equivariant cobordism from Co = ((X4, P 4 ) , (S5, P 5 ) , (S6, ΣP5)) to

((S4, ant), (S5, ant), (S6, αnί)) as follows. First we do on Co a sequence of / stratified equi-

variant surgeries of type (1, 2, 2), away from S3 c X4, so as to get a Z2-cobordism from Co

to Ci = ((ifc + /)#S2 x S2 U53 (k + /)#S2 x 5 2 , Pf), (Aff, Pf), (Aff, Pf)). Next, we kill

πi((k + /)#S2 x S2 U53 (& + l)#S2 x S2) by a sequence of stratified equivariant surgeries

of type (2, 2, 2), away from S3, and we get a new triple ((S4, P 4 ) , (Aff, P | ) , (Af|, P2

6)).

Now, we kill 7Γ2(Aff) by a sequence of equivariant surgeries of type (2, 2) on (Aff, Aff),

away from S4, and we get ((S4, P 4 ) , (S5, P3

5), (Aff, P3

6)). Finally, we kill τr2(Aff) and

7Γ3 (ΛfI) by equivariant surgery, away from S5, and we get a quadruple of Z2-manifolds

((S3, ant), (S4, P2

4), (S 5, P3

5), (S6, P4

6)). Using Lemma 6.1 we see that all these involu-

tions are equivalent to the standard "antipodal" involution. Passing to quotient manifolds,

we get a Pmc-cobordism from (FRP5 = S5/P5, FRP6 = S6/ΣP5) to (RP5, RP6). Thus

ηc(FRP5) = ±1/16 mod Z, and Lemma 6.2 follows from Corollary 4.1(b).

Essentially the same arguments apply to prove the following generalization of Lemma

6.2.

LEMMA 6.3. Let P 5 be an involution ofS5 such that the following two conditions are

satisfied:

(a) There exists a l-connected characteristic submanifold (X4, P 4 ) C (S5, P 5 ) and

a characteristic submanifold (X3, P 3 ) C (X4, P4) such that (X3, P 3 ) is diffeomorphic to

(S3,ant).

(b) Let X4 = Lo U^3 L(j, where L'o = P4(L0).

Assume that sign(Lo) = 0. Then P 5 is smoothly conjugated to the ordinary antipodal

map ant: S5 -> S5.

REMARK 6.1. Lemma 6.2 is no longer true if we relax the assumption that k < 8.

However, it remains valid also for k = 8 by a theorem of Donaldson. In fact, sign(Lo) =

0 also in this case, since Lo is a smooth l-connected 4-manifold with &2(Lo) = 16, the

boundary of which is S3, and which has even intersection form, and we get the required

equation combining theorems of Rohlin and Donaldson.

Now the proof of Theorem B is immediate. We apply Lemmas 6.1 and 6.2 to the objects

described in Proposition 3 of the previous section, and we see that (iV5, P 5 ) c± (S5, ant) and

(TV6, P 6 ) ~ (S6, ant), and therefore η(N6, ΦC

N) = ±η(RP6, Φc) = ±1/16 mod Z. Thus

η(FRP%s, ΦC

FS) = ±7/16 mod Z

and

ηc(FRP^s) = ±7/16 mod Z .

Consequently, FRP%S = S6/Σ2T4

S (resp. FRP*S = S5/ΣT4

S) is diffeomorphic to FRP*

(resp. FRP^) by Corollary 1 in Section 4, thus proving Theorem B.

Now let us turn to the proof of Theorem C.
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We start with the "if"-implication. So let us assume that the involutions ΣT4 and

ΣΎ2

4 are smoothly conjugated. Then we can regard the Z2-manifold (Z 6 , Γ 6) = (S5 x

/, ΣT4) as an equivariant cobordism from (S5, ΣT4) to (S5, ΣT4) having a fixed identifica-

tion (S5, ΣT4) - (5 5 x 1, ΣT4). Thus (S5 x 0, ΣT4) contains (S4, T4) as a characteristic

submanifold, and (S4, Γ2

4) is a characteristic submanifold of ( 5 5 x l , XT*). Fix a classifying

map /i : FflPf = S5 x 0 / Γ Γ 4 -> Λ P * , N large, for the Z2-bundle S5 -> FRPf such that

/i is transversal to RPN~ι and f~ι(RPN~ι) = FRP4 = S4 x 0/Γ 4. Similarly, fix a clas-

sifying map h : ^ # Λ 5 - F / ? / > 2 = ^ x V ^ 4 ~* Λ j P * f o r t h e Z2-bundle S5 -> F/^P2

5

such that / 2 is transversal to RPN~ι and f~ι(RPN~ι) = FRP4 = S4 x 0/ Γ2

4 (the existence

of such maps follows by an easy obstruction-theoretic argument). Since both f\ and f2 are

classifying maps for the unique non-trivial Z2-bundle over FRP^ and FRPj! — S5 x l/ΣT4

respectively, they extend simultaneously to the classifying map F : Z 6 = FRP^ x / ->• /?P^

for the non-trivial Z2-bundle 5 5 x / -> FΛPf x /. Make F transversal to RPN~ι so as

p-i(RpK-i) π 3Z 6 = FΛPj4 u FRP$, and let Z 5 be the connected component of the

manifold F~ι(RPN~ι) which contains FRP4. An easy point-set argument then shows that

Z 5 contains also FRP%, and therefore Z 5 c Z 6 is a cobordism from FRPf to FRP%. Let

Z 5 c Z 6 be the obvious cover of Z 5 , and observe that (Z 5 , T5 = T6\Z5) is a characteristic

submanifold of (Z 6 , Γ 6). Convert Z 5 into a 1-connected characteristic submanifold using ap-

propriate equivariant intrinsic surgery (attaching to the original Z 5 , away from its boundary,

some pairs of 2-handles inside Z 6). Denote this new characteristic submanifold again by Z 5

and its quotient by Z 5 .

We will show that Z 5 is now a Pm+-cobordism from FRP4 to FRP4. In order to

prove this assertion, let us observe that T6 preserves orientation of Z 6 , while T5 reverses

orientation of Z 5 , and therefore any circle S in Z 5 reverses orientation of Z 5 if and only

if it reverses orientation of the normal bundle ξ to Z 5 in Z 6 . Thus w\(TZ5) = w\(ξ) and

w2(TZ6)\Z5 = w2(TZ5φξ) = w2(TZ5)+w\<j;). Butτri(Z5) =τr i (Z 6 ) = Z 2 and one sees

easily that w\(ξ) = w\Z5, where w is the generator of //*(Z 6 ; Z2) ~ H*(FRP^; Z 2), which

is the truncated polynomial algebra over Z 2 generated by w e Hι(FRP^; Z 2 ). Moreover

w2(TZ6) = w2. Thus, using the expression for w2(TZ6)\Z5 given above, we get w2\Z5 =

w2(Z5) + w2\Z5 and w 2 (Z 5 ) = 0, as claimed. Therefore FRP? is Pm+-cobordant to FRP%.

But FRP4 is homeomorphic to FRP4 by the Freedman's topological .s-cobordism theorem,

and hence FRP4 is stably diffeomorphic to FRP4 or to FRP4#K (where K is the Kummer

surface) by [15]. But [K] φ 0 in Ω%in+. Consequently, FRPf is stably diffeomoφhic to

FRP%. This proves the "if" part of Theorem C.

In order to prove the "only if" implication of Theorem C, let us recall that there exist

precisely two stable difϊeomorphism classes of 4-dimensional homotopy projective spaces

represented by RP4 and FRP^S (in order to prove this use the above-mentioned result of

[15] and the fact that the eta-invariant of the Pm+-operator completely detects elements of

Ω%ιn = Z\β). Thus it sufficies to prove that, given an involution Γ0

4 on S4, ΣTQ is smoothly

conjugated to the usual antipodal involution (resp. to ΣTpS) provided that FRPfi = S4/T$
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is stably diffeomorphic to RP4 (resp. to FRP4

S). So let us assume that FRPβ is stably

diffeomorphic to FRP4

S, and fix an even integer k so as FRP4#k#S2 x S2 ~ FRP4

s#k#S2 x

S2. Let Co = (X5, S5 x /, S6 x /) be a standard cobordism from (k#S2 x S2, S5, S6)

to (S 4, S5, S6) (we use the fact that k is even to construct such a cobordism). Fix an arc

γ C X5, which meets k#S2 x S2 (resp. S4) c 9X5 transversally, precisely at y(0) (resp.

}/(l)). Similarly, fix an analogous arc δ c FRP^S x /. Next, form the connected sum along

y and 5 of Co and Ci = (FRPJS x /, F / ? P | 5 x /, FRP$S x /) . In this way, we get a

Pmc-cobordism C 2 from (FRP4

s#k#S2 x S2 ^ FRP4#k#S2 x S2, FRP*S, FRP%S) to
4 ^ «

5 ^ 5

Now, proceeding analogously as in the proof of Lemma 6.2, we kill k#S2 x S2 C

FRPQ#k#S2 x S2 by stratified surgery, and subsequently kill π 2 and πi of 5 and 6-dimensional

members of the new triple of manifolds, leaving the 4-dimensional member unchanged. In

this way, we get a Pmc-cobordism from (FRP4

S, FRP*S, FRP%S) to (FRPfi, X5, X6),

where X5 and X6 are certain homotopy projective spaces. But (X5, ΓQ

5) (resp. (X6, Γ0

6)),

where (X", Tβ) is the universal cover of Xn, is the smooth suspension ΣTQ (resp. the dou-

ble smooth suspension Σ2T$) of Γ0

4. Thus ηc(X5) = ±7/8 mod Z, and therefore ΣT$ is

equivalent to ΣTpS, as claimed.

The proof of the corresponding assertion for FRPfi stably diffeomorphic to RP4 is

completely analogous, and hence is omitted. This concludes the proof of Theorem C. Now all

the assertions in this paper are proved.

REFERENCES

[ 1 ] D. W. ANDERSON, E. H. BROWN AND F. P. PETERSON, SU-cobordism, KO-characteristic numbers, and the

Kervaire invariant, Ann. Math. 83 (1966), 54-67.

[ 2 ] D. W. ANDERSON, E. H. BROWN AND F. P. PETERSON, The structure of the Spin-cobordism ring, Ann.

Math. 86 (1967), 271-298.

[ 3 ] M. F. ATIYAH, V. K. PATODI AND I. M. SINGER, Spectral assymetry and Riemannian geometry I, II, III,

Math. Proc. Cambridge Philos. Soc. 77 (1975), 43-69, 78 (1975), 405^32, 79 (1976), 71-99.

[ 4 ] A. BAHRI AND P. B. GILKEY, Pin-cobordism and equivariant Spin-cobordism of cyclic 2-groups, Proc. Amer.

Math. Soc. 99 (1987), 380-382.

[ 5 ] A. BAHRI AND P. B. GILKEY, The eta-invariant, Pin-bordism, and equivariant Spin-bordism for cyclic 2-

groups, Pacific J. Math. 128 (1987), 1-24.

[ 6 ] W. BROWDER, Surgery on simply-connected manifolds, Moscow (1984) (Russian edition).

[ 7 ] W. BROWDER AND G. R. LIVESAY, Fixed point free involutions on homotopy spheres, Bull. Amer. Math.

Soc. 73 (1967), 242-245.

[ 8 ] S. E. CAPPELL AND J. L. SHANESON, Some new 4-manifolds, Ann. of Math. 104 (1976), 61-72.

[ 9 ] J. CERF, Sur les diffeomorphismes de la sphere de dimension trois, Lecture Notes in Math. 53, Springer-

Verlag, Berlin-New York, 1968.

[10] R. FINTUSHEL AND R. J. STERN, An exotic free involution on S4, Ann. of Math. 113 (1981), 357-365.

[11] C. H. GIFFEN, Smooth homotopy projective spaces, Bull. Amer. Math. Soc. 75 (1969), 509-513.

[12] C. H. GIFFEN, Weakly complex involutions and cobordism of projective spaces, Ann. of Math. 90 (1969),

418-432.

[13] P. B. GILKEY, The eta-invariant for even dimensional Pin-manifolds, Adv. Math. 58 (1985), 243-284.

[14] R. GOMPF, Killing the Akbulut-Kirby sphere, Topology 30 (1991), 97-115.

[15] I. HAMBLETON, M. KRECK AND P. TEICHNER, Nonorientable 4-manifolds with fundamental group of order

2, Trans. Amer. Math. Soc. 344 (1994), 649-665.



198 W.J. OLEDZKI

[16] D. HUSEMOLLER, Fibre bundles, McGraw-Hill Book Co., New York, 1966.

[17] M. A. KERVAIRE AND J. W. MILNOR, Groups of homotopy spheres I, Ann. of Math. 77 (1963), 504-537.

[18] R. KlRBY, Problems in low-dimensional manifold theory, Proc. Sympos. Pure. Math. 32 (1978), 273-312.

[19] R. KlRBY, 4-Manifold problems, Contemp. Math. 35, 513-528, Amer. Math. Soc, Providence, RI, 1984.

[20] S. LOPEZ DE MEDRANO, Involutions on manifolds, Ergebnisse der Mathematik 59, Springer, 1971.

[21] R. MANDELBAUM, Four dimensional topology, Moscow, 1981 (russian edition).

[22] W. D. NEUMANN AND F. RAYMOND, Seifert manifolds, plumbing, μ-invariant and orientation-reversing

maps, Algebraic and geometric topology, 163-196, Lecture Notes in Math. 664, Springer-Verlag, Berlin,

1978.

[23] W. J. OLEDZKI, On the eta-invariant of Pin+-operator on some exotic 4-dimensional projective space, Com-

positio. Math. 78 (1991), 1-27.

[24] W. J. OLEDZKI, Some exotic projective spaces detected by spectral invariants, to appear.

[25] W. J. OLEDZKI, Exotic involutions of spheres detected by spectral invariants, Preprint Inst. of Math, of Polish

Acad. Sci. 534 (1995), 1-308.

[26] W. J. OLEDZKI, Some topological formulas for the eta-invariant of Dirac-type operators, in preparation.

[27] P. ORLIK AND C. P. ROURKE, Free involutions on homotopy (4k + 3)-spheres, Bull. Amer. Math. Soc. 74

(1968),949-953.

[28] S. STOLZ, Exotic structures on 4-manifolds detected by spectral invariants, Invent. Math. 94 (1988), 147-162.
[29] R. E. STONG, Notes on cobordism theory, Princeton University Press, Princeton, New Jersey, 1968.
[30] C. T. C. WALL, Surgery on Compact Manifolds, Academic Press, London-New York, 1970.

INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES

SNIADECKICH 8

00-950 WARSAW

POLAND




