
Tohoku Math. J.
52 (2000), 555-577

CONFIGURATIONS OF CONICS WITH MANY TACNODES
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Abstract. We investigate configurations of conies in the projective plane which have
the property that the number of tacnodes is equal or close to the upper bound obtained from
the Miyaoka-Yau inequality. We show that for 5 conies there are exactly 3 configurations,
including 2 new ones, achieving the maximum 17 tacnodes, and for 6 conies the maximum
number of tacnodes is 22, which together with previous results implies that the Miyaoka-Yau
bound can never be achieved.

1. Introduction. Let us consider sets of k smooth conies in the complex projective

plane such that their union has only nodes and tacnodes (A\ and A3 singularities), but no

other types of singularities, in particular, no three conies pass through one point. Let t(k) be

the maximal number of tacnodes for a given k. Obviously, t(k) < k(k — 1). If & > 3, we can

consider the double cover of the plane branched along the union of the conies and apply the

Miyaoka-Yau inequality [4, 1.1] to it, or take the boundary divisor B consisting of the union

of conies with coefficient 1/2 and apply [2, Theorem 4.3] to the pair (P2, B), and we obtain

the inequality [1]

4 9 4
(1) t(k)<-k2 + -k.

If equality held, the double cover X of P2 branched along the union of the conies would be

a surface for which equality holds in the Miyaoka-Yau inequality for singular surfaces, and

if Y were a smooth surface with a covering Y -> X etale outside the singularities of X, we

would have c\(Y)2 = 3c2(Ύ), this is why this problem is interesting in algebraic geometry.

We shall, however, prove in Theorem 18, that equality cannot be achieved for any k.

Smooth conies in P2 are parametrized by an open subset of (P 5)*, each tacnode imposes

one condition and dim Aut(P2) = 8, so by a naϊve dimension count, one would expect a

5k — t — 8 dimensional family of configurations modulo projective equivalence for k conies

with t tacnodes. The examples in [1] with k = 14, t — 98 and k = 12, t = 72 show that

there exist configurations with negative expected dimension, and we shall see in Section 8 that

certain combinatorial types of configurations with positive expected dimension do not exist.

It was proved in [3, Theorem 1, 6] that the inequality (1) is not sharp in the sense that

t(k) is less than the integer part of the right-hand side for k = 8, 9, 12 and for k > 15, and in

fact, t(k) < ck2~1/1633 for a suitable constant c. It was also proved in [3, Theorem 6] that in

any configuration of six conies with 24 tacnodes there must be exactly 8 tacnodes and 4 nodes

on each conic, which restricts the combinatorial possibilities we have to consider.
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For k = 5 the upper bound is 17, the expected dimension for 5 conies and 17 tacnodes is

0, and we shall show that up to projective equivalence there are exactly three configurations

realising it, including the one constructed by Naruki [5].

We shall prove that the Miyaoka-Yau bound of 24 for k = 6 cannot be achieved either,

and in fact, t(6) = 22, where the expected dimension is 0. As a corollary, we obtain that

til) < 30.

We shall proceed by investigating systematically configurations of 2, 3 and 4 conies with

many tacnodes and partly for their use later and partly for their own interest. During this we

shall also recover some known results.

We shall work over C and from now on the word conic, unless specified otherwise, will

mean a smooth conic.

DEFINITION. A configuration of conies will mean a set of smooth conies in the pro-

jective plane whose union has no singularities other than nodes and tacnodes. (PQRS) will

denote the cross ratio of the points P, Q, R, S if they lie on a line, we shall use (PQRS)c to

denote their cross ratio on the conic C, if they do not lie on a line. The conies in a configura-

tion will be denoted by C\, C2, . , Cn. If C/ and Cj arc tangent to each other at two points,

e'ιj will denote the line connecting the two contact points, if C/ and Cj are tangent to each

other at one point, β[j will denote their common tangent line at the contact point and e'.χ. the

line connecting the two points of transversal intersection.

To each configuration of conies we can associate a graph with possible double edges but

no loops as in [5]. The vertices correspond to the conies. Under the conditions on the singu-

larities, two conies may meet transversally at four points, then the two vertices are connected

by two edges, the two conies may meet transversally at two points and be tangent to each

other at one point, then the two vertices are connected by one edge, or they may be tangent at

two points, then the two vertices are not connected at all.

The first problem is to determine when two conies are tangent to each other at one point

or two points. By taking a point (XQ : Yo : Zo) on one of the curves and considering the

second point of intersection of the line Y — YQ = t(ZoX — XQZ) with it, we can parametrize

it in the form X = p\(t), Y = P2(t), Z = p^it), where p/(ί) e C[t] is of degree at most 2.

By substituting p\ (ί), piit) and 773(0 for X, Y and Z into the equation of the other conic, we

obtain a polynomial q(t) of degree at most 4. The two conies are tangent to each other if and

only if q{t) has a double root or it has degree 2 corresponding to a double root at 00, which

happens if and only if the discriminant of q(t), considered as a quartic, is 0. Iffy is the double

root, the point of contact is Q?i(fy) : P2(to) : P3(fy))

The two conies are tangent to each other at two points if and only if q(t) is the square of

another polynomial, but is not a fourth power.

DEFINITION. Let git) = Σ*=o g^ e C[t]. We define the following functions of g(t):

S\ ig) = 9A9\ - 9093»

$2(9) = 9l + 8#i9A ~ ^929394 ,
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$3(9) = 93\+ %939θ ~ ^929X90 ,

= 92 -

$5(9) = 92\ -

LEMMA 1. g(t) = g^tA + g^t3 + git2 + g\t + go (#; e C) is the square of a polynomial

if and only if S\ (g) = S2(g) = Si(g) = 0 and one of the following conditions holds:

(a) #4#3#i#o^O,

(b) g\ = 93=0

(c) g4 = 93 =

(d) gι=go =

PROOF. Let us first assume that g^gzgxgo Φ 0. If g(t) has a square root, it must be

r(t) = ±sfgi{t2 + git/(2g4) -{-91/93), because these are the only coefficients which make the

t4, t3 or t terms in g(t) — (r(t))2 vanish. By equating the constant terms, we obtain S\ (g) = 0,

while from the coefficient of t2 we get S2O7) = 0. Conversely, if S\(g) = S2(g) = 0, then

r (t) is the square root of g(t).

By writing the square root of g{t) in the form ±^/gό(l + g\t/(2go) + g?>t2/g\), we

similarly obtain S^(g) = 0. It is also true that if #4(73gigo φ 0 and S\ (g) = 0, then 52(^) = 0

and 53 (g) = 0 are equivalent.

Let us now assume that g(t) is a square, but some of the coefficients ^4, #3, g\ and

go is 0. It is easy to check that the only possibilities are those listed in (b), (c) and (d).

S\(t) = £2(0 = 53(0 = 0 is automatically satisfied in these cases, and the additional

conditions are obviously necessary and sufficient for g(t) to be a square. D

There is another method for determining when two conies are tangent to each other.

We can write the equations of the conies in the form xτ Ax = 0 and xτ Bx = 0, where

x = (X, Y, Z) and A, B are 3 x 3 symmetric matrices, then the two conies are tangent to

each other if and only if det(Λ — tB), a cubic polynomial in ί, has a multiple root, which can

be determined by calculating its discriminant. This method is simpler when we only want to

know whether two conies are tangent to each other, but less suitable for determining when

two conies are tangent to each other at two points.

LEMMA 2. (Cf. [5, Section 5]). Let C\, C2 be conies given by the equations

Q\(X, Y, Z) = 0 and Q2(X, Y, Z) = 0, respectively. IfC?> is a conic which is tangent to both

C\ and C2 at two points, its equation can be written in the form

(2) Q3(x, Y, z) = β,(x, y, z) + L2(x, y, z) = λQ2(x, y, z) + L\{X, Y, Z) ,

where λ e C and L\ — 0, L2 = 0 define lines connecting the two points where C3 is tangent

to C\ or C2, respectively. Furthermore, Q\—λQ,2 = L\ — L2

χ=§ defines a degenerate conic,

and L \ and L2 are linear combinations of the defining equations of the components of this

conic {if it is a double line, L\ = 0 and L2 = 0 define this line with the reduced structure), λ

is uniquely determined by C3, while L \ and L2 are determined up to sign.
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PROOF. We can multiply Q3, L\ and L2 by suitable scalars so that (2) holds. Then

the rank of the conic Q\ — λQi = h\ — L2 = 0 is at most two, and writing it in the form

(L2 — L\)(L\ + Li) = 0 makes it obvious that L\ and L2 are linear combinations of the

equations of the components of this degenerate conic.

L\ and L2 are determined by C3 up to multiplication by scalars. If they define the same

line, then Q\ — λg2 is a multiple of L 2 and λ is obviously unique. If they define different

lines, then let P be the point of intersection of these lines. The degenerate conic defined by

Q\ — λQ2 = 0 is the union of two lines meeting at P. These lines must either pass through

two points of intersection of C\ and C2 or be tangent to C\ and C2 at a point where the two

conies are tangent to each other. Given P, this determines the two lines, hence λ uniquely.

The uniqueness of λ implies that L\ and L2 are determined up to sign by C3. D

Let P, Q, R and S be the intersection points of C\ and C2 with appropriate multiplicity.

By the above lemma, C3 determines a singular element in the pencil spanned by C\ and C2.

There exists a corresponding partition of P, Q, R, S into two pairs such that this singular

conic is the union of the lines passing through the two points in each pair. If the two points

in a pair coincide, we take the line to be the common tangent line to C\ and C2 at that point.

Following Naruki, we shall call this partition a reference, and say that C3 belongs to a given

reference.

We shall apply the lemmas in this section to determine when two conies are tangent to

each other at one or two points, or to construct conies tangent to given ones, using Maple

to carry out the more complicated calculations. The other two main tools will be graphs to

determine the combinatorial possibilities and projective geometry.

2. Two conies with two tacnodes. Let the two conies be C\ and C2. We can choose

homogeneous coordinates on P2 such that C\ has the equation X2 + Y2 = Z 2 , and C\, C2 are

tangent to each other at (0 : ±1 : 1). C2 then has an equation of the form (X2/r2) + Y2 = Z2

for some r e C, r φ 0, r φ ± 1 . Let G be the subgroup of Aut(P2) = PGL3(C) fixing C\

and the points (0 : ±1 : 1). G consists of matrices of the form

with a2 - β2 = 1,

which also fix C2. To save space, instead of this matrix, we shall just write the pair (α, β).

Then G can be described as the set of pairs (a, β) e C2 with a2 — β2 = 1, and the mul-

tiplication is given by (a, β)(γ, 8) = (aγ + βδ, aδ + βγ). G = C* via the isomorphism

w \-> ((w2 + l)/(2w), (w2 - l)/(2w)). We have the following statement.

PROPOSITION 3. Any two smooth conies C\ and C2 which are tangent to each other

at two points are projectively equivalent to the pair defined by the equations X2 + Y2 = Z2

and (X2/r2) + Y2 = Z2 for some r e C, r φ 0, r Φ ± 1 . r2 is an invariant of the

ordered pair (Ci, C2), which will be denoted by [C1/C2] following Naruki [5]. Clearly,
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[C\/C2][C2/C\] = 1. Given another such pair, C3 and C4, C\ U C2 and C3 U C4 are

projectively equivalent if and only if [C\ /C2] = [C3/C4] or [Ci/C2][C3/C4] = 1.

[C1/C2] can also be defined without the use of coordinates. The (possibly singular)

conies passing through two given points and having given tangent lines at those points form

a pencil, so they correspond to points on the projective line. If Co and Coo are the union of

the two tangent lines and twice the line connecting the two given points, respectively, then

3. Three conies with six tacnodes. Let us assume that we have a configuration of

three conies with six tacnodes. By the previous section we may assume that two of the conies,

C\ and C2 are given by the equations Q\(X, Y, Z) = X2 + Y2 - Z 2 = 0 and Q2(X, Y, Z) =

(X2/r2) + Y2 — Z2 = 0. Let Li and L2 be as in Lemma 2. The singular conies with equations

of the form Qx - λQ2 are (1 - \/r2)X2 = 0 and (1 - r2)(Y2 - Z 2) = 0. In the first case C3

would be tangent to C\ and C2 at their contract points, which is not allowed. In the second

case Li and L2 are of the form aY + βZ. By acting on C3 by a suitable element of G, we

may assume that L2 = aY, then we get Li = ± α Z and a2 — (1 — r 2 ) , so the equation of C3

is X2 + Y2 = r2Z2. C3 is tangent to C\ at (1 : ±i : 0) and to C2 at (±r : 0 : 1). The other

possible choices for C3 are its images under the group G. All such conies are invariant under

(X : Y : Z) -> (-X : Y : Z), in other words (-1,0) e G acts trivially on them. Let H be

the quotient of the G by the 2-element subgroup generated by (—1, 0), this means identifying

(α, β) and (—a, —β), H now acts freely and transitively on the conies that are tangent to both

C\ and C2 at two points. We have following:

PROPOSITION 4. If any two of the conies C\, C2 and C3 are tangent to each other at

two points and no three of them pass through one point, they are projectively equivalent to the

three conies given by X2 + Y2 = Z 2 , (X 2 /r 2 ) + Y2 = Z2 and X2 + Y2 = r2Z2 for some

r eC,r φθ,r φ ± 1 . We have [C\/C2] = [C2/C3] = [C3/C1] = r 2, so we can consider

r2 as the invariant of the three conies with a given cyclic ordering ([5, Proposition 6.1]).

Given two such sets of three conies with invariants r2 and r'2, their unions are projectively

equivalent if and only ifr2 = rfl or r2 = \/rf2. If we fix C\ andC2, the possibly choices for

C3 are images of each other under the action of the group H.

Ci, C2 and C3 above have some obvious parametrizations, for example, (2t : t2 — 1 :

t2 + 1), (2rt : t2 - 1 : t2 + 1) and {Irt : r(t2 - 1) : t2 + 1), respectively, which we shall use

without writing them down again explicitly.

4. Three conies with five tacnodes. Let us number the conies so that C2 and C3 are

tangent to C\ at two points, and to each other at one point. By choosing suitable homogeneous

coordinates we may assume that C\ is given by the equation X2 + Y2 = Z 2 , and that C2 and

C3 are tangent to each other at (0 : 0 : 1) and their common tangent there is the line 7 = 0.

Let the equation of C2 be aX2 + bY2 + cZ 2 + dYZ + eXZ + fXY - 0. The conditions

that (0 : 0 : 1) e C2 and the tangent line to C2 at (0 : 0 : 1) is Y = 0 imply c = e = 0.
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By substituting the standard parametrization of C\ into the equation of C2, we obtain the

quartic

q(t) = (d + b)t4 + 2 ft3 + (4a - 2b)t2 - 2ft + (b - d).

Si (4) = 0 gives / 2 d = 0. If J = 0, then C is not smooth, so / = 0.

C2 must be tangent to C\ at the points (±Vl - I2 : / : 1) for some / e C \ {0, ±1}. By

comparing the equations of the tangent lines to C\ and C2 at these points, we obtain that the

equation of C2 must be 12X2 + (I2 + l)Y2 - 21YZ = 0. This conic can be parametrized as

(2lt \2lt2 : ( l + / 2 ) ί 2 + / 2 ) .

PROPOSITION 5. (a) If the conies C\, C2 and C3 /orra α configuration such that C2

and C3 are both tangent to C\ at two points and they are tangent to each other at one point,

then the three conies are projectively equivalent to the three conies given by the equation

X2 + Y2 = Z 2 , /2X2 + (I2 + 1)Y2 - 21YZ = 0 and m2X2 + (m2 + 1)K2 - 2mFZ = 0,

l,m eC\{0,±l}J φmjmφl.

(b) //m is an invariant of the pair C2, C3, which will be denoted by [C2/C3], and we

have [C1/C2HC3/C1] = [C2/C3]2 ([5, Proposition 5.2]).

PROOF, (a) The only thing that needs proving is that Im φ 1. C2 meets the line

X = 0 at the points ( 0 : 0 : 1) and (0 : 2/ : I2 + 1). If (0 : 2/ : /2 + 1) = (0 : 2m : m2 + 1),

which is equivalent to / = m or /m = 1, then C2 and C3 are tangent to each other at two

points, which we excluded, therefore lmφ\.

(b) Let Co be the union of the common tangent line to C2 and C3 at their contact point

and of the line connecting the two points of transversal intersection. Let CΌo be the union

of the two lines connecting the transversal intersection points with the contact point. Then

l/m is the cross ratio (Co, Coo, C2, C3), so it is indeed an invariant. We have [C1/C2] = I2,

[C3/C1] = l/m 2, so the identity holds. D

Given just C2 and C3, we can reconstruct a lot of information about C\. Recall that the

fixed points of any involution of P2 consist of a line / and a point P φ /, and / and P determine

the involution. Given any point A in the plane, A φ P, A φ /, let Q be the intersection of the

line AP with /. The image of A is the unique point A! on the line AP such that the cross ratio

(PQAA') = -1.

LEMMA 6. Let C2 and C3 be two conies which meet transversally at the points P, Q

and are tangent to each other at the point N. Let L be the point of intersection of eγh and e^

Let M be the point on e^ such that (PQLM) = — 1. Then any conic C\ which is tangent to

both C2 and C3 at two points other than N is invariant under the involution fixing L and the

line MN, and e\2, 1̂3 also pass through L.

PROOF. In the special coordinates used above Λf = (0 : 0 : 1), the tangent line at N is

the line Y = 0 and L = (1 : 0 : 0). M is a point on the line X = 0 different from N, so MN is

the line X = 0, and C\ is indeed invariant under the involution (X : Y : Z) -» (—X : Y : Z).

This statement is, however, purely projective and independent of the choice of coordinates. It

follows from Lemma 2 that ^12,̂ 13 pass through L. D
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5. Four conies with 11 or 12 tacnodes.

PROPOSITION 7. (a) ([5, Proposition 6.1]). Any configuration of four conies with 12

tacnodes is projectively equivalent to the four conies given by the four choices of signs in

X2 ± Y2 ± Z2 = 0.

(b) Any configuration of four conies with 11 tacnodes is projectively equivalent to the

four conies given by the equations X2 + Y2 + Z2, (X2/r2) + Y2 = Z2, X2 + Y2 = r2Z2 and

(1 - r2)X2 + (3r2 + \)Y2 + r2(r2 + 3)Z 2 - 4r(r2 + \)YZ = 0

for some r e C \ {0, ± 1 , ±ι}. Alternatively, we can take the last two conies to be X2 +

(r 2 + \)Y2 ±2rYZ — 0 to make the whole setup more symmetric.

PROOF. By Proposition 4 we may assume in both cases that the first three conies are

in Ci : X2 + Y2 = Z2, C2 : (X2/r2) + Y2 = Z2 and C3 : X2 + Y2 = r2Z2 for some

r e C \ {0, ±1}. C4 must be the image of C3 under some (α, β) e H, so its equation is

X2 + {OLY - βZ)2 + r2(-βY + α Z ) 2 = 0. It is tangent to C3 if and only if (α, 0) =

((r2 + l)/(r 2 - 1), ±2r/(r2 - 1)). We can take the + sign for β, then the equation of C4 is

as claimed, and the contact point of C4 with C3 is (0 : ±r : 1).

If r2 = — 1, then we get the equations given in (a) and the configuration has 12 tacnodes.

Conversely, if a configuration of four conies has 12 tacnodes, then by repeated application

of Proposition 4, [C1/C2] = [C3/C1] = [C1/C4] = [C2/C1] = l/[Ci/C 2], so r 2 =

[Ci /C2] = — 1. If r 2 ^ — 1, then we get a configuration with 11 tacnodes.

The element (1/Vl — r 2, —r/Vl — r 2 ) G //, which is the square root of (α, β ) " 1 ,

transforms C3, C 4 to X2 + (r 2 + \)Y2 ± 2rFZ = 0. D

REMARK. It is easy to see that we cannot have four conies with 11 or 12 tacnodes

such that they are all defined over R, and all their contact points are real, but 10 tacnodes are

possible.

C3 and C4 are now in a more special position, [C3/C4] = — 1, and we can derive more

information about the conies tangent to both of them than in Lemma 6.

LEMMA 8. Let C3 and C4 be two conies which meet transversally at the points P, Q

and are tangent to each other at the point N. Assume that there exist two conies, C\ and C2,

such that the four conies together form a configuration with 11 tacnodes. Let L and M be

defined as in Lemma 6. Then the points of contact ofC\ and C2 He on the line MN.

Let C5 be any conic tangent to both C3 and C4 at two points other than N, including the

possibility C5 = C\ or C5 = C2. Then C5 is invariant under the involution fixing the line LM

and the point N and under the involution fixing LN and M, while C3 and C\ are exchanged by

these two involutions. If C$ φ C\, C5 φ C2, and the five conies form a configuration, then

C5 is not tangent to either C\ or Cι-

PROOF. We can assume by Proposition 7(b) that C3 and C4 have the equations X2 +
(r2 + 1)7 2 ± 2rYZ = 0. By Lemma 2 we obtain that C5 has an equation of the form
χ2 + bγ2 + cZ2 = o W e h a v e L = ( 1 . 0 : 0), M = (0 : 1 : 0) and N = (0 : 0 : 1), so the
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line MN is the line X = 0, and involutions mentioned are (X : Y : Z) h> (X : y : — Z) and

(X : Y : Z) h> (X : — Y : Z), which leave C5 invariant and exchange C3 and C4.

If C5 is tangent to Ci or C2 at two points, then these points must lie on the line MN

and then the conies do not form a configuration. (In fact, there are only two conies, C\ and

C2, which are tangent to both C3 and C4 at two points and pass through the contact points

of C\ and C2.) If C5 is tangent to Ci or C2 at one point, then the contact point must be

invariant under both of the involutions described above. The only such points are L, M and

N, but there exist no smooth conies invariant under the involutions which passes through any

of these points.

The statements of the lemma are purely projective, therefore they hold independently of

the choice of coordinates. D

6. Four conies with 10 tacnodes. There are three possible graphs, β==i, β β or β J.

PROPOSITION 9. Any configuration of four conies with graph β==β is projectively

equivalent to the conies X2 + Y2 = Z 2 , (X2/r2) + Y2 = Z 2 and

X2 + (a 2 - r2β2)Y2 + (β2 - r2a2)Z2 ± 2aβ(r2 - \)YZ = 0

for some r e C \ {0, ±1}, a, β e C, a2 - β2 •= 1.

PROOF. We may assume that C\ and C2 are the conies X2 + y 2 = Z 2 and (X2/r2) +

Y2 = Z2, and that the double edge is between C3 and C4. By the results of the previous

section, C3 and C4 are images of X2 -\-Y2 — r2Z2 under suitable elements h\, hi e H. By

acting on them by a square root of h^h^1, we can transport them into such a position that

they are the images of X2 + Y2 — r2Z2 under h and h~x for some h e H.lfh = (a, β), the

equations of C3 and C4 are as stated. D

Given just C3 and C4 we can derive the following information about C\ and C2.

LEMMA 10. Let C3 αra/ C4 £e ίwo conies which meet transversally at four points P,

Q, R and S. Assume that there exist two other conies C\ and C2 such that the four conies

together form a configuration with graph β = . Then the following statements hold.

(a) C\ and C2 belong to the same reference, say, {P, Q}, {R, S}.

(b) (PQRS)c3(PQRS)c4 = l.

(c) If J is the point of intersection of the lines PS and QR, K that of PR and QS, and L

the intersection ofPQ and RS, then the two contact points ofC\ and C2 lie on the line JK.

Let C5 be any conic tangent to both C3 and C4 belonging to the same reference as C\

and C2, including the possibility C5 = C\ or C5 = C2.

(d) C3, C4 and C5 are invariant under the involution ofP2 fixing the line JK and the

point L.

(e) Let M be the point of intersection ofPQ and JK, N that ofRS and JK. Then C5 is

invariant under the involution fixing the linePQ and the point N and the involution fixing the

line RS and M, while Cy and C4 are exchanged by these two involutions.
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(f) If' Cβ φ C5 is a conic tangent to both C3 and C4. at two points belonging to the

same reference as C5, then C5, Cβ are either not tangent to each other, or they are tangent at

two points lying on the line JK.

PROOF. Parts (a), (b) and (c) are obvious if we choose homogeneous coordinates such

that the four conies are given by the equations in the previous proposition. We can choose

P, Q to be the two points on the line Z = 0, and R, S to be the two points on Y = 0.

J K is the line X = 0. From Lemma 2 we obtain that the equation of C5 is of the form

X2 + bY2 + cZ2 = 0.
The coordinates of M are (0 : 1 : 0), and those of TV are ( 0 : 0 : 1 ) . The involution in

(d) is (X : Y : Z) h-> (—X : Y : Z), while those in (e) are (X : Y : Z) H> (X : Y : - Z ) and

(X : Y : Z) (-> (X : -Y : Z), so (d) and (e) are clear, too.

If C5 and Cβ were tangent to each other at one point, that point would have to be invariant

under the three involutions in (d) and (e). The only such points are L, M and N, but there

is no smooth conic passing through any of these points which is invariant under the three

involutions.

If C5 and Cβ are tangent at two points, then e$β is the line JK, since it is also the line

e\2 and it can be constructed from C3, C4 and the given reference.

All the statements of the lemma are purely projective, so they hold independently of the

choice of coordinates. D

LEMMA 11. Let C3 and C4 be two conies which meet transversally at four points. If

there exists a labelling of the four intersection points such that (PQRS)c3 (PQRS)c4 = 1

and (PQRS)c3 Φ (1 ± /\/3)/2, then the partition of the four points into the sets [P, Q] and

{R, S} with this property is unambiguous. If(PQRS)c3 - (PQRS)c4 = 1 and (PQRS)c3 =

(1 ± i\/3)/2, then these conditions hold for any labelling of the four points and there is no

distinguished partition.

PROOF. Let (PQRS)c3 = Y- If we exchange the two pairs {P, Q} and {R, S] or

change the order of the elements within a pair, the cross ratio on C3 will be γ or l/γ. For any

other permutation, the cross ratio on C3 will be f(γ) and that on C4 will be /(1/y), where

f(t) is one of the functions 1 - /, 1/(1 - /), t/(t - 1) and 1 - \/t. f(γ)f(l/y) = 1 holds

for any of these functions if and only if γ = (1 ± i >/3)/2. •

Let us now consider the graph ^ . We may assume that C\, C2 and C3 are as in Propo-

sition 5. C4 is tangent to C2 and C3 at two points, so by Lemma 6, its equation cannot contain

XY or XZ terms. C4 must be tangent to C\ at one of the points (0 : ±1 : 1) by changing the

sign of Y (and of /, m), we may assume that it is (0 : 1 : 1). The equation of C4 must be of

the form X2 + bY2 + cZ2 - (b + c)YZ = 0.
By substituting a parametrization of C2 into the equation of C4 and applying Lemma 1,

we obtain ((b - c)2 + 4c)/2 - 4(b + c)l + 4(c + 1) = 0. By the same argument with C5

instead of C4, we obtain the same equation with m instead of /, so u = I and u = m are the
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two roots of

(3) {{b - c)2 + 4c)u2 - A(b + c)u + 4(c + 1) = 0 .

u = 0 is not a root, the leading coefficient cannot vanish, the roots must be distinct and their

product cannot be 1. These give the conditions c φ — 1, (b — c)2 + Ac φ 0 and b — c φ ±2.

By taking suitable linear combinations of the relations between the roots and coefficients

of the above quadric, we obtain

(c + l)((2/m - / - m)2c + (/ - m)2) = 0

and

(lm-l- m)c + Imb - I - m = 0.

Since c φ —1, the only solution is

(/ - m)2

(2/m - / - m) 2

and
(/ + m)(4/m - 3/ - 3m + 4) - 4/m

~ (2/m -l-m)2 '

In addition to the conditions on /, m imposed in Proposition 5, we must also require that

/ + m φ 2/m to avoid division by 0, and / + m φ 2/m, / φ —m, to ensure that C4 is not

singular and C\ φ C4. Hence we have the following:

PROPOSITION 12. Any configuration of four conies with graph " is projectively

equivalent to the conies C\ : X2 + Y2 = Z 2 , C2 : /2X2 + (I2 + 1)F2 - 21YZ = 0,

C 3 : m 2X 2 + (m2 + \)Y2 - 2mYZ = 0 and

C 4 : (2/m - / - m) 2 Z 2 +((/ + m)(4/m - 3/ - 3m + 4) - 4/m)r2

- (/ - m)2Z2 - 4(1 - l)(m - 1)(/ + m)YZ = 0,

where /, m e C \ {0, ±1}, / 7̂  ±m, Im φ\J+ m φlj+m φ 2/m.

Let us now consider the graph |_J. We may assume that C\, C2 and C3 are as in Propo-

sition 5, and C4 tangent to C\ at two points and to C2 and C3 at one point. If [C1/C4] = 52,

then the equation of C4 can be written as

where αX + ^ y + yZ = Ois the equation of ^14. or, yβ and y are only determined up to

scalars. From the condition that C4 is tangent to C2 and C3, we get two equations for a,

β and γ. After discarding the solutions corresponding to the cases when C4 is tangent to

C2 or C3 at two points or when it passes through the contact points of some of the other

conies, the only solutions are (a : β : γ) = ((1 - rs) : ±2jrs : ±(r + s)) and (α :

β Y) = ((1 H- rs) : ±2iy/rs : ±(r — 5)). These can all be obtained from one another

by changing the sign of r, s or one of the coordinates. They can all be written in the form

(a : β : γ) = ((1 - p 2 σ 2 ) : ±2pσ : ± ( p 2 + σ 2)), where p and σ are suitable fourth roots
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of r2 and s2, respectively. The pairs (p, σ) and (—p, —σ) determine the same conies. The

contact point of €2 and C4 is (p 2 (σ 2 — p 2) : —2pσ : p 2 + σ 2 ), while that of C3 and C4 is

(p2(p2σ2 — 1) : —2p3σ : p 2 σ 2 + 1). If r = ±s or r = ±l/s, then one of these contact points

is the contact point of C\ with C2 or C3, which we have to exclude.

The lines 2̂4 and £34 intersect at (p 2 : — p/σ : 1). Thus we have the following proposi-

tion.

PROPOSITION 13. Any configuration of A conies with graph # J is projectively equiv-

alent to the conies given by the equations C\ : X2 + Y2 = Z 2 , C2 : X2/p4 + Y2 = Z 2 ,

C3 : X2 + Y2 = p4Z2 and

2 2 2 ((1 -ρ 2 σ 2 )X + 2pσF + ( p 2 + σ 2 ) Z ) 2

C 4 : X + r - Z + a 4 ( l - , 4 } = 0

for some p, σ e C \ {0, ±1, ±1}, p 4 φ σ4, p 4 σ 4 φ 1. 77ze intersection point 0/̂ 24 tfwύ? ̂ 34
//es on ί/ie common tangent line to C2 and C3 at one of their contact points.

7. Five conies with 17 tacnodes. For five conies the Miyaoka-Yau bound is 17, and

we shall show exactly how it can be achieved.

There are six possible graphs on 5 vertices with 3 edges, shown on Figure 1. The la-

belling of the vertices is chosen in each case to make the proof more convenient.

Let us consider the first graph. By Proposition 7(a) we may assume that C\, C2, C3, C4

are the conies X2 ±Y2 ± Z2 = 0. But then the only conic which is tangent to C\ and C2

at two points and also tangent to C3 is C4, so this graph is impossible. The second and third

graphs are impossible by Lemma 8.

Let us now consider the fourth graph. We may assume that C\, C2 and C3 are as in Propo-

sition 4, and then C 4 = /i(C3) and C5 = /z~1(C3), where h = ((r2 + l)/(r 2 - 1), 2r/(r2 -

1)) G H. In general, two conies which are both tangent to C\ and C2 at two points are tangent

to each other if and only if one of them is the image of the other under h, so C4 and C5 are

C2

c2 c 3 c 4 c 3

c 4

C2 C\ C2

FIGURE 1. The six graphs on 5 vertices with 3 edges.
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tangent to each other if and only if /ι3 = 1, which happens if and only if r 2 = —1/3 or

r2 = —3. These are reciprocals of each other and give projectively equivalent configurations.

If we take r 2 = -1/3, we obtain the conies X2 + Y2 - Z2 = 0, -3X2 + Y2 - Z2 = 0,

3X2 + 3F 2 + Z 2 = 0 and 3X2 - 2Z2 ± iy/3YZ = 0. This is indeed a configuration, the one

obtained in [5, Section 7], and it is the only one with this graph up to projective equivalence.

Let us now consider the fifth graph. We may assume that C\, C2, C3 and C4 have

equations as stated in the first alternative in Proposition 7(b). By applying the argument of

the proof of Proposition 7 with the roles of C\ and C3 reversed, C5 must be the image of C\

under the action of an element of the subgroup of PGL^(C) consisting of the matrices of the

form

fa 0 r2β\
0 1 0 with a2 - r2β2 = 1,

Kβ 0 a )

which fix C2, C3 and the points (±r : 0 : 1). C\ and C5 must be tangent to each other at one

of the points (±1 : 0 : 1), we may assume it is (1 : 0 : 1), then C5 is the image of C\ under a

group element which maps (—1 : 0 : l ) t o ( l : 0 : 1). Hence the equation of C5 is

(4) (r2 + 3)X2 + (r2 - l)Y2 + (3r2 + 1)Z2 - 4(r2 + \)XZ = 0.

The discriminant expressing condition that C4 and C5 are tangent to each other is

2 1 8 (r 2 + l ) 6 ( r 2 - l ) l o r 2 ( r 4 - 6 r 2 + l ) 2 .

The only feasible solutions are the roots of r 4 — 6r2 + 1, r = ±1 ± y/ϊr but then C2, C4 and

C5 are tangent to each other at the same point. For example, if r = y/ϊ — 1, then this common

point is ( Λ / 2 - 1 : 1 : Λ/2).

Let us now consider the sixth graph. By Proposition 7(a), we may assume that the first

four conies are C\ : X2 + Y2 + Z 2 = 0, C2 : X2 + Y2 - Z2 = 0, C3 : X2 - Y2 + Z 2 = 0

and C 4 : -X2 + Y2 + Z 2 = 0. Let aX + βY + yZ = 0 be the equation of the line e\s, then

the equation of C5 is λ(X2 + Y2 + Z 2) + (aX + βY + γZ)2 = 0 for some suitable λ eC.

From the condition that C2 and C5 are tangent to each other we obtain the vanishing of

the discriminant

2 1 4 λ 2 (α 2 + β 2 ) 2 (4λ 2 + 4(α2 + β2 + y2)λ + (a2 + β2 - γ2)2),

so a2 + β 2 = 0 or λ = - ( α 2 + β2 + y 2)/2 ± y y ^ + β2-

If α 2 + yβ2 = 0, then C5 passes through one of the contact points of C\ and C2, (1 : ±/ :

0), so we must have the second possibility. By doing the same calculations with C3 and C4

and comparing the three expressions for λ, we obtain that a2(β2 + γ2) = β2(a2 + γ2) —

γ2(a2 + β2), so a, ^, γ can only differ from each other by a sign, and then by changing the

sign of some of the coordinates if necessary, we may assume that a = β = γ = 1. Then

λ = — 3/2 ± \[l, and the equation of C5 is

(5) (±2V2 - 1)(X2 + Y2 + Z 2) + 4(XY + YZ
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It is easy to check that the five conies form a configuration with either choice of sign, so we

obtain two configurations of five conies with 17 tacnodes.

We claim these two configurations are not projectively equivalent. Let C^~ and C^ be

the conies obtained by choosing the + and — sign in (5), respectively. Let us assume that

there exists φ e Aut(P2) transforming C\, C2, C3, C4, C^ into C\, C2, C3, C4, C ~̂. C\ must

be invariant, C2, C3, C4 may be permuted among each other, and C^ must be mapped to C ~̂.

The contact points of Ci and C^ or of Ci and C$ lie on the line X + F + Z = 0, so this line

must be invariant under φ. Similarly, the lines en, ^13, e\4 are the lines X = 0, F = 0 and

Z = 0, so they must be permuted among themselves. These conditions imply that φ simply

permutes X, 7, Z, so it leaves C^ and C$ invariant.

Thus we have the following theorem.

THEOREM 14. There exist exactly three configurations of five conies with 17 tacnodes

up to projective equivalence. One consists of the conies X2 + Y2 — Z2 = 0, — 3X2 -f Y2 — Z 2 =

0, 3X2 4- 3 7 2 + Z 2 = 0 fl«d 3X2 - 2Z 2 db iV3YZ = 0, the other two contain the four conies

with equations X2 ± Y2 ± Z2 .= 0 and one of the conies (±2Λ/2 - 1)(X2 + Y2 + Z 2) +

8. Five conies with 15 or 16 tacnodes. The aim of this section is to prove that certain

graphs cannot occur as graphs of configuration of five conies with 15 or 16 tacnodes. The

expected dimensions of families of such configuration is 2 and 1, respectively, but if one tries

to construct examples, there are always three conies which pass through the same point.

LEMMA 15. None of the graphs shown in Figure 2 can occur as the graph of a con-

figuration of five conies.

REMARK. The impossibility of the first five graphs is stated but not proved in [5, Sec-

tion 12].

C 5

C,

Ci CA C 3 C 4

C 5 C 3

C 3 C 4 Ci C 2 Ci C 2

F I G U R E 2. Graphs that cannot occur.
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PROOF. Let us consider the first and second graphs. By Lemma 6, en, £35, e\5 and e'l5
are concurrent, and so are e\4, £45, e\s and e'^. As e\$ and £j 5 are distinct, all six lines must

be concurrent, but then C\ and C5 belong to the same reference with respect to C3 and C4,

which contradicts Lemma 10.

Let us now consider the third graph. By Lemma 10, C\, C\ and C5 belong to the same

reference with respect to C3 and C4, and all three of them would have to be tangent to each

other at the same two points, this is a contradiction.

The proof given for the third graph in Figure 1 also works for the fourth graph in Figure

2.

Let us now consider the fifth graph. We may assume that C\, C2, C3 and C4 are as in

Proposition 12. By Lemma 2, C5 must have equation

X2 + Y2 - Z2 + - ((a - - J y/\ -m2X + ί α + ! J (mY - Z)j =0

for some α e C \{0, ±1}.

Let us substitute the parametrization of C2 into the equation of C5. By factorising the

discriminant of the resulting quartic and discarding the obviously non-zero factors, we obtain

that one of the following must hold:

((/ - m)a2 + 2(1 + m)a + (/ - m))((/ - m)a2 - 2(1 + m)ot + (/ - m)) = 0

or

(/ - ra) V + 2(2(lm - I ) 2 - (/ - mf)a2 + (/ - m)2 = 0.

The latter equation would imply that the point of intersection of en and e\s,

I (a2 + l)(lm - I) β / \

-m2 )

lies on C\, so we must have (/ — m)a2 ± 2(1 + m)a + (/ — m) = 0 for a suitable choice of

sign.

The point of intersection of £34 and £35 is

\ (a2 + 1)Λ/1 -m2

This point cannot lie on C3, which implies that

(lm + m2 + 1- 3m)(m2 - 3/ra -f / + m) φ 0

irrespective of which sign we choose in (/ — m)a2 ± 2(1 + m)a + (/ — m) = 0.

Let us assume that (/— m)a2 — 2(l+m)a + (l— m) = 0. Let us substitute the parametriza-

tion of C4 into the equation of C5. By factorising the discriminant of the resulting quartic in

the ring

C(l, m)[a]/((l — m)a2 — 2(1 + m)a + (/ — m))

(it is necessary to work in this ring because otherwise the expression is too big for the com-

puter), and discarding the obviously non-zero factors, we obtain that either l2m+lm2—Alm +
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/ + m = 0 or g\ \ (I, m, a) = 0 where g\ \ (I, m, a) is a polynomial, which is homogeneous of

degree 11 in /, m and linear in a.

If we solve g\ \ for a and substitute it into (/ — m)a2 — 2(1 + m)a + (I — m) = 0, we

obtain I = m, so gu φθ, therefore we must have lm(l + m) — 4/ra + / + m = 0. We reach

the same conclusion if we assume (/ — rri)a2 + 2(1 + m)a + (/ — m) = 0.

Now I + m = 4lm/(lm + 1), so if we choose β such that Im = —β2, then /, m are the

roots of the equation

4β2u

The two roots are (1 - β)β/(β + 1) and (β + l)β/(β - 1), they are interchanged if we change

the sign of β, so we may take / = (1 - β)β/(β + 1) and m = (β + l)β/(β -\). β Φ ±i

because then we would have I = m.

The two points of contact of Ci and C4 are

+ 2β - 1 : ^ - i) : ^2 _ ^ + 2) ,

and the four possibilities for α are (±2β ± z (yβ2 — l))/(β2 + 1). For each of these choices,

one of the contact points of C2 and C4 lies on C5, in fact, the three conies are tangent to each

other there. This shows that the fourth graph cannot be the graph of a configuration either.

Let us consider now the sixth graph. By repeated application of Proposition 4, [C3/C1 ] =

[C1/C2] = [C5/C1] = [C1/C4] = r 2, but this contradicts Proposition 13. D

9. Six conies.

THEOREM 16. There does not exist a configuration of six conies with 23 or 24 tac-

nodes.

PROOF. First we show that there does not exist a configuration of 6 conies with 24

tacnodes. If such a configuration existed, its graph would have six edges and each vertex

would have degree 2 by [3, Theorem 6(ii)]. This gives the four possible graphs shown below.

/ \

C\ Cζ C\ Cζ C4 C3

c3 c, c6c2 c5 c6 c2

C3 CA C3 C4 CΊ Cά, C5 C2

FIGURE 3. Regular graphs of degree 2 on 6 vertices.

The first, second and third graphs contain one of the forbidden subgraphs from Proposi-

tion 15.

Let us now consider the fourth graph. We may assume that C\, C2, C3 and C4 have the

equations described in Proposition 12. C5, which is tangent to C\ at (0 : —1 : 1), has the
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equation

(2lm + / + m)2X2-((l + m)(4/m + 3/ + 3m + 4) + 4lm)Y2

-(I- m)2Z2 - 4(1 + l)(m -f 1)(/ + m)FZ = 0,

where /, m e C \ {0, ±1}, / φ ±m, Im φ 1,1 + m φ ±2J + m φ ±21 m.

As Cβ is tangent to C4 and C5 at two points, it must be invariant under the involution

(X : F : Z) h-» (-X : F : Z) by Lemma 6. Therefore C6 is tangent to C2 at ( 0 : 2 / : (/2 + 1))

and to C3 at (0 : 2m : (ra2 + 1)), so its equation must be of the form aX2 + ((/2 + 1)F -

2lZ)((m2 + 1)F — 2mZ) = 0 for some a. By substituting the parametrization of C\ into the

equation of Cβ, and calculating the discriminant of the resulting quartic, we can determine that

C\ and Cβ are tangent to each other at two points if and only if a = (/ — m)2 or a = (Im — I) 2 .

Let us now consider the case a = (I — m)2. We can parametrize C4 by taking its second

point of intersection with the lines Y = tX + Z passing through (0 : 1 : 1). If we substitute

this parametrization into the equation of Cβ, we obtain a quartic which must be a square,

since Cβ is tangent to C4. This quartic only contains even degree terms, so by Lemma l(b)

we obtain

26lm(m - 1)2(/ - 1)2(/ - m)2(l + m - 2)2(2lm - I - m)4(lm + / + m - 3) = 0 .

The only feasible solution is Im + / + m — 3 = 0. By an analogous argument with C5 in place

of C4, we obtain lm—l — m — 3 = 0. Hence / -\-m = 0, which we have already excluded. If we

take a = (Im — I ) 2 in the equation of Cβ, the above argument yields 3lm ± (I + m) — 1 = 0,

so again / + m = 0. This shows that the fourth graph is also impossible.

We never used here that C4 and C5 are tangent to each other, so even if we change the

edge between them to a double edge, that graph still cannot be realized. If we add the edge

(C\, Cβ) to this graph, then C\ and Cβ are invariant under (X : F : Z) H» (-X : F : Z) by

Lemma 6, so their point of contact with C\ would have to lie on the line X = 0. These points

are also the contact points of C\ with C4 and C5, so this graph is impossible, too.

Now we show that none of the remaining graphs for configurations of six conies with 23

tacnodes can be realized either. Such a graph must have 6 vertices and 7 edges. All vertices

must have degree 4 or less. If there is a vertex of degree 4, the graph obtained by removing it

must be one of the two possible graphs on 5 vertices with 3 edges. If there is a vertex of degree

3, the graph obtained removing it cannot be any of the forbidden graphs listed in Lemma 15.

We shall consider six different cases.

Case 1. Cβ has degree 4, and by removing it we get the fourth graph in Figure 1. We

may assume that C/, 1 < / < 5, are given by the equations in Theorem 14. In addition to the

forbidden subgraphs, we also have to consider that there exist automorphisms of P2 inducing

any permutation of C3, C4 and C5, that if Cβ is tangent to two of C3, C4 and C5 at two points,

then it cannot be tangent to C\ and C2 by Lemma 8, and the only two conies tangent to each

of C3, C4 and C5 at two points are C\ and C2. This leaves three graphs we have to consider.
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Subcase 1.1. There are four simple edges from Cβ to C\, C2, C4 and C5. The equation

of C6 is

3X2 + 3K2 + Z 2 + (αX + β F + y Z) 2 = 0,

where aX + βY + γZ = 0 is the equation of the line connecting the two contact points of C3

and Cβ. We must have

aβγ(ot2 + β2)(a2 + 3γ2)(β2 + 3χ2) ^ 0

to ensure that C6 does not pass through any of the contact points of C3 with the other curves,

and that Cβ is tangent to C\ and C2 at a point other than one of their contact points with each

other or with C3.

Let us substitute into the parametrization of C\9 C2, C4 and C5 into the equation of Cβ

Let the respective discriminants of these quartics be Δ\, Δ2, Δ4 and ^5, each of these must

vanish. Δ\/(a2 + β 2 ) 2 , Δ2/(oί2 + 3y 2 ) 2 , Δ4 + Δ5 and i*/3(Δ4 — Δ5) are all polynomials

in β[α, β, y]. By using the g b a s i s command in Maple, we can see that a2 is in the ideal

generated by the above polynomials, in fact, it is an element of the Grobner basis, but a φ 0,

this is a contradiction.

Subcase 1.2. There are simple edges from Cβ to C\, C3, C4 and C5. The equation of

C6 is

-3X 2 + Y2 - Z 2 + (αX + yβF + γZ)2 = 0.

By the same method as above we now obtain from the vanishing of the discriminants that

3β2 + γ2 = 0. This is, however, not possible, because then Cβ would have to be tangent to C\

at one of contact points of C\ with C4 or C5. Perhaps the easiest way to see this is if we act by

a suitable one of the elements (1/2, ±iy/3/2) e H, which permute C3, C4 and C5 cyclically

while fixing C\ and C2, and then the image of Cβ has equation

-3X 2 + Y2 - Z2 + (αX + 2βY)2 = 0.

Similarly, there is no solution when there is an edge in the graph from Cβ to C2 instead

ofCi.

Case 2. Cβ has degree 4, and by removing it we get the sixth graph in Figure 1. Let

us use the notation introduced in the proof of Theorem 14. We shall assume that C5 = C ~̂.

C\, C2, C3 and C4 are defined over β, while C^ and CJ are conjugate to each other under

the action of Gdl(Q(«/2)/Q), so if there is no suitable configuration with one of them, there

does not exist any with the other either. In addition to the forbidden subgraphs, we also

have to consider that any conic tangent to two of C\, C2, C3 and C4 at two points, and

tangent to another one of them, must be one of the four conies, and that there exist projective

transformations of the plane fixing C\ and C5, and permuting C2, C3 and C4 arbitrarily. This

leaves us with five graphs to consider. First we shall consider the two cases where there is an

edge between C5 and Cβ, then the three where there is not.

Subcase 2.1. There are four simple edges from Cβ are to C2, C3, C4 and C5. The

conies which are tangent to Cj at two points and to C2, C3 and C4 at one point are C^", C ~̂,

and the conies obtained from them by changing the sign of one of the coordinates. The contact
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points of C^, Cj~ lie on Ci, so we cannot have Cβ = C^. Let C^', C^' be the images of C^,

C^ under the map (X : Y : Z) \-+ (X : Y : -Z). C^ and C$' are not tangent to each other,

while Ĉ ~ and C^f are, but their contact point lies on C2, so we do not obtain a configuration.

Subcase 2.2. There are four simple edges from Cβ are to C\, C2, C3 and C5. Cβ must

be the image of C^ or Ĉ ~ under a map of the form (X : Y : Z) ι-> (±X : ± F : / Z), but

none of these conies is tangent to C^".

Subcase 2.3. There is a double edge from Cβ to Cj and simple edges to C3 and C4. By

Lemma 2, the equation of C6 is

(2V2 - i)(x2 + y2 + z2) 4- 4(χy + FZ + zx)

/ 2 \ 2

+ iaKX + y + zV2)--(x + y + (2-v/2)Z)J =o

for some α ^ O .

C 6 is tangent to C3 if and only if a2 = - 2 , α 2 = 2, α 2 = 10 - 8>/2 or α = ±(2 - y/ϊ).

In the first case Cβ = C\, in the other cases CO passes through the points (— 1 : 0 : 1),

(—1 : 0 : 1) or (1 : — y/ϊ : 1), respectively, each of which is the contact point of C/ and Cj

for some 1, 7, 1 < i < j < 5, so we do not obtain a configuration.

Subcase 2.4. There is a double edge to C2 and simple edges to C3 and C4. Then by

Lemma 2, the equation of Cβ is

- iχx2+y2 + z2) + 4(χy + YZ + zx)

+ (a(X + ωY + ω2Z) + (X + ω2y + ωZ)/α)2 = 0

for some α ^ O , where ω is a primitive cube root of 1. The polynomials in a expressing the

conditions that Cβ is tangent to C3 and that Cβ is tangent to C4 are coprime, so there is no

configuration with this graph.

Subcase 2.5. There is a simple edge from Cβ to each of Ci, C2, C3 and C4. The

equation of Cβ is

(2V2 - 1)(X2 + y 2 + Z 2) + 4(Xy + YZ + ZX) + (aX + βY + γZ)1 = 0,

where aX + βY + γZ = 0 is the equation of the line connecting the two contact points of

C5 and C6 The condition that Cβ is tangent to C/, 1 < / < 4, is expressed by a discriminant.

Let A[ be the polynomial in α, β and y obtained by dividing this discriminant by the factors

corresponding to Cβ passing through one of the contact points of C; and C5, and let us nor-

malize them so that Δ2, Δ3 and Δ4 have the same constant terms. Δ\ is symmetric in of, β, γ

and so are Φ\ = Δ2 + Δ3 + Δ4, Φ2 = ^2^3 + ^3^4 + ^4^2, ^3 = ^2^3^4 Therefore

they can be expressed in terms of σ\, 02 and a3, the elementary symmetric polynomials in a,

β and y. For example,

Δι = (a2 + β2 + γ2)2 - 4(α2 + β2 + y2 - Aaβ - Aβγ - Aγot) + 36

= (σ2 - 2σ2f - 4(σ 2 - 6σ2) + 36,
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Φ\, Φ2, Φ3 are rather longer. By using Δ\ and Φ\ successively to eliminate 02 and #3, we

obtain two polynomials in σ\ whose greatest common divisor is (σ 2 +18) 6 , so this polynomial

is in the ideal generated by Δ\, Φ\, Φ2 and Φ3 in Q(y/2)[σ\, 02,03]. Therefore the only

solutions of Δ\ = Φ\ = Φ2 = Φ3 = 0 are σ\ = ±3iVΪ, 02 = —6, 03 — —2σ\β, which

give a = β = γ = ±/Λ/2, but then Ce = C\.

In the remaining cases the maximal degree of the vertices of the graph is 3. These

graphs can be systematically enumerated in the following way. The sum of the degrees is

14, so there are four possibilities for the degree sequence, (3, 3, 2, 2, 2, 2), (3, 3, 3, 2, 2, 1),

(3, 3, 3,3,1, 1) and (3, 3, 3, 3, 2, 0). If the graph has a vertex of degree 2, we can remove it

and connect its two neighbours by an edge, possibly a loop. If the vertex is the vertex on a

loop, we simply remove it together with the loop. By repeating this process, we obtain a graph

whose degree sequence is the same as that of the original with the 2's omitted. These graphs

are easier to enumerate, and the original graph can be recovered by a suitable subdivision and

by adding cycles. Eliminating the graphs containing a forbidden subgraph gives the graphs

shown in Figure 4.

Case 3. The degree sequence is (3, 3, 2, 2, 2, 2). There is only one such graph we have

to investigate, the first graph in Figure 4. We may assume that C\, C2, C3 and C4 are as in

Proposition 13, and C5 is given by (4), where r2 = p 4 . C5 is the image of C\ under

2r2 \

0

2

0

1

0

r 2 - l
0 € PGL3(C),

which fixes C2 and C3, so Ce is the image under this transformation of a conic given by an

c5 c4

Ci

FIGURE 4. Some graphs on 6 vertices with 7 edges.
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equation like that of C4, but with some p1, σ' instead of p, σ. We have p 4 = p / 4 = [C2/C3] =

r 2 .

The condition that C4 is tangent to C5 at a point other than its contact point with C\, C2

or C3 gives

(6) (p 2 - l ) 2 σ 4 + 6(1 - p 4 ) σ 2 + (p 2 + I ) 2 = 0,

therefore

,7, g 2 = ( 3 ± 2 V 2 ) ^ + 1)
p 2 - 1

while the similar condition on C\ and Cβ gives

(3±2V2)(l-p/ 2)
σ =

P'2

We may take the + sign in (7). Taking into account that (p', σ') and (—p', —σ') define

the same conic, we only need to consider the following cases: ρf = p, σf = zh'/σ or σ' =

±i(3 + 2y/ϊ)/σ, and p' = /p, σ' = ±iσ or σ' — ±/(3 - 2\fΐ)σ. In each case we will have

three equations for p and σ. The first one is (6).

By Lemma 5, £45, ef

45, e^ are concurrent, and so are e\6,e'l6, e^. 4̂5 and ef

45 intersect at

P = ( p ( ( - 2 p 4 + p 2 - l ) σ 2 + p 2 ( p 2 + l)) : ( p 4 + l ) ( p 2 + l)σ : p ( ( - p 4 + P 2 - 2 ) σ 2 - p 2 - 1 ) ) ,

while eX6 and e\6 at Q = (p\pf2(p/2 - I) 2 - (p / 2 4- Ό V 2 ) : σ'(p / 8 - 1) : - p ' ^ V 2 +
l)2σ^2 + {pa _ 1 ) 2 ) ) β

P and β cannot coincide, because then the involution associated to the triples C\, C4, C§

and C4, C5, C6 would be the same. Therefore P = Q would have to lie on the line X = Z,

the common tangent line to C\ and C5 at their contact point, which would imply p 2 = 0 or

— 1, which are excluded. Thus P and Q span the line e^, and the line can be parametrized as

λP + μ(2, (λ : μ) e Pι. The restrictions of C4 and Cβ to £46 must be multiples of each other,

so the ratios of the coefficients of λ2 and λμ must agree. This gives us the second equation.

We can substitute into the equation of Cβ the parametrization of C4 obtained by taking

the residual intersection with lines through the contact point of C2 and C4, S\ of the resulting

quartic is the third equation.

For any of the possible values of p' and σ', if we take the resultants of the first equation

with the second and third equations with respect to σ, the resultants are coprime, or only have

common factors corresponding to excluded values of p or to cases where three conies would

pass through one point. This shows that this graph cannot be realized.

Case 4. The degree sequence is (3, 3, 3, 2, 2, 1). There are two such graphs without

forbidden subgraphs.

Subcase 4.1. The graph is the second graph in Figure 4. We may assume that the Cz,

1 < / < 5, have the equations used in the proof of Theorem 14, when we dealt with the fifth

graph in Figure 1. We saw there that r φ ±y/2 ± 1, and we also have to exclude r = d=/,

because then C4 and C5 would coincide.
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By applying Lemma 6 to the triples C2, C4, Cβ and C2, C5, Cβ, we see that £26, 4β' ^ 4 6

and 5̂6 are concurrent. Their common point is (2r2 : 2r : r 2 -f 1), which is also the singular

point of one of the singular elements of the pencil generated by C4 and C5. By Lemma 2, if

Q4 = 0 is the equation of C4, then Cβ has equation

- ir)Y - 2rZ) + ^ - ^ ( r - i)X + ( 1 + i>)y - 2rZ) j = 0

for some α ^ O . The discriminant expressing the condition that C\ and Cβ are tangent to each

other can be factorized in Z[ι, r, α], and each factor implies that Cβ passes through a contact

point of C[ and Cj for some /, 7, 1 < / < j < 5, so there is no configuration with this graph.

Subcase 4.2. The graph is the third graph in Figure 4. We may assume that C\, C2, C3

and C4 are as in Proposition 13 and that the equation of C5 is given by (4) with r = p2. We

have [C\/C6] = l/[Ci/C4] = 1/σ4, so by Proposition 13 applied to C\, C2, C3 and C6, the

equation of Cβ must be of the form

<•»
where pf = p or z'p and σ r = ± l / σ or ±//σ.

By Lemma 2, the line ((1 - p ' V 2 ) X + ip'σ'Y + (ρa + σ / 2)Z) = 0 must pass through

((1 — p2σ2) : 2pσ : — (p2 + σ 2)), the intersection point of the common tangent lines to C\

and C4 at their contact points. This rules out 6 of the 8 possibilities for p' and σ\ the only

two remaining are p = p\ and σ r = zb'/σ, and then we have the equation

(9) (p2 + σ 2)(l - p2σ2) ± 2ip2σ2 = 0,

where we take the + sign if σr = i/σ, and the — sign ifσf = —i/σ.

After discarding the factors corresponding to Cβ passing through the contact points of

some of the other conies, the conditions that C5 is tangent to C4 and Cβ give the equations (6)

and

(p2 + 1) V - 6(1 - p 4 ) σ 2 + (P2 - 1) = 0.

The calculation of the resultant of the above equation with (6) and (9) with respect to σ shows

that the three equations have no common solutions.

Case 5. The degree sequence is (3, 3, 3, 3, 1, 1). There is only one such graph without

forbidden subgraphs, the fourth one in Figure 4. We can choose coordinates such that C\, C2,

are invariant under (X : Y : Z) \-+ (—X : Y : Z), then all the others must also be invariant

by Lemma 6. The contact point of C; and Cj for 3 < / < j < 6 must lie on the line X — 0,

so some of them must coincide, since each conic has only two points of intersection with this

line.

Case 6. The degree sequence is (3, 3, 3, 3, 2, 0). There is only one such graph without

forbidden subgraphs, the fifth one in Figure 4.

We may assume that C\, C2, C3 and C4 are as in Proposition 13. By the argument in

Subcase 4.2, the equations of C5 and Cβ must be given by (8) with p' — p and σ' = ±i/σ.
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Then the equation (9) has to be satisfied simultaneously with both + and — signs, so p = 0

or σ = 0, which we have excluded. D

10. Conclusions.

T H E O R E M 17 . We have t(6) = 2 2 and 27 <t(Ί)< 30.

PROOF. t(6) < 22 by the previous theorem, so it is sufficient to exhibit one config-

uration of six conies with 22 tacnodes. Our example is similar in spirit to the configuration

of five conies with 17 tacnodes whose graph is a triangle. Let that C\, C2, C3 have equa-

tions as in Proposition 4. Then all other conies tangent to C\ and C2 at two points other than

(0 : ±1 : 1) are the images of C3 under a suitable element of the group //, and two such

conies are tangent to each other if and only if one of them is the image of the other under

h = ((r2 + l ) / ( r 2 - l ) , 2 r / ( r 2 - l ) ) e H. If we choose r such that h has order 4 in //, which

happens if and only if r2 = - ( 3 ± 2^2), then Cu C2, C3, λ(C3), h2(C3) and /ι3(C3) form a

configuration with 22 tacnodes.

If we choose r such that h has order 5 in H, then we can obtain a configuration of 5

conies with 27 tacnodes. Hence t(l) > 27. The inequality (1) gives f (7) < 31, but t(6) = 22

implies

D

REMARK, (i) The expected number of configurations of 6 conies with 22 tacnodes is

finite, but the possibilities are probably too numerous to list.

(ii) The same idea can be used to produce a configuration of k conies with 5k — 8

tacnodes for any k > 4, and 5k — 8 is exactly the number for which the expected dimension

is 0. For k > 8 there is a better method. The example in [1] with k = 14, t = 98 and consists

of two sets of 7 conies, such that two conies from different sets are tangent to each other at 2

points. For k < 14, if we choose [k/2] conies from one set and [{k + l)/2] from the other, we

get k conies with [k2/2] tacnodes. For k > 14, we can take copies of the whole configuration

of 14 conies and transform them by suitable elements of PGL?,(C), this gives ^lk tacnodes.

There is also a better than linear asymptotic bound of the form t{k) > Aifc1+*/ loglogA: [3,

Theorem 5].

THEOREM 18. For every k,

4k2 4k

PROOF. The right-hand side is not an integer unless 3\k. It was shown in [3, Theorem

6] that equality cannot hold for k = 9, k = 12 or k > 15. ί(3) = 6 obviously and we have

shown that t(6) = 22. D
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