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Abstract. Normal coordinate systems for pseudo-Riemannian metrics are investigated
from a viewpoint of the theory of partial differential equations. Given a cartesian coordinate
system x, a local metric for which x is a normal coordinate system is determined by a metric
tensor at the origin and any one of certain three matrix functions. These are related one another
by three partial differential equations. Solvability of these equations in C*®° framework and
power series expansion of solutions are discussed.

Introduction. In a pseudo-Riemannian manifold (M, g) of class C*°, let x =
,.-.,x™) be a normal coordinate system for g with origin at an arbitrary fixed point o
of M. If we expand the covariant metric tensor g,» into power series of x, every homoge-
neous degree part is an invariant polynomial. It depends neither on the dimension of M nor
on the signature of g, and the coefficients are polynomial functions of the Riemannian cur-
vature tensor and its covariant derivatives evaluated at o. Expansion was already written in
Cartan’s book [C, p. 243] up to the third degree. Herglotz [H] showed a principle of higher
degree expansion. Sakai [Sa] obtained an expansion of the volume form det(g,5)!/? up to the
sixth degree and applied it to an iso-spectral problem (see also Berger-Gauduchon and Mazet
[BGM], Gray [Gr], Willmore [Wi], Gilkey [Gi]). It was Glinther [Giil] who gave a definitive
result for g,p with explicit formula for general terms.

Giinther was motivated by his own work on the Huygens principle for hyperbolic oper-
ators of the second order ([Gii2]). The minor premise of the Huygens principle is realized
in a short time interval if and only if a particular Hadamard coefficient vanishes identically.
Also, this in turn is equivalent to a set of an infinite number of equalities on coefficients of
the operator. Hadamard coefficients which appear in elementary solutions are common to
elliptic, parabolic and hyperbolic operators. So, several problems in analysis and in geometry
are relied upon the study of the same objects. The 0-th Hadamard coefficient is essentially
equal to | det(gqp)|™ 1/4 and higher order ones involve also the contravariant metric tensor g2b,
| det(gap)|*'/? and their derivatives. So, we need a unified treatment of ggp, g% and several
powers of | det(gap)|.

In the present article, we define auxiliary n x n matrix functions N, R, S of class
C® from a given covariant metric tensor G = (gab)Z‘ p=1 (Section 1). N comes from the
Levi-Civita connection, R is a part of the curvature tensor and S consists of coefficients
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representing a standard basis of tangent vectors by means of basic Jacobi fields. They solve
the following partial differential equations (see Section 2):

1) YS =-SN,
) YYS+YS+SR=0,
(3) YN+N=R+N?,

where Y = x%9/0x* is the Euler vector field and O is the zero matrix. Near the origin, |G-
GO, IV, IR, IS=1]l are of O(|x|?) (I is the unit matrix). By the Priifer transform (1),
the Sturm-Liouville type equation (2) is translated into the Riccati type equation (3), and vice
versa. Covariant metric tensor is represented as

@) G =8G(0)'S.

To give a metric g is equivalent to give G(0) and any one of N/, R, S. This is our main
result (Theorem 4.1). For example, if R is given, we can find S by solving (2) and we have
G from (4). If one of A/, R, S is real analytic, then others are, too, and g is real analytic
(Corollary 4.1). We can formulate the separation of variables for (1), (2), (3) (Corollary 4.2).
Since differentiations are generated only by Y, (1), (2), (3) are reduced to ordinary differential
equations

) Uty =Uume@, UO)=I;
(6) tV' () +2V'e) =V @), VO)y=1I;
) IN'(1)+ N(@) = P() + N(@©)*, P(O)=N(©0) =0,

respectively, where @, ¥, P are given and U, V, N are unknown. Existence, uniqueness and
smoothness of solutions to (1), (2), (3) are reduced to those of (5), (6), (7) with parameters
x (Section A). If we know the Taylor series of ¥ (¢) at t = 0, we can write down the Taylor
series of V (¢) (see (a.7)). Applied to ¥ (¢t) = —(1/t)R(tx), V(¢t) = S(tx), this is nothing but
the Giinther formula (6.2). We can also represent the Taylor series of A/ by means of R (see
(a.12), (a.13), (6.5)). Real analyticity is guaranteed by simple majorant series (see Section
A.4). N exploses eventually on the set {x; det S(x) = 0} (see Remark A.1). Since

(®) Y log | det(gap)| = =2t

we can expand any power of | det(g,p)| in a unified way (see (6.7)). Expansions in terms of
N are much simpler than those in terms of R. The author, however, does not yet understand
the geometrical meaning of V.

It should be noticed that ¥ and Y2 are hyperbolic except at the origin and are degenerate
in all directions at the origin (see Petrovsky [P]). They are not of the Fuchs type in the sense
of Baouendi-Goulaouic [BG] but of the Euler type if they are to be labeled.

We are very much inspired by a work [KB] of Kowalski and Belger. They showed how
to construct a real analytic metric when prescribed are values of the curvature tensor and all
its covariant derivatives at o.
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One of remaining questions in this article is to investigate the structure of the space
V' of matrix functions (see Sections 3, 7). Application of our framework to the Hadamard
coefficients will be the subject of a forthcoming paper.

1. Notation and preliminaries. Given a pseudo-Riemannian manifold (M, g) of di-
mension 7, let TM be the tangent bundle of M. The Levi-Civita connection on T M is de-
noted by V. The curvature tensor R : TM x TM — End(T M) is defined to be R(§, n)¢ =
[Ve, V1 — Vig,¢. Given a local coordinate system x = (x',...,x"), we denote 0j =
8/9x/, gjk = g(dj, o) and V; = Vj,. Then, components of V and R are given as follows.

(1.1); Vsaj = Fskjak , R(04,05)0, = erasab s Rbras = gbcRcras >
where

Ty = (1/2)6° 396 + 99 = 3914

(1.1)2
Rbras = aa[}b, + Fshrrabh - 85Fab, - Fahrrsbh s

and the summation convention is used.
Let o be an arbitrary reference point of M. A local coordinate system x with origin at o
(x = 0 at 0) available in a neighborhood of o is said to be normal if and only if

(1.2)1, (1.2), xFgix) =xk g0 or xIxkI;e (x)=0.

(1.2); and (1.2); are equivalent. In a normal coordinate system, the Euler vector field Y =
x%9s is of special importance. Every geodesic emanating from o is written as x = tp with
real parameters p/ satisfying (p])2 + -4+ (pM? = 1. Then, (Yf)(tp) = (ta/a){f(tp)}
for any real-valued function f. So, Y is tangential to the geodesic from o to x. For a matrix
function U = (ugp) or (ug?), we define YU to be (x*dsuap) or (x*dsuqb), respectively. A
smooth function f is a homogeneous polynomial of degree m if Y f = mf.

From now on, we fix a normal coordinate system x with origin at 0. So, x is simply a
cartesian coordinate system in R” and we work in a neighborhood of x = 0. We introduce
certain n X n matrix functions.

(1°) Metric tensor. Denote G = (9ab(x)>2,b=1, G!'= (g“b(x))gvbzl,

13 y=GO) =)y, v =GO =",
' H=Gy ' = (gas(®)Y*") s

where yap = gap(0), y* = ¢*2(0).
(2°) Jacobi fields. Let X 4 be the parallel transport of (34), along geodesics emanat-
ing from o in such a way that Vy X4 = 0 (1 < A < n). If we set

Xa=14/(x)3; and 8; =0; (x)Xa,
then (TjATAk =38k talo;® = 848,04(0) = 84, 747(0) = 84/. We denote

(1.4) S=(0; ()] ozys SO S7' = (@B )) i -
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(3°) A part of the Levi-Civita connection. We set
N=Wal) gy NaP = —ta%(0)x° TP, (008 (x)

1.5
(1) N = WY, = NS, N =~ Tty

N defines an endomorphism & — EN (4 X4 — EBNAX 4 0r£9, — —£9Vyd,) of TM.
(Restriction of NV to the orthogonal complement of x, identified with a coordinate vector, may
be related with the shape operator of a geodesic sphere because our (2.4) below is analogous
to the equation (2.10) of Kowalski-Belger [KB]).

(4°) A part of the curvature. Let {X,*Y,_, C T*M be the dual basis to {X4}}_,,
thatis, (X4, X *B) = 848, where (, ) stands for the duality. Then, we have

4% (0)x" X R a5 ()02 (x) = (R(X4. V)Y, X..B).
So, we set
(1.6) R=(RXA. VY. X2 5.
where Y = x%0s. R represents R(-, Y)Y € End(TM) (R = R(§,Y)Y).

REMARK 1.1. Ifx and x are two normal coordinate systems with the same origin for
the same metric, the transformation x — X is linear: x = xT (x* = x%t%), say, with a
constant, non-singular real matrix 7T = (ts"‘);" a1+ (Coordinate vectors are always regarded
as row vectors in this article). If 7, G, H, N, R, S are defined as above with respect to the
coordinate system x, the law of transformation is as follows.

17  y=Ty'T, G=TGT, A=TAT™' for A=H,N,Ror S.

On the other hand, Y is invariant, x*9/9x® = x%*3/0x“. Therefore, analytic or geometric
considerations in what follows are the same in any normal coordinate system. In particular,
partial differential equations derived in Section 2 are invariant under change of variables from
a normal coordinate system to another normal coordinate system.

2. Relationship between two of H, V', R, S.

LEMMA 2.1.
2,1),(2.1) YS=-SN =-N'S;
(2.2) YG=-2N'G and N'G=G'N’;
(2.3) G=8y'S or H=Sy'Sy !;
(2.4) YN +N=R+N?,;
(2.5) YYS+YS+SR=0.

PROOF. (2.1) Since V;3; = Vi(0;4X4) = (3;0,")Xa + 0;4V; X4 = [}* ;8 =
I jox" X 4, we have (30,4 — I''*j04*)Xa + 0;4V;X4 = 0. This implies Yo;4 =
xsl}kjokA because Vy X4 = 0, which proves (2.1") and (2.1).
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(2.2) We multiply x* to both sides of 215 ,g9c6 — 059ab = 0agsp — Opgsa. Since
X50a9sb = Yab — Jab = X*0pgsq in view of (1.2)1, we have (2.2).

(23) SetG'=G —Sy'S. Then, YG' = —N'G’ — G''N" and G'(0) = O. We apply
Lemma 2.2 below with A = Ay = O andk = r = 0to see that G’ = O.

(2.4) Multiplying x"x* to both sides of (1.1),, we have YN + N’ = R/ + N2, where
R = (x"x* Rbras)g'b=l = SRS™!. Rewriting this with the aid of (2.1), we have (2.4).

(2.5) Y(¥YS+ SN) = O by (2.1). Applying (2.4) to this, we have (2.5). g-e.d.

We state the lemma assumed in the proof of (2.3). Let M, be the ring of n x n real
matrices endowed with the norm || A| = sup{|vA[; v € R", |v| < 1}, where | | stands for the
Euclidean norm. Zero and unit matrices are denoted by O and I, respectively.

LEMMA 2.2. Letrbe a non-negative integer and F be an M -valued function of class
C™*Vin a star-shaped neighborhood $2 of x = 0 satisfying a partial differential equation

(2.6) YF4+kF =AFA + A3F + FAs,

where k is a real number, A, ... , A4 are M, -valued functions of class C Uin 8 such that
A3(0) = A4(0) = 0, and, A;(0) = O or A2(0) = O. If F and all its partial derivatives up
to order rvanish at x = 0 and ifk +r + 1 > 0, then F is identically equal to zero in 2.

PROOF. Setk’' =« +r, F(t) =t7"F(tx)and Aj(t) = Aj(tx). Then,

1
F(t) = f 0 "1 (A|FAy + A3F + FA4)(01)d6 .
0
If weseta(t) = (|A1(OIIA20) [ + [A3@)II + [[A4(@)[1)/[¢], then

1
IF®) < It|/0 0% a(61)|| F(61)d6 .

This implies || F(¢)|| = 0 as long as tx € £2, so F is identically equal to O. q.e.d.

The reasoning fails if ¥ + r is a negative integer. For example, F(x) = (x!)?I solves
YF-pF=0((p=12,3,...,k =—p,r = p—1). Remark also that the lemma can be
applied to functions with values in row vectors if we set A] = Ay = A3z = O.

3. Construction of a metric from y and one of N/, R, S. In what follows, we fix
a constant, real, symmetric, non-singular matrix y. Given a matrix function A = A(x) =
(ar®(x)); _, of class C*, the homogeneous part of degree p in the Taylor series at x = 0 is
denoted by A(p).

DEFINITION 3.1. Let V be the real vector space of n x n matrix functions A of class
C® in a neighborhood of x = 0 satisfying
(3.1 Ay =y'A and xA=0,

that is, a,"(X)yns = venas"(x) and x"ap(x) = 0. Let Vip) be the linear subspace of V
consisting of A such that A = Apy. If A€ V, then Ay € Vipy (p = 0).

We shall show in Lemma 7.1 below that V(g) = {O} and V(;) = {O}.
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3.1. We have four matrix functions H, A/, R, S of class C* in a neighborhood of the
origin. First of all, let us enumerate some properties of each one not involving others.

LEMMA 3.1. Lety,H,N,R,S be matrices defined in (1.3) through (1.6). Then, they
satisfy (h), (n), (r), (s) respectively as follows:

(h), (), (1) H-IeV; NeV; ReV;
(S) S(()):I, S(|)=0, (YS))/’S=SV’(YS) and xS =x.

PROOF. (1°) Obviously H ) = S() = 1,./\/(0) =R =Ru =0.Hq = Ny =
O because 9 gqp(0) = r,’:(0) =0,50S1) = —N(j) = O from 2.1)and Hy = G =G =
yY'H.

(2°) WesetS = (YS)y'S—Sy'(YS),N=y'N -Ny,R=y'R—Ry. Then,
(32)1,(3.2)2,32);3 YS+S=8R'S, S=8SN'S, YN+N=NN+NN+R,
(3.2 G'R' —R'G=8R'S,
where R’ = SRS™!. From (3.2)s, we see that R = O because R'G = (x" x* Rbras)y ) i
symmetric. Then, S=o0 by (3.2); and Lemma 2.2 with A; = O,k =r = 1. And N = O
by (3.2)3.

(3°) First, xH = x from (1.2);. Second, x N/ = 0 from (1.2),, so xSN = 0 from
(1.5). If we set n = x — xS, we have Y — n = xSN = 0. We can apply Lemma 2.2 with
Aj =0,k =—landr = 1tohave n = 0 or x§ = x. Third, x ' = xSN = 0. Fourth,
xR’ = 0because R’ 4,5 = —R?,54. S0, xR = xS 'R'S = xR'S = 0. g.e.d.

REMARK 3.1. (s) implies also xy ‘S = xy (In fact, if we set { = xy 'S — xy, then
xS = Oreduces to Y¢ = ¢ because xS = x. So ¢ = 0 by Lemma 2.2 as above).

3.2. Next, we discuss N, R, S apart from their geometrical meanings.

LEMMA 3.2. Ifwe give a y and any one of N', R, S of class C* in a neighborhood
of x = 0 and satisfying (n), (1), (s) respectively, we can define, in a unique way, others which
satisfy (2.1), (2.4) and (2.5).

PROOF. (1°) Given an element A of V, we define R by (2.4). Then, Ry = O,
Ry =2Ngy =0 and xR =xYN =Y(aN) — (YXx)N =Y0—xN =0. Also R = O in
view of (3.2)3,s0 R € V.

(2°) Given an element R of V, there exists a unique S satisfying (2.5) and S(0) = [
(see Section A.2"). We have Sy = I,2S5(1) = =S)R1) —S(1)R() = O. Next,n = x —xS
satisfies YYn — Yn + nR = 0. This means that 7 = zR(¢) if we set z(t) = n(tx) and
R(t) = —(1/t®)R(tx). R(¢t) is continuous near ¢ = 0 and z(0) = z/(0) = 0. Therefore, z(7)
is identically equal to zero, so 7 is zero. Finally S=0 by (3.2);. Hence S satisfies (s).

(3°) Given an S satisfying (s), we set N' = —S~!'YS. Then, Vo) = O, N}y =
-S0)S1y = Oand xN = —xS7'YS = —x¥S = (Y x)S—Y(xS) =xS—Yx =x—x = 0.
Furthermore, N = O by (3.2),. Therefore, N € V. q.e.d.
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REMARK 3.2. (i) Given an element A of V, we can find a unique S satisfying (2.1)
and S(0) = I (see Section A.1’). This S satisfies also (s).

(ii) Given an S satisfying (s), we define R by (2.5). Then, R belongs to V.

(iii) Given an element R of V, there exists a unique solution N to (2.4) such that
N (0) = O. We make there use of the argument in Section A.3’. N belongs to V.

REMARK 3.3. The vector space V is also a module over the ring of real-valued func-
tions of class C*°. Furthermore, if A, B € V,then YA € V and AB + BA € V as is easily
verified.

4. Main result.
4.1. The following is the main result of this article.

THEOREM 4.1. Ifwe give a constant, real, symmetric, non-singular matrix y and any
one of the matrix functions N', R, S of class C*® satisfying (n), (r), (s) respectively, we can
define a unique pseudo-Riemannian metric g = Gapdx?dx® of class C* in a neighborhood
of x = O related with N', R, S by (2.1), (2.3), (2.4) and (2.5). x is a normal coordinate system
with respect to g and gap(0) = Vap.

PROOF. If we give y and one of A/, R, we have S satisfying (s) as in Lemma 3.2, so we
set H = Sy'Sy~!. Then, Hoy = I, Huy = Sy + ¥ Syy ™' = 0, xH = xSy 'Sy~ ! =
xy 'Sy~ =xyy~! = x (see Remark 3.1),so H—1I € V. If weset G = Hy, it is symmetric,
G(0) = y, and G satisfies (1.2)7, so x is a normal coordinate system for this metric.  q.e.d.

COROLLARY 4.1. If any one of N, R, S is real analytic in a neighborhood $2 of
x = 0, the metric g is real analytic in a neighborhood 2’ of x = 0 contained in $2.

PROOF. We refer to Proposition A.4 below. If R is real analytic, the solution N to
(2.4), N(0) = O, is real analytic. If A/ is real analytic, the solution S to (2.1), S(0) = I, is

real analytic. If S is real analytic, G = Sy 'S is also real analytic. q.e.d.
4.2. Letus remark a functorial property. A constant real matrix 7 = (77,” )a.p s said
to be a y-projection if 1> = mand ry = y'n (Ml = 718, 70 Yep = Vaerp©). If 7

is a y-projection, I — 7 is, too. We suppose that 7 is proper, that is, O # & # I. Given
also a metric g satisfying G(0) = y as above, we define G, to be G,(x) = pG(xp)'p for
p =mand for p = I — . G, defines a metric g, on Imp = pR", whose metric tensor
is independent of x — xp. A y-projection 7 is said to decompose g if g = g + gr—n or
G=G;+Gi_p.

Given also a matrix function A = (A,? (x)g’ p—1» We define A, tobe A, (x) = p.A(xp)p
for p = 7, I — . A y-projection 7 is said to decompose A if A = Ay + Aj—_5. Let us show
that the separation of variables works also in the non-linear equation (2.4).

COROLLARY 4.2. Ifm isay-projection, then the following three conditions are equiv-
alent:

(a) 7 decomposes any one of N', R, S.

(b) 7 decomposes N', R and S.
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(c) 7 decomposes g.

PROOF. Let p be 7 or I — . The Euler vector field splits as Y = Y, + Yj_5, so
YA, = (YA), = Y, A,. If & decomposes R, then A = N, is a solutionto YA+ A =
Rp+ A2, A(0) = O, which is unique by Lemma 2.2 and 7 decomposes . If = decomposes
N, then B = S,, is a unique solution to YB = —BN,, B(0) = p, and = decomposes S. If
n decomposes S, then G, = S,y 'S, and 7 decomposes G. If m decomposes G, then 7
decomposes A/, R and S, too. g.ed.

There are many y-projections. Note that the space of y-projections is non-compact if y
is indefinite.

5. Examples. If y and one of /, R, S are given, Theorem 4.1 allows us to construct
local metrics satisfying ¢,5(0) = y, with respect to which x is a normal coordinate system.

5.1. Ifoneof H—1,N,R,S —1I belongs toa V() (p > 2. see Definition 3.1), others
are obtained by a simple power series calculus.

If H— 1 € V(p), then

p p 1\? +1)\°
1 — H1/2 =2 - —(PrreZy) —(P1) 4.
5.1 S=H'"", N 2(H I, R 27—[ +2 3

IfS—-1¢€e V(p), then

(5.2) N=pS'-D, R=@*+pES~'-D, G=8%.
IfN € V(p). then
(5.3) S=e PN R (p+ DN N2, G=e PNy,

IfR € V(p), then
(5.4), S=0(R), N=v(R), G=0c(R)?*,

co=r(t) () ()
o= ()1 ().

and J, (z) is the Bessel function of order v (see Watson [Wa]).

where

(5.4)2

2\ s (=2 /a)f
J =(= _—
v(@) (2) ,Z—é KIF(v+k + 1)
If, in particular, p = 2, then o(z) = (sin+/7) //z. Also, if R is a constant multiple of P
defined in (5.5) below, then g is of constant curvature.

Note that S — I does not belong to V in general. For example, S5y # y'Ss) if
RoyRE) # Ri3)R2).s0S — 1 ¢ V (see (6.2), (a.7) below in which az3 # a3zp).
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5.2. In this subsection, we denote
(5.5  xa=yyx), u=x%. 7w’ =uslb —xuxt, P=@d,_,.

Then, P € V(3) and P? = uP. Let ¢ be a real-valued function of class C™ in a star-shaped
neighborhood §2 of x = 0 such that up(x) < 1in §2. We are interested in the following
metric

(5.6) 9ab = {1 — u@()}¥ab + @(X)Vacvpaxx? or H=1-gx)P.
We obtain A/’ from (2.2), S by solving (2.1') and R from (2.4):
%
5.71,(5.7 S=—-—P, h = ;
5. D1, (5.7 Y where ¥ (x) = up(x)
1 1
(5.8)1,(5.8), N =N =wP, where w(x) = —Ylog——;
2u 11—
(5.9)1,(5.9)2 R =xP, where x(x) = Yo+ 3w — uw?;
. l=1+-% p
(5.10) H + T—v

¥, w and x are of class C*° in 2.

REMARK 5.1. A question is how to obtain ¢ when x is given. An answer is the
following. If we have a solution w to (5.9); of class C* in a neighborhood of x = 0, then

1
(5.11) up(x) =1—exp [—214/ a)(sx)sds] .
0
(5.9), is a Riccati type equation for w. If we set

t
A(t) =texp [—u/ w(sx)sds] ,
0

then (5.9), is transformed to a Sturm-Liouville type equation for A:

(5.9)3 & = —ux(x)r.

at2
(5.9), is integrated by quadrature if and only if (5.9)3 is so. If x = « is a constant for example,
then w = —2a0’ (au) /o (au), up =1 — o (au)? and g is of constant curvature (see (5.4)).

REMARK 5.2. If ¢ in(5.6) depends only on u and if the Taylor series at u = 0 contains
a non-vanishing term, there exists a neighborhood of x = 0 in which an equality
(5.12) H=I1-9owR
holds, where ¢ is a function of class C* in an open interval containing u = 0.

PROOF. Let the Taylor series of ¢, w, x atu = 0 be

N N N
o= uwei+0u™), 0= woj+o@u™"), x= Y ux;j+o@ut.
j=0 j=0 j=0
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From (5.8), (5.9), we see that V() = R(my = O if m is odd and
(5.13) Nej=wjw™'P, Rop=xju/™'P (=1,

Now, if 7 is the smallest number j such that ¢; # 0 and if r is finite, then w — (r + D, u"
and x — (2r2 + 5r + 3)g,u” are of O(lu|" ™). If we set § = ¢/, then @ is of class C* in a
neighborhood of u = 0 and ¢(0) = (2r? + 5r + 3)~'. We have (5.12) with this . q.e.d.

REMARK 5.3. Contrary to Remark 5.2, suppose that all derivatives of ¢ vanish at
u = 0. Then gap — Yap, I's?, and R®,4, are of O(|x|®). w, x are also of O(Ju|*®) and ¢/x
may not be defined on the set {u = 0}. So, (5.12) does no longer hold. Also, if ¢ is not a
function of single variable, (5.12) does no longer hold in general.

REMARK 5.4. Let g be a conformally flat metric 2/ ®y,,dy*dy? in a neighbor-
hood of y = 0 in cartesian coordinates y, where v = ya,y?y? and f(v) is a function of class
C® in a neighborhood of v = 0 such that f(0) = 0. Let x be the normal coordinate system
for g@ with origin at y = 0 such that x4 = y@ + O(|y|?). Then, y,»x?x? depends only on
Yaby®y? and the metric tensor of ¢‘@ with respect to x is of the form (5.6).

PROOF. Let A = A(u) be a solution of class C! in a neighborhood of u = 0 to

dh ! do
5.14) 2u— + A = exp{— f(ur? or Alu) = / exp{— f(Bur(Ou)?)) —— .
( an p{—f @A)} (u) A p{—f( ))}m
Note that A is unique, of class C*° and A(0) = 1. Next, let U = U(v) be the function
satisfying

(5.15) v=UAMU)?, U©) =0.

We have U’(0) = 1. Given (y',...,y") ina neighborhood of y = 0, define x', ..., x"to
be

(5.16) x® =y /AU (YpgyPy1)) .

The mapping y — x is of class C* in a neighborhood of y = 0, x* = y¢ + O(|y|®) and
Yapx®xb = U(ypqy?y?). Define ¢(u) to be

(5.17) o) = (1 = A2 @) /iy for u £0 and  9(0) = —4£'(0)/3.

Then, ¢ is of class C* in a neighborhood of u = 0 and exp{2f(y,,qypy")}yabdy”dyb =
Gapdx®dx?, where g,y is given in (5.6) with this ¢. q.e.d.

6. Power series expansions.

6.1. In this section, we represent H ), (H™")(m) and (det H*)(n) by means of {R,)}
(see Definition 3.1). First of all, we reproduce two lemmas and a proposition proved by
Gilinther.
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LEMMA 6.1 ([Giil], [Gu2, Appendix 1]). Ry = R) = O and
(A, B)-element of Rm)
6.1) _ 1
T (m—=2)!
6.2. Covariant metric tensor ggp(x).
LEMMA 6.2 ([Giil], [Gii2, Appendix 1]). S =1, Sy = O and

[m/2]
(6.2) S(m) Z Z (- l)harlrz--~r;, R(I‘])R(rz) cee R(r;,) (m>2),

h=1 rj>2,r\+-+rp=m

X Im (Ve G REAi)(©0) (m > 2).

where ay,,...r, are the coefficients defined in (a.7) with k = 1.
PROOF. (2.5) is the same as (a.4)if wesetV =S, B = —Rand x = 1. So, (a.7)
implies (6.2). Note that ¥ = ¥ (0) = O. q.e.d.
Define furthermore {by,,...,} in the following way with k¥ = 1:

b, = 2a,,
(6.3)

briryry = bryryry = Gryryery + Aryeryry + Zm 1 Griryry rpermyy (2 2)
PROPOSITION 6.1 ([Giil], [Gii2, Appendix 1]). Gy =v,Ga) = O, and

[m/2]
64  Gm= Z > (=D"brirsery Ry Ry -+ Rippy (m = 2).
h=1 r;j>2,r\+-+rp=m
PROOF. This follows from (2.3), (6.2) and y "R = Ry. q-e.d.

(6.4) is very practical because by, ,...r, are explicitly defined.
6.3. Powers of det(gac(x) ng(O)). First, homogeneous parts of A are expanded by
means of those of R.

PROPOSITION 6.2. Ng) = N() = O and

[m/2)
(6.5) Nmy = Z Z - Ry Ry - Rimy - (m 22),

h=1 r;j>2,r\+-+rp=m
where cy,r,...r, are the coefficients defined in (a.13) with k = 1.

PROOF. (2.4) is the same as (a.8’) if we set C = R and k = 1. Since %, 0) =0, we
have Ny = N1y = O. And (a.12) implies (6.5). g.e.d.

PROPOSITION 6.3. Denote 6(x) = log det(gac(x)g*(0))2 ,_, and by 6m) the homo-
geneous part of degree m in the Taylor series at x = 0. Then,

2
(6.6) 60y =601y =0, Om = e tr./\/'(m) (m=>2).
PROOF. Since YH = —2N"H by (2.2), we have Y = -2t N = =2t NV, so

1
6(x) = —2/ tr./\/(t)c)ﬂ
0 t
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and we have (6.6). ‘ q.e.d.
Now, we expand (det(GG(0)~!))* = ¢ for any complex number A.

PROPOSITION 6.4. Let D{))

of {det(gac (x) g (0))? ,_,}* at x = 0. Then, D) = 1, D(}) = 0 and

be the homogeneous part of degree m in the Taylor series

p® _

(m) —

6.7 1
©7 > (M) (M) - M) (m = 2).
ax! - ap!
@;>0,202 433+ +moy=m
This can be applied to the volume form (A = 1/2) and also to the 0-th Hadamard coeffi-
cient of the Laplace-Beltrami operator (A = —1/4).

REMARK 6.1. Y6 = —2tr A’ due to a well-known equality 3,0 = 2I,°;. However,
(6.7) is obtained not from (6.4) but from (2.2) and (2.4).

6.4. Contravariant metric tensor g"b (x).
LEMMA 6.3. (S Yoy =1,(S D) = 0,and

[m/2]
6.8) (S_l)(m) = Z Z | d’h"'rzrl-/\/(rl)-/v(rz) o ’Mrh) (m=12),

h=1 r;j>2,rj++rp=m
where dy,...r,r, are the coefficients defined in (a.3).

PROOF. Equation Y(S™!) = NS is of type (a.1’) if we set U = S~!, A = N but
U, A are in reverse order. So, (a.3) yields (6.8), where @ = O because N(g) = N(j) = O.

q.e.d.
Define furthermore {e,,,...,} in the following way.
er =2d,,
(6.9) )
€riry-rp = €rperyrp = dr1r2~~~rh + dr;,mrzr] + Zdr|r2-~-r,,,drhmrm+| (h>2).

m=1
PROPOSITION 6.5. (G~ Ny =y~1 (G Ha) = 0,and

[m/2]
6.10) (G Hm=)_ Y ennn? NNy Now  (m=22).

h=1 r122,r|+-~~+rh=m

PROOF. This follows immediately from (6.8), G~! ='S™'y =!8~ and Ny = y 'N.
y
g.ed.

REMARK 6.2. We can represent (G")(m) by means of {R )} if we combine (6.10)
with (6.5). Since cr,ry...rys Aryry-rys €ryry-r, are positive, (G~1) () is represented as a sum of
products of R,y with positive coefficients. We can also represent (G~ '),y by making use of
64)andyG ' =1+ -Gy H+U -Gy H2+....
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REMARK 6.3. To compute cy,,...r, appearing in (6.5) for large h from (a.13), we have
a difficulty of combinatorial character because (2.4) is non-linear. However, once we know
{M ), all expansions are done in a unified way. We can modify (6.10) to have a formula
for G (). We have only to multiply (=1)"*, delete y~! and multiply y from the right in the
summand.

7. An algebraic structure of V(3).
7.1. ByLemma3.1, N, R, H — I belongto V, and S¢n) € Vim) form = 2, 3,4 (see
the end of Section 5.1).

LEMMA 7.1. Vo) = Vq) ={0}. If p > 2, we have

. np—n (n+p-—1

(7.1) dlmV(p)=—-——2———( Pl )

PROOF. V() = {O} because a constant matrix .4 annihilates all x if and only if A =
O. Next, given an A € V), A(x)y is symmetric. Linearizing x. A(x)y = 0, we have
xA()y + yA(x)y = Oforall x,y € R". So, yA(x)y'y = 0 for all x, y. Then, any
eigenvalue of A(x)y is zero. This implies that A(x)y = O for all x, therefore V() = {O}.

Suppose that p > 2. Any element of V() is written as A = 27:1 Ve j)y_'. Here,
{e(j)}?’:] is a basis of n x n symmetric real matrices (N = (n? + n)/2) and @) € Hp),
where H(,) is the vector space of homogeneous polynomials of degree p in n variables, so

dimH(p)=dp: (n+z—1> .

For each a, let Y4 = Z?l:l l(a, jy9(;) be the a-th component of x.A. I, ;) is a linear form
of x, non-vanishing for at least one j if a is fixed. If ¥(4) = 0, coefficients of ¢;) satisfy
some dp 1 linear conditions. When a runs from 1 to n, we have nd, 1 conditions. Therefore,
dim V(,) = Nd, -nd,| and we have (7.1). q.e.d.

7.2.  Let W(3) be the vector space consisting of sets of real numbers {ppjx/} satisfying
(7.2) Phjki = Pklhj = —Pjhkl >  Phjkl + Phklj + Phijk =0
for all A, j, k, [ from 1 to n. The components below are linearly independent:

Ppgpg for 1 <p<qg=<n; ppg forl1<p,qg,r<np<gq,p#r#gq;

(7.3)
Ppgrs» Pprgs for 1< p<g<r<s=<n.

So, dim W(3) = dim V(o) = (n* — n?)/12. Let us find an isomorphism from Wy to V(2.

T, M has the canonical basis {¢,},_, and the scalar product g, (u, v) = yabu“vb (&g =
(82)o» u = u%sy). Let A2 = A%(T,M) be the space of bivectors endowed with the scalar
product (, ) which is the linear extension of

(unv,zAw) = gou, 2)go(v, w) — go(u, w)go(v, z) .
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Let Q be the vector space of symmetric endomorphisms of A% ((Qf, ') = (f, Qf') if
Q € Q). Given (Q, f) € Q x A2, define an n x n matrix 0% (f) to be such that

9o wQF(f), ) =(Qf, zAw) (z,weT,M).

Note that the mapping Q € Q — Q% € Hom(A?, End(T,M)) is linear and injective.
Let Q) be the vector space which consists of Q € Q satisfying the first Bianchi identity

(7.4) wOtwAv) +uQT(wAw)+v0t(wAu)=0 forall u,v,we T,M.
Since dim Q = (n? — n)/4 x (n* — n 4 2)/2 and (7.4) implies (3) conditions,
4 2
dim Q¥ = di (") =2 .
im Q im Q 4 3
LEMMA 7.2. QW is isomorphic to W3y and also to V,3).
PROOF. (see Willmore [Wi], §3.11). A bijection W) < QoW s given by

(7.5) (Q(ex N&D), en N EjY = ppjki -
Next, givena Q € Q) we define A € V(3) to be A(x) = xQ+(- Ax) or
(7.6) uA(x) =xQt(w Ax).

(We identify the coordinate vector x with x"¢, € T,M). The inverse mapping A — Q is
given by

1.7 wQ+(u Av) = (2/3){uA(v, w) — vA(u, w)},
where A(u, v) = (1/2){A(u+v)—A@W)—A@)} = A(v, u). Q is well-definedand Q € Q®.
This is because g,(zA(u, v), w) = g,(wA(z, w), v) owing to x A(x) = 0. q.ed.

An explicit basis of V() is given as follows. Set E(p 4) = (84p8bg + 8agdbp)y; ,—| and

7.8 Ap.grs) = QxPx"Eg )+ 2XIX° E(p ry — XPXIE(r5) — X" X E(p g)
(7.8) —x9x"E — xPxSE -1
(ps) —XPX*E@g )y .

A(p,q.r.s) belongs to V(o) for all p, g, r, s from 1 to n. Since Ry = —3G@yy~", we have

PROPOSITION 7.1. (i) If{pnju} € W) and if the homogeneous part of degree 2 of

a metric tensor is such that

_ 14
=3Gyy l= Z(qurs-A(p,q.r,S) + pprqu(p,r»q,S)) + Z pzrqr A(p,r,q,')

Ppapq
+2 > Ap.g.p.9) -

summations being extended over ranges of indices in the list (7.3), then the curvature tensor
of this metric satisfies Rpjx(0) = ppjki-
(ii)  Rpjki(0) are represented by means of R(2) in the following way.

(7.10) Ruj1(0) = (2/3)go(exR2) (&1, €5) — €1R2) (ks €)) €h) -

For the proof, we have only to remark that (Qf, f) = 6fP9f"5 —6fP° fI" if Ry =
A(p,q,r.s), Where f € A%, fP9 = (f, &P Ael) and eP = yPeg,.

(7.9)
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7.3. Let us show a structure of V from a viewpoint of real analysis for the case n =
2,3, 4. An arbitrary element .4 of V is of the form

n
(7.11) Ay = ZfaE(a,a) - Z hpaEp.a)s  hgp =hpq,
a=1 1<p<g=<n
where fg, hpq are real-valued functions of class C*°. Condition x.4 = 0 is equivalent to
(7.12) xdivides Y xPhpy and fa= Y xPhpe/x® (1<a<n).
p(#a) p(#a)
If n = 2, there exists a function ¢ which we can prescribe arbitrarily such that
(7.13) he=x's%0, fi=0D%, fr=0".

Therefore, V' is isomorphic to C .
If n = 3, let (a, b, ¢) be any one of (1,2, 3), (2, 3, 1), (3, 1, 2). Then,

hpe = xPx°0a (X, x°) + X (P, + xYe — xYa) ,
fa = (PPe(x?, xP) + (x)?@p (x¢, x) + 2xPx Y,
where ¢, and v, are of two and three variables, respectively, which we can prescribe ar-

bitrarily. So, V' is isomorphic to the direct sum of C3 5, C% ,, C} , and three spaces
C)cc,?,xz,x3'
If n = 4, then f, and h, are of the following form:

fa = Z (xp)2¢ap + Z Z xpxqea,pq + 2(x]x2x3x4/xa)a)a s

(7.14)

p(#a) p(#a) q(F#a,p)
(7.15) hpg = xPx9gpg+ Y x(xPOy g1 +x964 p1 — x'61,pg)
I(#p.q9)

+x"x*2xPwp + 2x9wy — x"wr — x* w5 + Kkpg) .

Here, ¢pq(x?, x9) (= @4p) are functions of two variables, 6, 4-(x?, x9,x") (= 6),,4) are
of three variables and wy, kp, are of four variables. «p, satisfy k,; = kqp = kys and
Kpq +Kpr +Kps = 0if p, g, r, s are distinct. (p, g, r, s are distinct in the last sum on the right
hand side of the equation for % ,,). We can prescribe ¢4, 8 4r, @, and k12, K3 arbitrarily.
Therefore, V is isomorphic to the direct sum of six spaces of functions of two variables,
twelve spaces of functions of three variables and six spaces of functions of four variables.

REMARK 7.1. Kowalski and Belger [KB] obtained a very precise result in the real an-
alytic framework by taking into account of all commutators as [V, V;], [[Vk, V], V], - - -.
We might say that our V is a C* version of tensors {R ®) 152, introduce in [KB]. Commutator
relations are implicit in our framework.

A. Preliminaries on ordinary and partial differential equations. Let M, be the
ring of n x n real matrices as above and C kM, (0 < k < 00) be the set of functions of t with
values in M,, of class C* in an open interval containing t = 0. We do not specify the interval
of ¢ in what follows.
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Let £2 be a star-shaped open neighborhood of x = 0 in R”. Denote by Cck(2, M,,) the
set of functions of x of class C¥ in £2 with values in M,,.
A.l. Givena @ € C°M,, find an element U of C! M,, which satisfies

(a.1) U'ty=U0@mno(@), U0 =I.

This is interpreted as an integral equation of Volterra type. The series
t
U=IT4J1+ I+ (J[U](t) = / U(s)CD(s)ds)
0

converges, |U(1)|| < exp{ltlo(1zD} (p(I2]) = sup{l| @ (s)|l; —Iz] <s < |t]}), and it is a unique
solution to U = I + J[U] in the space C°M,,. So, it is a unique solution to (a.1) in the space
C' M,,. We can verify that U € C¥*' M, if ® € C¥M,, (0 < k < c0).

The next question is to write down the Taylor series of U assuming that of @. We set

N N
() =) "Puy1 + 0N, UG =Y 1" Un+ 0N,
m=0 m=0

The recurrence relation for {U,,} is as follows:
(a.2) Up=1, Um=;ZU#¢m_# (m=>1).

PROPOSITION A.1. We have Uy = I and form > 1

(0-31) = Z Z dr[rzmrh ¢r1 d)rh s

>l ry+trp=m

where

(a.32) dryryery = 1/ 1_[ Zrl

p=l j=
This is proved by induction with respect to m.
A.l'. Givenan A € CK(£2, M,) (k > 1) such that A(0) = O, find an element U of
Ck(£2, M,,) which satisfies

(a.1) YUX) =UX)AX), UWO)=1.

Let an element U/ of C'(§2, M,,) be a solution to (a.l). Forx € 2 and0 <t < 1, we set
U(t,x) = U(tx), &(t,x) = (1/t)A(tx). Then U(-, x) is a unique solution to (a.1) in the
space C I M,, and it is of class C¥ with respect to x in £2 provided that 4 € C k2, M,) and
A(0) = 0. So, U is a unique solution to (a.1’) in the space C¥(£2, M,) (k > 1).

A2. Givena ¥ € C!M, and a real number « greater than —1, find an element V of
C?M,, which satisfies

(a.4) tV' O +Q+)V@e)y=Ve)w@E), VO =I.
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This is rewritten as an integral equation V = I + K[V, where

— QK

1
K{VIi@) = tf ke (@)V (61)W (61)d6  with k. (0) = ! ifk #0, ko9 = logé.
0

A scalar equation tv”(¢) + (1 + «)v'(¢) = v(¢), v(0) = 1, has the solution
o0
(a.5) v(t) = I+t 1 L(Va) =Y T +6)/GITG +1+K)),
j=0
where I, (z) is the modified Bessel function (see [Wa]). The series
V=I+K[+K* I+

converges, [V ()|l < v(ltly (I2]) (¥ (It]) = sup{|¥ (s)|l; —|z| < s < |¢]}), and it is a solution
to V = I 4+ K[V], which is unique in the space C°M,,. So, it is a unique solution to (a.4) in
the space C2M,,. Furthermore, V € CK*' M, if ¥ € CkM,, (1 < k < 00). We set

N N
W) =) "Wusr + 00N, V@O =) "V + 0V,

m=0 m=0

The recurrence relation for {V,,} is as follows.

1 m
(a.6) Vin = m; Vim—pWy (m=1).

PROPOSITION A.2 ([Giil], [Gl2, Appendix 1]).

m
(@.71) o=1, Va=)_ Yo anmen ¥ W, (m21),
h=1

rizl,ry+-trp=m

where

h
(@.7) arryery = | [ * (
u=1

This is verified also by induction. We find neither (a.3) nor (a.7) in any textbook of
ordinary differential equations. (6.2) is equivalent to (a.7), which must be a useful discovery
by Glinther.

A2'. Givena B € Ck(£2, M,) (k > 2) such that B(0) = O and a real number «
greater than —1, find an element V of C k(£2, M,,) which satisfies

- 1
il, A(r) = .
g K ") r2+kr

Jj=1

(ad4) YYV(x)+«YV(x) =Vx)Bx), VO)=I.

Let V of C%(£2, M,,) be a solution to (a.4’). Forx € 2 and0 <t < 1, we set V(¢,x) =
V(tx), W (t, x) = (1/t)B(tx). Then V (-, x) is a unique solution to (a.4) in the space CZM,,
which is of class C* with respect to x in £2 provided that B € C*(2, M,) and B(0) = 0.
So, V is a unique solution to (a.4’) in the space C k2, M,,) (k > 2). See Section A.3’ for
detail on higher order smoothness.
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A3. Givena P € C' M, such that P(0) = O and a real number « greater than —1,
find an element N of C!' M,, satisfying

(a.8) IN'(t) + kN(t) = P(t) + N(t)*>, N©)=0.

In the linear theory of regular singular points, we assume any condition on neither P(0) nor
N (0) (see Sibuya [Si]). However then, N (0) is not determined because of the non-linearity.
We are interested only in the case where P(0) = N(0) = O. N satisfies an integral equation

1
(a.9) N =L[P+N?, where L[Q](t) = / 6~ Q(61)db .
0
Scalar equation tn'(¢) + kn(t) =t + n(t)2, n(0) = 0, has the solution (see (a.5))

@10) 1) = Vet VA I (A = 0 (=D o) = ) o,
=i 4t

where {c,,}‘;"=I are positive zeros of Ji (z) (see [Wa, p. 498, equality (3)]). Taylor series of
n(t) is of positive coefficients and convergent if |¢| < cf /4. Set

No=L[P], Njz1=L[P+Njl, N@ = lim N;@).
j—o0o

Then, N (t) converges, [|N(1)|| < n(|t|p({z])) (p(|t]) = sup{| P'(s)I; =|t| < s < |t]}), and it
is a unique solution to (a.9) in the space C' M,, as long as |t|p(|t]) < c% /4. So, it is a unique
solution to (a.8) in the space C!' M,,. Uniqueness follows from Lemma 2.2. Furthermore,
N e CkM, if P € C*M, (1 <k < c0).

We set

N N
Pty =) t"Pu+ 00", N@) =) t"Nu+0@tIN?).

m=1 m=1

The recurrence relation for {N,,} is the following.

1 1 m—1
(a.11) Ni=——P, Nm=——(Pm+ZN,1Nm_#) (m=>2).
1+« m+ Kk =

N,, can be written as

m
(a.12) Nm=)_ Criryry Pry Pry -+ Py (m > 1)

h=1 rj=l,ri+-+rp=m

A formula for cy,,...,, will be given in Proposition A.3 below. The notation in (a.13) is
defined in the following way. For the moment, a set of consecutive r integers is said to be
an interval of length r. Given a positive integer &, we set H} = {q}2=|. By induction with
respect to 4, we are going to construct a sequence A = {H p}f}h: '11 of non-empty subintervals
Ha, ..., Hy,—1 of Hy, and denote the set of all A’s by Zj,.
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Ifh =1, weset A = {1}, Iy = {{1}}. If » > 2, we take an arbitrary positive integer
J smaller than h, set H, = {q}f]=l and Hpjy = {q}z They are of lengths j and h—

J, respectively. Let {H p}f,j

=j+1"
, be an element of Z; consisting of non-empty subintervals of

H, obtained by induction hypothesis, and {H ,,}i";zb. +1 be an element of Z,_; consisting of

non-empty subintervals of Hj; obtained by induction hypothesis. In this way, we obtain an

element A = {Hp}ff’:"ll of Zj.

If A € Iy, then A contains {1}, {2}, ..., {h}. If Hy € A is of length r and r > 2, then
{H p}';*j(’ 2¢ Z, and Hiy1, ... , Hiyor—2 are non-empty subintervals of Hy. If H,, H, € A

and p < g, then either H, is a proper subinterval of H, or H, N H; = {.
The number of A’s contained in Zj, is equal to

2h —2)!
(h—1Dh!-
PROPOSITION A.3. Forevery(ry,...,rp) withrj > 1,
-1
(a.13) Crirgery = Z l_[ (K + Z rj) = Cry-ryry -
A€, HeA jeH

PROOF. N;| = (1/(x + 1)) P; from (a.9). Assume (a.12) for all m and we prove (a.12)
by induction with respect to 4. The term with 2 = 1 comes only from L[P] on the right hand
side of (a.9). So, ¢, = 1/(k + r) for all r > 1, proving (a.13) for ~ = 1. Suppose that h > 2
and that (a.13) is true up to h — 1. Terms with k indices come only from L[N?] and

1 h—1
Crirgeery = — Zcruz---r-cr' 1lh e
1 h K+rl+...+rhj=l Jri+

Induction hypothesis applied to ¢, r,...r i and Criy1erh shows (a.13) for A. q.e.d.

A.3. GivenaC € C*(2, M,) (k > 1) such that C(0) = O and a real number «
greater than —1, find an element N of Ck(£2, M,,) which satisfies

(a.8)) YN@) +cNx) =Cx)+Nx)?, N©O)=O0.

There exists a star-shaped neighborhood §2’ of x = 0 contained in 2 such that NV is unique in
the space Cl(£2', M,,) and obtained by applying (a.8) to N(t, x) = N(tx), P(t, x) = C(tx).

Let us verify that A is of class Ck. This is true possibly except at x = 0 because Y is
hyperbolic except at x = 0. For a non-zero real number A and a constant vector a € R", set
Ni(x,a) = (N(x + ra) — N'(x)}/A and Cy (x, a) analogously. (a.9) implies that

1
./\/';\(x,a)=/ 0%{Coar (Ox, a)+Nax(0x, a)N (6x)+N (0x) Ny, (0x, a)+0A Ny, (0x, a)*}d6 .
0

For any ¢ satisfying 0 < & < (k+1)/2, there exists a positive number § such that |V (x)| < ¢
if |x| < & because N'(0) = O. For a, ¢, 8, x, 0 fixed, Cpp (6x,a) — a*(8;C)(Ox) asA — 0
because C is of class C' by assumption. Contraction mapping argument shows that NVj (x, a)



552 N. SHIMAKURA

remains bounded as long as |A| is small and has a limit as A — O (for a smaller § if necessary).
The limit is equal to a* 3, (x). So, NV is of class C! in the ball |x| < & and

1
BN (x) = f 0°{(8;C)(0x) + (3 N)(Ox)N (0x) + N (0x)(3;N)(0x)}d6 ,
0

or
YN + (k + DON = 85C + (3 NN + N (9 N) .

We can repeat this procedure k times because « simply augments by 1 each time we differenti-
ate \V. Finally, N € ck’, M) provided that C € Ck(.Q’, M) and C(0) = O. Therefore,
N is a unique solution to (a.8") in the space ck(2’, M,).

A.4. Real analyticity of solutions. Suppose that we have a matrix-valued power series
P(1) = 27020 t/®; and a scalar power series ¥/(t) = Z?‘;Otfwj. We say that ¢/ is a
majorant series of @ and denote ® K ¥/ if ¥; > 0 and if |@;|| < ¢, for every j. If

Y converges absolutely in a disk {r € C;|t| < p}, then @ converges in norm and it is
holomorphic in this disk. And hence @ is real analytic in the interval —p <t < p.

PROPOSITION A.4. If A (or B) is real analytic in a star-shaped neighborhood 2 of
x = 0, then the solution U to (a.1’) (resp. V to (a.4)) is also real analytic in 2. If C is real
analytic in 2, then the solution N to (a.8') is real analytic in a star-shaped neighborhood $2’
of x = 0 contained in S2.

PROOF. We can find the solutions to equations (a.1), (a.4) and (a.8) in individual cases
involving a constant w:

U@ =uo®I if () =@o®), V() =vo()] if ¥ (1) =vho()],

(a.14)) .
N(t) =no(t)] if P(t) = po()I,
where
(a.147) ,
! _ M _ __atbh
uo(t) = — wo(t) = — vo(t) = 1= pryeri” Yo(t) = a—un?’
1
ro0) = 1l_ﬂm’ po(t) = (_1%% a=1+u, b=1+0u.

Also, we remark that the coefficients dy,...,, in (a.3), ay,...r, in (a.7) and c;, ..., in (a.12) are
positive. Therefore, if u is a positive number, we can prove that

U Kup®) if @) K po()I, V() Kvo) if W) K Yo)],

(a.15) .
N(@) < no@t)] if P(t) < po(t)I.

Next, given matrix functions A, B, C, which are real analytic by hypothesis, for equations
(a.1), (a.4), (a.8"), respectively, we can choose a positive number y in such a way that
Ax) € gox! + -+ xMI,  Bx) < Yol + - +xM1,

(a.16)
C(x) € polx! + -+ +x™M1I,
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respectively. Applying (a.15) to this, we see that
UX) Kugx! +-+xMI, V&) vl + - +xMI,

(@17) N@x) € ngx! +---+xMI,

respectively. Consequently, U, V, N are real analytic in the star-shaped neighborhood x4+
<o+ + |x"] < 1/u of x = 0 (see Petrovsky [P]). q.e.d.

REMARK A.l. The domain of definition of N (¢) is in general smaller than that of P(t)
because of the non-linearity of (a.8), although they coincide in (a.14).

For a fixed p (p # 0), suppose that R(¢p) be of class C* or real analytic in an interval
0 <t < Tj, the solution N (¢p) to (2.4) be of class C* or real analyticin 0 < t < T», and
that T}, T, be optimal. Naturally, 0 < T» < T;. On the other hand, S(¢p) is of class C™®
or real analytic in 0 < ¢ < T because (2.5) is a linear equation, and S(zp) is non-singular
for small ¢ because S(0) = 1. From (2.1), N(tp) = —tS(tp)~1(8/81)[S(tp)]. Therefore,
detS(T,p) = 0if T, < Tj. For example, T} = +o0 for v(—t) and T» = c%/4 for n(t) (see
(a.5), (a.10)). T; is the smallest positive zero of v(—t) (see also (5.4)).
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