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NORMAL COORDINATE SYSTEMS FROM A VIEWPOINT
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Abstract. Normal coordinate systems for pseudo-Riemannian metrics are investigated
from a viewpoint of the theory of partial differential equations. Given a cartesian coordinate
system x, a local metric for which x is a normal coordinate system is determined by a metric
tensor at the origin and any one of certain three matrix functions. These are related one another
by three partial differential equations. Solvability of these equations in C°° framework and
power series expansion of solutions are discussed.

Introduction. In a pseudo-Riemannian manifold (M, g) of class C°°, let x =

(JC1, . . . , xn) be a normal coordinate system for g with origin at an arbitrary fixed point o

of M. If we expand the covariant metric tensor gab into power series of x, every homoge-

neous degree part is an invariant polynomial. It depends neither on the dimension of M nor

on the signature of g, and the coefficients are polynomial functions of the Riemannian cur-

vature tensor and its covariant derivatives evaluated at o. Expansion was already written in

Cartan's book [C, p. 243] up to the third degree. Herglotz [H] showed a principle of higher

degree expansion. Sakai [Sa] obtained an expansion of the volume form άct(gabΫ^2 up to the

sixth degree and applied it to an iso-spectral problem (see also Berger-Gauduchon and Mazet

[BGM], Gray [Gr], Willmore [Wi], Gilkey [Gi]). It was Gunther [Giil] who gave a definitive

result for gab with explicit formula for general terms.

Gunther was motivated by his own work on the Huygens principle for hyperbolic oper-

ators of the second order ([GU2]). The minor premise of the Huygens principle is realized

in a short time interval if and only if a particular Hadamard coefficient vanishes identically.

Also, this in turn is equivalent to a set of an infinite number of equalities on coefficients of

the operator. Hadamard coefficients which appear in elementary solutions are common to

elliptic, parabolic and hyperbolic operators. So, several problems in analysis and in geometry

are relied upon the study of the same objects. The 0-th Hadamard coefficient is essentially

equal to | det(^α^)|~1/4 and higher order ones involve also the contravariant metric tensor gab,

I d&(9ab)\±l^2 and their derivatives. So, we need a unified treatment of gab, 9ab and several

powers of |det(#^) | .

In the present article, we define auxiliary n x n matrix functions λί, 71, S of class

C 0 0 from a given covariant metric tensor G = (gab)n

a b=\ (Section 1). λf comes from the

Levi-Civita connection, ΊZ is a part of the curvature tensor and S consists of coefficients
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representing a standard basis of tangent vectors by means of basic Jacobi fields. They solve

the following partial differential equations (see Section 2):

(1) YS = -Sλί,

(2) YYS + YS + SΊZ = O,

0)

where Y = xsd/dxs is the Euler vector field and O is the zero matrix. Near the origin, \\G-

G(0)||, ||Λ/Ί|, \\n\\, \\S-I\\ are of O(\x\2) (/ is the unit matrix). By the Prufer transform (1),

the Sturm-Liouville type equation (2) is translated into the Riccati type equation (3), and vice

versa. Covariant metric tensor is represented as

(4) G=SG(0) 'S.

To give a metric g is equivalent to give G(0) and any one of ΛΛ ΊZ, S. This is our main

result (Theorem 4.1). For example, if ΊZ is given, we can find S by solving (2) and we have

G from (4). If one of λί, ΊZ, S is real analytic, then others are, too, and g is real analytic

(Corollary 4.1). We can formulate the separation of variables for (1), (2), (3) (Corollary 4.2).

Since differentiations are generated only by 7, (1), (2), (3) are reduced to ordinary differential

equations

(5) U'(t) = U(t)Φ(t), 1/(0) = / ;

(6) tV"(t) + 2V'(t) = V(t)Ψ(t), V(0) = /

(7) tN'(t) + N(t) = P(t) 4- N(t)2 , P(0) = N(0) = O ,

respectively, where Φ, Ψ, P are given and U, V, N are unknown. Existence, uniqueness and

smoothness of solutions to (1), (2), (3) are reduced to those of (5), (6), (7) with parameters

x (Section A). If we know the Taylor series of Ψ(ΐ) at t = 0, we can write down the Taylor

series of V(t) (see (α.7)). Applied to Ψ(t) = -(l/t)ΊZ(tx), V(t) = S(tx), this is nothing but

the Gunther formula (6.2). We can also represent the Taylor series of Λ/* by means of ΊZ (see

(β.12), (α.l3), (6.5)). Real analyticity is guaranteed by simple majorant series (see Section

A.4). λί exploses eventually on the set {x; det<S( t) = 0} (see Remark A.I). Since

(8) n o g | d e t ( ^ ) | = -2trΛΛ

we can expand any power of | det(pfl^)| in a unified way (see (6.7)). Expansions in terms of

λί are much simpler than those in terms of ΊZ. The author, however, does not yet understand

the geometrical meaning of λί.

It should be noticed that Y and Y2 are hyperbolic except at the origin and are degenerate

in all directions at the origin (see Petrovsky [P]). They are not of the Fuchs type in the sense

of Baouendi-Goulaouic [BG] but of the Euler type if they are to be labeled.

We are very much inspired by a work [KB] of Kowalski and Belger. They showed how

to construct a real analytic metric when prescribed are values of the curvature tensor and all

its covariant derivatives at o.
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One of remaining questions in this article is to investigate the structure of the space

V of matrix functions (see Sections 3, 7). Application of our framework to the Hadamard

coefficients will be the subject of a forthcoming paper.

1. Notation and preliminaries. Given a pseudo-Riemannian manifold (M, g) of di-

mension n, let TM be the tangent bundle of M. The Levi-Civita connection on ΓM is de-

noted by V. The curvature tensor R : TM x TM -> End(ΓM) is defined to be R(ξ, η)ζ =

[V ,̂ Vη]ζ — V[£iη]ζ. Given a local coordinate system x = (JC1, . . . , xn), we denote 3y =

3/3JC7, gjk = g(dj, dk) and V7 = Va r Then, components of V and R are given as follows.

(l.l)l Vsdj = Γs

kjdk , R(da, ds)dr = RKash , Rbras = 9bcRCras ,

where

Γfk = (\/2)fb{djgkb + dkgjb - dbgjk),
^ ' '2 Όb s r ' b \ Γ ' h r b a r» b r< h r< b

K ras — Va1 s r ~r 1 s r1 a h ~ ^s1 a r ~ i a r1 s h >

and the summation convention is used.

Let o be an arbitrary reference point of M. A local coordinate system x with origin at o

(x = 0 at o) available in a neighborhood of o is said to be normal if and only if

(1.2)i, (1-2)2 xk9jkW=xk9jk(P) or x'xkΓja

k(x) = 0.

(1.2)i and (1.2)2 are equivalent. In a normal coordinate system, the Euler vector field Y =

xs ds is of special importance. Every geodesic emanating from o is written as x = tp with

real parameters pj satisfying ( p 1 ) 2 + + (pn)2 = 1. Then, (Yf){tp) = (td/dt){f(tp)}

for any real-valued function / . So, Y is tangential to the geodesic from o to x. For a matrix

function U = (Mα&) or (ua

b), we define Fί/ to be {xsdsuab) or ( x ^ w ^ ) , respectively. A

smooth function / is a homogeneous polynomial of degree m if Yf = mf.

From now on, we fix a normal coordinate system x with origin at o. So, JC is simply a

cartesian coordinate system in Rn and we work in a neighborhood of x = 0 . We introduce

certain n x n matrix functions.

(1°) Metric tensor. Denote G = (gab(x))%=v G~ι = (gPb(x))%=ι,

r
n = Gy-ι=(gas(x)ysbrab=ι,

where yβ* = </^(0), γab = gab(0).

(2°) Jacobi fields. Let XΛ be the parallel transport of (8A)O along geodesies emanat-

ing from o in such a way that Vy XA — 0 (1 < A < n). If we set

XA = τA

j(x)dj and 3 ; = σ /

then OΓ/TΛ* = δ/, τ Λ

y σ / = δA

B, σ/(0) = ί/, τΛ

y(0) = ίAΛ We denote

(1.4) $ = (σjA(x))lA=ι , so S~ι = (τB

k(x))n

Bk=λ .
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(3°) A part of the Levi-Civita connection. We set

λί = (λίA

B)n

A B=ι , λίA

B = -τA

a(x)xsΓs

b

a{x)σb

B(x),
(1.5) ' ,

•/V — \JM a )a,b=\ — δJvO , yv a — — X I s a{X) .

λί defines an endomorphism £ -* ξλί(ξAXA -> ξBλίB

AXA o r £ ' % -+ - £ / α V r ^ ) o f ΓM.

(Restriction of λί to the orthogonal complement of x, identified with a coordinate vector, may

be related with the shape operator of a geodesic sphere because our (2.4) below is analogous

to the equation (2.10) of Kowalski-Belger [KB]).

(4°) A part of the curvature. Let [X*A}n

A=χ C T*M be the dual basis to {XA}
n

Az=v

that is, {XA, X*B) = δA

B, where (,) stands for the duality. Then, we have

xA

a(x)xrxsRb

ras(x)σb

B(x) = {R(XA, Y)Y, x / ) .

So, we set

(1.6) U = ((R(XA, Y)Y, X*B))%B=I '

where Y = xsds. H represents tf( , Y)Y e End(7M) (ξ1Z = R(ξ, Y)Y).

REMARK 1.1. If x and x are two normal coordinate systems with the same origin for

the same metric, the transformation x -> x is linear: x = xT (xa = xsts

a), say, with a

constant, non-singular real matrix T = (ts

cc)n

s a=zl. (Coordinate vectors are always regarded

as row vectors in this article). If γ, G, H, λί, H, S are defined as above with respect to the

coordinate system x, the law of transformation is as follows.

(1.7) y = TytT, G = TG'T, A=TAT~ι for A = H, λί, Ίl or S.

On the other hand, Y is invariant, xsd/dxs = xad/dxa. Therefore, analytic or geometric

considerations in what follows are the same in any normal coordinate system. In particular,

partial differential equations derived in Section 2 are invariant under change of variables from

a normal coordinate system to another normal coordinate system.

(2,1)

(2.2)

(2.3)

(2.4)

(2.5)

2. Relationship

LEMMA 2.1.

,(2.10

between

YG =

G =

two of H, λί, Ίl,

YS = -Sλί =

: -Iλf'G and .

= SytS or H =

Yλf + λf = π-

s.

-N'S

= Sytά

YYS + YS + S1l= 0

PROOF. (2.1) Since Vsdj = Vs(σjAXA) = (dsσjA)XA +σjAVsXA = Γs

kjdk =

Γs

kjσk

AXA, we have (3 5 σ/ - Γs

kjσk

A)XA + σjAVsXA = 0. This implies Yσj

A =

xsΓs

kjσk

A because VYXA = 0, which proves (2.1;) and (2.1).
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(2.2) We multiply xs to both sides of 2ΓS

C

agcb — dsgab = ^a9sb — ^b9sa Since

xsdagsb = Yab ~ 9ab = xsh9sa in view of (1.2)i, we have (2.2).

(2.3) Set G' = G - Sγ {S. Then, YGf = ~MfGf - G' W and G'(0) = O. We apply

Lemma 2.2 below with A\ = Aι = O and K = r = 0 to see that G' = O.

(2.4) Multiplying xrxs to both sides of (1.1)2, we have FΛΛ + Λ/7 = n'+λf'2, where

W = (* r * s /?*r α J )^ = i = SΊZS~\ Rewriting this with the aid of (2.1), we have (2.4).

(2.5) Y(YS + <SΛ/*) = O by (2.1). Applying (2.4) to this, we have (2.5). q.e.d.

We state the lemma assumed in the proof of (2.3). Let Mn be the ring ofn x n real

matrices endowed with the norm ||Λ|| = sup{|υA|; υ e Rn, \v\ < 1}, where | | stands for the

Euclidean norm. Zero and unit matrices are denoted by O and /, respectively.

LEMMA 2.2. Let rbea non-negative integer and T be an Mn -valuedfunction of class

C r + 1 in a star-shaped neighborhood Ω of x = 0 satisfying a partial differential equation

(2.6) YT + KT = A\TA2 + A^T + TM ,

where K is a real number, A\, . . . , A4 are Mn -valued functions of class C 1 in Ω such that

,A3(0) = Λ^(0) = O, and, A\ (0) = O or A2Φ) = O. If T and all its partial derivatives up

to order r vanish at x — 0 and ifκ+r-\-\ > 0, then T is identically equal to zero in Ω.

PROOF. Set K' = K + r, F(t) = ΓrT(tx) and Aj(t) = Aj(tx). Then,

= /
Jo

F(t)= / θκ'-\AχFA2 + A3F + FA4)(θt)dθ .
J

Ifwesetα(ί) = (||Ai(0lll|A2(0ll + l|A3(0ll + ||A4(0ll)/|ί|, then

||F(ί)ll <|ί| ί θκ'a(θt)\\F(θt)\\dθ.
Jo

This implies | |F(ί) | | = 0 as long as tx e Ω, so T is identically equal to O. q.e.d.

The reasoning fails if K + r is a negative integer. For example, T(x) = (xι)pI solves

YT — pT — O (p = 1, 2, 3 , . . . , K = —p, r = p — 1). Remark also that the lemma can be

applied to functions with values in row vectors if we set A\ = A2 = A3 = O.

3. Construction of a metric from γ and one of Λf, 71, S. In what follows, we fix

a constant, real, symmetric, non-singular matrix γ. Given a matrix function A = A(x) =

(a/\x))" s={ of class C 0 0 , the homogeneous part of degree p in the Taylor series at x = 0 is

denoted by A(P).

DEFINITION 3.1. Let V be the real vector space ofnxn matrix functions A of class

C°° in a neighborhood of x = 0 satisfying

(3.1) Ay = γtA and xA = 0,

that is, ar

h{x)γhs = Yrh&sh(χ) and xhahs(x) = 0. Let V(p) be the linear subspace of V

consisting of A such that A = A(p). IfAeV, then A{P) e V(P) (p > 0).

We shall show in Lemma 7.1 below that Vfy) = {0} and V(D = {O}.
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3.1. We have four matrix functions H, M, ΊZ, 5 of class C°° in a neighborhood of the

origin. First of all, let us enumerate some properties of each one not involving others.

LEMMA 3.1. Letγ,H,M,ΊZ,S be matrices defined in (1.3) through (1.6). Then, they

satisfy (h), (n), (r), (s) respectively as follows:

(h), (n), (r) H- I eV; M eV; ΊZeV;

(s) 5(0) = / , 5(i) = 0, (YS)γtS = SγXYS) and xS = x.

PROOF. (1°) Obviously H{0) = 5 ( 0 ) = /, M{0) = ΊZ(0) = ΊZ({) = O. H{\) = M{]) =

O because djgab(O) = Γa

b

5(0) = 0, so 5(i) = -λί(\) = O from (2.1) and Ίίγ = G = ιG =

Y'H.

(2°) We set 5 = (YS)γ 'S - Sγ '(75), Λί=γW- My, ΊZ = ytΊZ-ΊZy. Then,

(3.2)i, (3.2)2, (3.2)3 YS^S = SΊZtS, S = SMtS, Yλί + Λί = MM + MtM + ΊZ,

(3.2)4 G{ri -ΊZfG = SΊZtS,

where ΊZf = SΊZS~ι. From (3.2)4, we see that ΊZ = O because Ίl'G = (xrxsRbras)n

a b=zX is

symmetric. Then, S = O by (3.2)i and Lemma 2.2 with Λj• = O, K = r = 1. AndΛ/* = O

by (3.2)3.

(3°) First, xH = x from (1.2)i. Second, xM' = 0 from (1.2)2, so xSM = 0 from

(1.5). If we set η = x — xS, we have Yη — η = xSM = 0. We can apply Lemma 2.2 with

Aj• = 0 , K = - 1 and r = 1 to have η = 0 or xS = x. Third, xM- = xSM = 0. Fourth,

xΊZf = 0 because Rb

ras = -Rb

rsa. So, c π = xS~ιnfS = xΊZ'S = 0. q.e.d.

REMARK 3.1. (s) implies also xγ fS = xγ (In fact, if we set ζ = xγ fS - xy, then

xS = 0 reduces to Yζ = ζ because xS = x. So ζ = 0 by Lemma 2.2 as above).

3.2. Next, we discuss ΛΛ ΊZ, S apart from their geometrical meanings.

LEMMA 3.2. If we give a y and any one of M, ΊZ, S of class C°° in a neighborhood

ofx = 0 and satisfying (n), (r), (s) respectively, we can define, in a unique way, others which

satisfy (2.1), (2.4) and (2.5).

PROOF. (1°) Given an element Λί of V, we define ΊZ by (2.4). Then, ΊZφ) = O,

n{X) = 2M{\) = O and xΊZ = xYΛί = F(JCΛO - (Fjt)Λf = K0 - JC/V = 0. Also ΊZ = O in

view of (3.2)3, so ΊZ e V.

(2°) Given an element ΊZ of V, there exists a unique 5 satisfying (2.5) and 5(0) = /

(see Section A.2r). We have 5 ( 0 ) = /, 2 5 α ) = -5 ( 0)ft(i) -5(i)7£(o) = 0 . Next, η = x -xS

satisfies YYη - Yη + ηΊZ = 0. This means that z" = z/?(f) if we set z(t) = τy(ίjc) and

/?(ί) = -( l/ ί 2 )^( ί jc) . /?(ί) is continuous near t = 0 and z(0) = z'(0) = 0. Therefore, z(t)

is identically equal to zero, so η is zero. Finally 5 = O by (3.2)j. Hence 5 satisfies (s).

(3°) Given an S satisfying (s), we set Λί = -5" 1 F<S. Then, M(o) = O, M(\} =

-5(0)5(1) = OznάxM= -xS~ιYS = -xYS = (Yx)S-Y(xS) =xS-Yx =x-x = 0.

Furthermore, Λί = O by (3.2)2. Therefore, M eV. q.e.d.
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REMARK 3.2. (i) Given an element Λί of V, we can find a unique S satisfying (2.1)

and «S(0) = / (see Section A.I'). This 5 satisfies also (s).

(ii) Given an S satisfying (s), we define ΊZ by (2.5). Then, ΊZ belongs to V.

(iii) Given an element ΊZ of V, there exists a unique solution λί to (2.4) such that

λί(0) = O. We make there use of the argument in Section A.3'. Λί belongs to V.

REMARK 3.3. The vector space V is also a module over the ring of real-valued func-

tions of class C°°. Furthermore, if A, B e V, then YAe V and AB + BA e V as is easily

verified.

4. Main result.

4.1. The following is the main result of this article.

THEOREM 4.1. If we give a constant, real, symmetric, non-singular matrix γ and any

one of the matrix functions λί, ΊZ, S of class C°° satisfying (n), (r), (s) respectively, we can

define a unique pseudo-Riemannian metric g = gabdxadxb of class C°° in a neighborhood

ofx = 0 related with λί, ΊZ, S by (2.1), (2.3), (2.4) and (2.5). x is a normal coordinate system

with respect to g and gabΦ) = Yah-

PROOF. If we give γ and one of Λί, ΊZ, we have S satisfying (s) as in Lemma 3.2, so we

setW = Sγ'Sγ-1. Then, W(0) = /, W(i) = S(i) + yί<S(i)K~1 = 0,xH = xSγ^γ'1 =

xγ tSγ~ι = xγγ~x — x (see Remark 3.1), soH — I € V. If we set G = Ήγ, it is symmetric,

G(0) == γ, and G satisfies (1.2)2, so x is a normal coordinate system for this metric. q.e.d.

COROLLARY 4.1. If any one of λί, ΊZ, S is real analytic in a neighborhood Ω of

x = 0, the metric g is real analytic in a neighborhood Ω! of x = 0 contained in Ω.

PROOF. We refer to Proposition A.4 below. If ΊZ is real analytic, the solution Λί to

(2.4), Λί(0) = O, is real analytic. If λί is real analytic, the solution S to (2.1), <S(0) = /, is

real analytic. If S is real analytic, G = Sγ fS is also real analytic. q.e.d.

4.2. Let us remark a functorial property. A constant real matrix π = {^ab)n

a b=\ is said

to be a γ-projection if π2 = π and πγ = γιπ (πa

cπc

b = πa

b,πa

cγct, = Yac^bc)- If TΓ

is a γ-projection, / — π is, too. We suppose that π is proper, that is, O φ π φ I. Given

also a metric g satisfying G(0) = γ as above, we define Gβ to be Gp(x) = pG(xp) fp for

p = π and for p = I — π. Gp defines a metric gp on Imp = pRn, whose metric tensor

is independent of x — xp. A γ -projection π is said to decompose g if g = gπ + gi-π or

G = Gπ + GI-π.

Given also a matrix function A = (Aab(x)n

a b = v we define Ap to be Ap{x) — ρA(xρ)p

for p = π, I — π. A γ-projection π is said to decompose A if A = Aπ -\-Aj-π. Let us show

that the separation of variables works also in the non-linear equation (2.4).

COROLLARY 4.2. Ifπ is a γ-projection, then the following three conditions are equiv-

alent:

(a) 7Γ decomposes any one ofλί, ΊZ, S.

(b) π decomposes λί, ΊZ and S.
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(c) π decomposes g.

PROOF. Let p be π or / - π. The Euler vector field splits as Y = Yπ + Yi-π, so

YAP = (YΛ)P = YpΛp. If 7Γ decomposes 72, then A = λίp is a solution to F.4 -f .A =

72p + vΛ2, .4(0) = (9, which is unique by Lemma 2.2 and π decomposes ΛΛ If π decomposes

λί, then β = Sp is a unique solution to YB = —Bλίp, B(0) = p, and π decomposes <S. If

7Γ decomposes <S, then G p = 5 p y *SP and π decomposes G. If π decomposes G, then π

decomposes λί, 71 and S, too. q.e.d.

There are many /-projections. Note that the space of /-projections is non-compact if /

is indefinite.

5. Examples. If / and one of ΛΛ 1Z, S are given, Theorem 4.1 allows us to construct

local metrics satisfying gabΦ) — Yab with respect to which x is a normal coordinate system.

5.1. If one of H - /, λί, U9 S - I belongs to a V{p) (p > 2. see Definition 3.1), others

are obtained by a simple power series calculus.

IfH-I e V(P),then

lϊS-I e V(P),then

(5.2) M = p(S~ι - I), U = (p2 + p)(S~ι - I), G = S2γ .

IfΛ/Έ V(P),then

(5.3) S = e-
(l/p)λί, n = (p + l)λί - λί2 , G =

If 72. G V(P),then

(5.4)! S = σ(Ίl), λί=v(Tl), G=σ{Ίl)2γ,

where

(5.4)2

and Jv(z) is the Bessel function of order v (see Watson [Wa]).

(-z2/4)k

If, in particular, p = 2, then σ(z) = (siny/z)/y/z. Also, if 7^ is a constant multiple of /*

defined in (5.5) below, then g is of constant curvature.

Note that S — I does not belong to V in general. For example, 5(5)/ Φ γ r<S(5) if

72(2)72.(3) 7̂  72.(3)72(2), so «S — / ^ V (see (6.2), (β.7) below in which #23 φ ^32)-
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5.2. In this subsection, we denote

(5.5) xa = γajχj , u = xaxa , πa

b = uδa

b - xax
b , P = (πa

h)n

ab=ι .

Then, P e V(2) and P2 = uP. Let φ be a real-valued function of class C°° in a star-shaped

neighborhood Ω oϊ x = 0 such that w<p(;c) < 1 in Ω. We are interested in the following

metric

(5.6) gab = {l-uφ(x)}Yab + φWYacYbdXcxd or H = I-φ(x)P.

We obtain Λ/7 from (2.2), S by solving (2.10 and ΊZ from (2.4):

(5.7)i,(5.7)2 ' 5 = / ψ

(5.8)i,(5.8) 2 Λf = λΓ = ωP, where ω(jc) = — F log
2w 1 — ψ

(5.9)i,(5.9) 2 ΊZ = χP, where χ(jc) = Yω + 3ω-uω2;

(5.10) H~l = I + —^—P.

\-ψ
ψ, ω and x are of class G°° in ί2.

REMARK 5.1. A question is how to obtain φ when χ is given. An answer is the

following. If we have a solution ω to (5.9)2 of class C°° in a neighborhood of x = 0, then

ί r1 1

(5.11) W^(JC) = 1 — exp < —2M I

(5.9)2 is a Riccati type equation for ω. If we set— u I
Jo

ί ί
λ(ί) = ί exp { — u I ω(sx)sds

[ J
then (5.9)2 is transformed to a Sturm-Liouville type equation for λ:

(5.9)3 ^ - = -κχ-(fjc)λ.

(5.9)2 is integrated by quadrature if and only if (5.9)3 is so. If χ = a is a constant for example,

then ω = —2aσf(au)/σ(au), uφ = 1 — σ(au)2 and # is of constant curvature (see (5.4)).

REMARK 5.2. If φ in (5.6) depends only on u and if the Taylor series at u = 0 contains

a non-vanishing term, there exists a neighborhood of x = 0 in which an equality

(5.12) Ί-ί = I-φ(u)ΊZ

holds, where φ is a function of class C°° in an open interval containing u = 0.

PROOF. Let the Taylor series of φ, ω, χ at u = 0 be

TV W TV

φ = Σ uJψj + O(|n|"+1), ω = Σ Jωj + 0(|iι|"+1), X = £
7=0 7=0 7=0
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From (5.8), (5.9), we see thatΛ^m) = Tl(m) = O if m is odd and

(5.13) N J χ J{

Now, if r is the smallest number j such that ψj φ 0 and if r is finite, then ω — (r + \)φru
r

andχ - (2r2 + 5r + 3)<prw
r are of O( |w| r + 1 ). If we set φ = φ/χ, then φ is of class C°° in a

neighborhood of u = 0 and <p(0) = (2r2 + 5r + 3)" 1 . We have (5.12) with this φ. q.e.d.

REMARK 5.3. Contrary to Remark 5.2, suppose that all derivatives of φ vanish at

u = 0. Then gab - γabi Γs

b

a and Rb

ras are of 0(|*|°°). ω, x are also of O( |M| ° ° ) and φ/χ

may not be defined on the set {u = 0}. So, (5.12) does no longer hold. Also, if φ is not a

function of single variable, (5.12) does no longer hold in general.

REMARK 5.4. Let # ( 0 ) be a conformally flat metric e2f{v)yabdyadyb in a neighbor-

hood of y = 0 in cartesian coordinates v, where v = γabyayb and f(v) is a function of class

C°° in a neighborhood of v = 0 such that /(0) = 0. Let x be the normal coordinate system

for # ( 0 ) with origin at y = 0 such that xa =? ya + O(|y | 2 ). Then, y ^ Λ ^ depends only on

Yabyayb and the metric tensor of g ( 0 ) with respect to x is of the form (5.6).

PROOF. Let λ = λ(«) be a solution of class C 1 in a neighborhood of u = 0 to

(5.14) 2w— + λ = exp{-/(wλ2)} or λ(κ) = / exΌ{-f(θuλ(θu)2)}—= .
du Jo V46>

Note that λ is unique, of class C°° and λ(0) = 1. Next, let U = U(υ) be the function

satisfying

(5.15) υ = Uλ(U)2, ί/(0) = 0.

We have ί/'(0) = 1. Given (yι,... , yn) in a neighborhood of y = 0, define (JC1 , . . . , xn) to

be

(5.16) xa = ya/W(Ypqy
pyg)).

The mapping y -> Λ: is of class C°° in a neighborhood of y = 0, xa = ya + O(\y | 3 ) and

^ = U(γpqyPy^). Define <p(w) to be

(5.17) <p(w) = {1 - λ(u)2e2fiuλ(u)2)}/u for w ^ 0 and ^(0) = -4/'(0)/3 .

Then, φ is of class C°° in a neighborhood of w = 0 and exp{2f(ypqy
pyq)}yabdyadyh =

gabdxadxb, where gab is given in (5.6) with this φ. q.e.d.

6. Power series expansions.

6.1. In this section, we represent H(m)9 (H~ι)(m) and (detHλ)(m) by means of [R^r)}

(see Definition 3.1). First of all, we reproduce two lemmas and a proposition proved by

Gunther.
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LEMMA 6.1 ([Gϋl], [Gϋ2, Appendix 1]). n{0) = ΊZ{Ϊ) = O and

(A, B)-element of Ίl(m)

) ^ h J * (m > 2).

6.2. Covariant metric tensor gat>(x).

LEMMA 6.2 ([GUI], [Gϋ2, Appendix 1]). <S(0) = /, S(i> = O and

[m/2]

(6.2) S{m) =Σ Σ (-Όhanr2...rhnin)π{r2) Ίl{rh) (m > 2),
h~\ rj>2,rγ+-+rh=m

where arχri...rh are the coefficients defined in (a.Ί) with K = 1.

PROOF. (2.5) is the same as (aΛf) if we set V = <S, β = -Ίl and *• = 1. So, (α.7)

implies (6.2). Note that Ψ\ = Ψ(0) = O. q.e.d.

Define furthermore {brχr2...rh} in the following way with K = 1:

^ r = 2ar ,
(6.3) Λ_j

feΠΓ2-rΛ = brh-r2n = ^rxr2-rh + ^rh-r2rx + Σ w = l ^ l ^ - ^ ^ - ^ + j (Λ > 2) .

PROPOSITION 6.1 ([Giil], [Gϋ2, Appendix 1]). G(o) = γ, G(i> = O, <

[m/2]

(6.4) G(m) = Σ Σ (-D^nr2 r ^ ( r i ) π ( r 2 ) ΊZ(rh)γ (m > 2).
/z=l ry>2,riH \-rh=m

PROOF. This follows from (2.3), (6.2) and γ^^Ίlγ. q.e.d.

(6.4) is very practical because brχrr..rh are explicitly defined.

6.3. Powers of det(^α c(;c)^(O)). First, homogeneous parts of λί are expanded by

means of those of ΊZ.

PROPOSITION 6.2. Λ/(0) = M i ) = O a n d

[m/2]

(6.5) λί{m) =Σ Σ cnrr-rhn{rχ)π{r2) Ίl{rh) (m > 2),
/ι=l r_y>2,rH hr/,=m

w/iere crχri...rh are the coefficients defined in (α.13) w/ί/i K = 1.

PROOF. (2.4) is the same as (α.8') if we set C = Ίl and *• = 1. Since Γja

k(0) = 0, we

haveΛ/(θ) = Λ/(i) = O. And (α.12) implies (6.5). q.e.d.

PROPOSITION 6.3. Denote θ(x) = l o g d e t ( # α c ( x ) ^ ( 0 ) ) ^ = 1 and by θ{m) the homo-

geneous part of degree m in the Taylor series at x = 0 . Then,

2
(6.6) (9(0) = 6>(D = 0 , θ(m) = - - tτλί{m) (m > 2 ) .

PROOF. Since YH = -ZΛΓ'W by (2.2), we have Yθ = - 2 trΛΓ = -2 trΛ/", so

ί{ dt
θ(x) = -2 / trλί(tx) —

Jo t
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and we have (6.6). q.e.d.

Now, we expand (det(GG(O) - 1))λ = eλθ for any complex number λ.

PROPOSITION 6.4. Let D^λ be the homogeneous part of degree m in the Taylor series

of{άti{gac{x)gcbφ))n

ab=χ}
λ at x = 0. Then, DgJ = 1, D(

(g = 0 and

D(λ) =

(6.7) v-^ 1 a a a
/ (A$(2)) (λ.^(3)) (λθ(m)) m \Wl ^ 2) .

This can be applied to the volume form (λ = 1/2) and also to the O-th Hadamard coeffi-

cient of the Laplace-Beltrami operator (λ = —1/4).

REMARK 6.1. Yθ = -2iτMf due to a well-known equality daθ = 2Γa

s

s. However,

(6.7) is obtained not from (6.4) but from (2.2) and (2.4).

6.4. Contravariant metric tensor gah (JC) .

LEMMA 6.3. O S " 1 ) ^ = /, ( S " 1 ^ ) = O9 and

[m/2]

(6.8) (S-l)(m) = Σ Σ drh-r2rΛrύ^(r2) ' ' λf(rh) (m > 2) ,
Λ=l r ;>2,riH hr^=m

w/zer^ drh...rirχ are the coefficients defined in (a.3).

PROOF. Equation Y(S~ι) = λf$~{ is of type (aA') if we set U = S~\ Λ = Λ/* but

W, 4̂ are in reverse order. So, (a3) yields (6.8), where Φγ = O because λίφ) = Λί(\) = O.

q.e.d.

Define furthermore {erχrr..rh} in the following way.

er=2dr,

(6 9) ^l~\
er\n -rh = erh- r2r\ = ^rxrv-rh + ^rh- r2r] + χ_^(^r\r2 rmdrh- rmjt\ (n > 2) .

m=l

PROPOSITION 6.5. (G"1)^) = y"1, ( G ^ α ) = .0, ««^

[m/2]

(6.10) (G" 1 )^) = Σ Σ ^1r2...r,K"1Mn)Mr2) ' " M{rh) X™ > 2) .
h=\ rj>2,r\-\ \-rh=m

PROOF. This follows immediately from (6.8), G~ι = tS~lγ~ιS~ι andλίγ = γ W.

q.e.d.

REMARK 6.2. We can represent (G - 1 )( m ) by means of {H(r)} if we combine (6.10)

with (6.5). Since crχrv..rh, drχr2...rh, erχrv..rh are positive, (G - 1 )( m ) is represented as a sum of

products of 1Z(r) with positive coefficients. We can also represent (G - 1 )( m ) by making use of

(6.4) and γG~ι = / + ( / - Gy~ι) + (/ - Gy~ι)2 + .
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REMARK 6.3. To compute crχrr..rh appearing in (6.5) for large h from (α.13), we have

a difficulty of combinatorial character because (2.4) is non-linear. However, once we know

ί A/(r)}> all expansions are done in a unified way. We can modify (6.10) to have a formula

for G(m). We have only to multiply (— 1)Λ, delete γ~~ι and multiply γ from the right in the

summand.

7. An algebraic structure of VQ)

7.1. By Lemma 3.1, N,1l,H- I belong to V, and «S(m) e V{m) for m = 2, 3,4 (see

the end of Section 5.1).

LEMMA 7.1. V(0) = V(i) = {#}. # > > 2, we have

PROOF. V(0) = {0} because a constant matrix Λ annihilates all x if and only if Λ =

O. Next, given an .4. € V(i), *4(JC))/ is symmetric. Linearizing xΛ(x)γ = 0, we have

xA(y)γ + yΛ(x)γ = 0 for all x,y e Rn. So, yΛ(x)γ [y = 0 for all x, y. Then, any

eigenvalue of Λ(x)γ is zero. This implies that Λ(x)γ = O for all c, therefore V(i) = {O}.

Suppose that p > 2. Any element of V(/7) is written as 4̂. = Σy=i (P(j)eϋ)y~l Here,

t̂ O')}yLi ^s a ^ a s ^ s of n x ^ symmetric real matrices (N = (n2 + ή)/2) and <̂ (y ) e //(P),

where H(P) is the vector space of homogeneous polynomials of degree p in n variables, so

j TT J (n + p — 1

dim H{p)= dp = I ^

For each <2, let V̂ (α) = ΣyLi ha,j)ΨU) ^ e m e ^ " ^ component of JCΛ. /(flt</ ) is a linear form

of x, non-vanishing for at least one j if a is fixed. If ψ^a) = 0, coefficients of φy) satisfy

some dp+ι linear conditions. When a runs from 1 to n, we have ndp+\ conditions. Therefore,

dim V(p) = Ndp-ndp+\ and we have (7.1). q.e.d.

7.2. Let W(2) be the vector space consisting of sets of real numbers {phjkή satisfying

(7.2) phjkl — Pklhj = —pjhkl » Phjkl + P^^/y + /Ô /yjfc = 0

for all h, j , k, I from 1 to n. The components below are linearly independent:

Ppqpq forl<p<q<n; pprqr for 1 <p,q, r < n, p< q, p φ r φ q

Ppqrs, P p r ^ 5 f o r l < / 7 < ^ < r < 5 < n .

So, dim W(2) = dim V(2) = (n4 — n2)/12. Let us find an isomorphism from W@) to V(2).

ΓOM has the canonical basis {^}^=1 and the scalar product go(u, v) = γabuavb (εa =

(da)0, u = uaεa). Let Λ2 = Λ2(T0M) be the space of bivectors endowed with the scalar

product (,} which is the linear extension of

(u Λv,zΛw) = go(u, z)go(v, w) - go(u, w)go(υ, z).
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Let Q be the vector space of symmetric endomorphisms of A2 ({Qf, / ' ) = (/, Qf) if

Q e Q). Given (Q, f)eQx A2, define a n n x n matrix β + ( / ) to be such that

9o(wQ+(f), z) = (Qf ZΛW) (z,we T0M).

Note that the mapping Q e Q H* Q+ £ Hom(Λ2, End(Γ0M)) is linear and injective.

Let Q^ be the vector space which consists of Q e Q satisfying the first Bianchi identity

(7.4) wQ+{u A v) + uQ+{v A w) + vQ+(w A u) = 0 for all u, v, w e T0M.

Since dim Q = (n2 - n)/A x (n2 - n + 2)/2 and (7.4) implies Q) conditions,

K4J 12 "

LEMMA 7.2. Q^ is isomorphic to W(2) and also to V{2).

PROOF, (see Willmore [Wi], §3.11). A bijection W{2) <•* Q{b) is given by

(7.5) (Q(εk A ει), εh A εj) = phjki

Next, given a g e Q^b\ we define A e VQ) to be A(x) = xQ^(- A x) or

(7.6) uAix) =XQ+{UAX).

(We identify the coordinate vector x with xrεr e TOM). The inverse mapping A —> Q is

given by

(7.7) wQ+(u AV) = (2/3){w.4(ι;, w) - vA(u, w)},

where A(u, v) = (l/2){A(u+v)-A(u)-A(v)} = A(v, u). Q is well-defined and Q e Qφ).

This is because go(zA(u, v), w) = go(uA(z, w), υ) owing to xA(x) = 0. q.e.d.

An explicit basis of V(2) is given as follows. Set E(p^q) = (δapδbq + δaqδbp)^ b_^ and

- xrxsE{p,q)

A(p,q,r,s) belongs to V(2) for all p, q, r, s from 1 to n. Since 7̂ (2) = — 3G(2)/~1, we have

PROPOSITION 7.1. (i) If [p^jki] ^ ^{i) and if the homogeneous part of degree 2 of

a metric tensor is such that

-3G(2)/~ 1 = Σ(PpqrsA(p,q,r,s) + PprqsA(p,r,q,s))

v

summations being extended over ranges of indices in the list (7.3), then the curvature tensor

of this metric satisfies Rhjkl(o) = Phjkl-

(ii) Rhjklio) are represented by means of1Z(2) in the following way.

(7.10) Rhjklio) = (2/3)go(εkπi2)(εh εj) - e/ft(2)(ε*, εj), εh).

For the proof, we have only to remark that {Qf, f) = 6fp^fr's - 6fp'sf^r if ΊZ{2) =

A(p,g,r,s), where / € A2, / ^ = (/, εp A ε«) and εp = γpaεa.
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7.3. Let us show a structure of V from a viewpoint of real analysis for the case n =

2, 3, 4. An arbitrary element A of V is of the form

n

(7.H) Aγ = ΣfaE{a,a)-
a=\ l</?<<7<«

where fa, hpq are real-valued functions of class C°°. Condition xΛ = 0 is equivalent to

(7.12) jc* divides ] Γ j t^λ^ and /fl = Σ xphpa/xa (1 < a < n).

If rc = 2, there exists a function <p which we can prescribe arbitrarily such that

(7.13) hl2 =xlx2φ, /i = (x2)2φ, f2 = ( ^ ) V

Therefore, V is isomoφhic to C°°x 2.

If Λ = 3, let (a, b, c) be any one of (1, 2, 3), (2, 3, 1), (3, 1, 2). Then,

^ c V ^ ( , X ) + (

/fl = (^)Vc(* α , xb) + ( x c ) 2 ^ ^ c , xα) + 2xbxcψa ,

where >̂fl and ψa are of two and three variables, respectively, which we can prescribe ar-

bitrarily. So, V is isomoφhic to the direct sum of C°£ 3, C°J j , C°°{ 2 and three spaces
-Ί <ι *Λ. ^v ) •Λ' Λ ^ .Λ.

If π = 4, then /α and /zp^ are of the following form:

f" = Σ (*") V + Σ Σ χPχ"θa.pq + 2(xXX2XZXA/Xa)ωa ,
q(φa,p)

( 7 1 5 ) hpq =

+xrxs(2χPωp + 2x^ωq - xrωr - xsωs + κpq).

Here, φpq(xp,xq) (= ^ p ) are functions of two variables, θp,qr(xp,xq,xr) (= ^, Γ ^) are

of three variables and ωα, /ĉ ^ are of four variables. κpq satisfy κpq — κqp = κrs and

κpq +κPr+κPs =0if p,q,r,s are distinct. (p,q,r,s are distinct in the last sum on the right

hand side of the equation for hpq). We can prescribe φpq, θp,qr, ωa and κ\2, κ\3 arbitrarily.

Therefore, V is isomoφhic to the direct sum of six spaces of functions of two variables,

twelve spaces of functions of three variables and six spaces of functions of four variables.

REMARK 7.1. Kowalski and Belger [KB] obtained a very precise result in the real an-

alytic framework by taking into account of all commutators as [V/j, V ;], [[V/j, V; ], V*], .

We might say that our V is a C°° version of tensors {^(/:)}^0

 m t Γ°duce in [KB]. Commutator

relations are implicit in our framework.

A. Preliminaries on ordinary and partial differential equations. Let Mn be the

ring of n x n real matrices as above and CkMn (0 < k < oo) be the set of functions of t with

values in Mn of class Ck in an open interval containing t = 0. We do not specify the interval

of t in what follows.
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Let Ω be a star-shaped open neighborhood of x = 0 in Rn. Denote by Ck(Ω, Mn) the
set of functions of x of class Ck in Ω with values in Λ4n.

A.I. Given a Φ e C°Mn, find an element U of CιMn which satisfies

(α.l) U'(t) = U(t)Φ(t), U(0) = I.

This is interpreted as an integral equation of Volterra type. The series

U = I + J[I] + J2[I] + ί/[ί/](0 - ί U(s)Φ(s)ds\

converges, || 1/(0 II < exp{| ί |^( | ί |)} (<p(IΦ = sup{| |Φ(s)| | ; - | ί | < s < \t\})9 and it is a unique
solution to ί/ = / + 7[ί/] in the space C ^ A ^ . So, it is a unique solution to (a.I) in the space
CιMn We can verify that U e Ck+xMn if Φ e CkMn (0 < k < oo).

The next question is to write down the Taylor series of U assuming that of Φ. We set

N N

φ(t) = Σ tmΦm+\ + O(|f |^ + 1 ) , U(t) = Σ tmiJm + O(\t\N+l) .
m=0 m=0

The recurrence relation for {Um} is as follows:

i m—\

(a.2) Uo = I, Um = - Y UμΦm-μ (m > 1).
m z_^

μ=0

PROPOSITION A.I. We have Uo = I and form > 1

m

Λ=l rj>l,r\-\

(« 32) l f , Λ /
/ μ=l 7 =

This is proved by induction with respect to m.
A.I'. Given an Λ e Ck(Ω, Mn) (k > 1) such that .4(0) = O, find an element U of

Ck(Ω, Mn) which satisfies

(β.l') YU{x) = U{x)Λ(x), W(0) = / .

Let an element ZV of Cι(Ω, Mn) be a solution to (a.Y). For JC e Ω and 0 < t < 1, we set
U(t,x) = U(tx), Φ(ί,x) = (\/t)Λ(tx). Then ί/( ,x) is a unique solution to (a.l) in the
space CιMn and it is of class Ck with respect to x in Ώ provided that Λ e Ck(Ω, Mn) and
,4(0) = O. So, U is a unique solution to (α.l') in the space Ck(Ω, Mn) (k > I).

A.2. Given SLΨ e CιMn and a real number K greater than — 1, find an element V of
C2Mn which satisfies

(fl.4) tV"(t) + (1 + /c)^(0 = V(0^(0 , V(0) = / .
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This is rewritten as an integral equation V = I + K[V], where

K[V](t) = t ί kκ(O)V(θt)Ψ(θt)dθ with kκ(θ) = ̂ —11 if K φ 0, ko(θ) = log - .
Jo K θ

A scalar equation tυ"(t) + (1 + κ)ι/(f) = v(t), v(0) = 1, has the solution

(α.5) v(t) = Γ(l+κ)ΓϊIκ(Jϊt) = Σt>Γ(\+κ)IU\ΓU + 1 +

where Iκ(z) is the modified Bessel function (see [Wa]). The series

converges , | |V( ί ) l l < v(\t\ψ(\t\)) (ψ(\t\) = sup{\\Ψ(s)\\; - | * l < s < \t\}), a n d it is a solut ion

to V = I + K[V], which is unique in the space C°Mn So, it is a unique solution to (aΛ) in

the space C2Mn. Furthermore, V e Ch+xMn if Ψ e CkMn (1 < k < oo). We set

N N

ψ(t) = Σ tm*m+\ + O(|ί |^+ 1), V(t) = YJt
mVm

m=0 m=0

The recurrence relation for\Vm} is as follows.

() v « 2 ;

PROPOSITION A.2 ([Giil], [Gii2, Appendix 1]).

m

(a.7i) Vo = / , Vm = Σ Σ ann-rk ψn *r2--*rh (m > 1),
/z=l ry>l,riH \-rh=m

where

(« 72) «πα ^

This is verified also by induction. We find neither {a3) nor (a.Ί) in any textbook of

ordinary differential equations. (6.2) is equivalent to (a.Ί), which must be a useful discovery

by Gίinther.

A.27. Given a B e Ck(Ω, Mn) (k > 2) such that β(0) = O and a real number Ίc

greater than —1, find an element V of Ck(Ω, Mn) which satisfies

(fl.47) YYV(JC) + ̂ rV(jc) = V(X)S(JC) , V(0) = / .

Let V of C2(Ω, Mn) be a solution to (fl.4r). For x e Ω and 0 < / < 1, we set V(t, x) =

V(tx), Ψ(t, x) = (\/t)B(tx). Then V( , JC) is a unique solution to (aΛ) in the space C2Mn,

which is of class Ck with respect to JC in Ω provided that B e Ck(Ω, Mn) and B(0) = O.

So, V is a unique solution to (aA') in the space Ck(Ω, Mn) (k > 2). See Section A.3; for

detail on higher order smoothness.
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A.3. Given a P e CιMn such that P(0) = O and a real number K greater than —1,

find an element N of CιMn satisfying

(α.8) tN\t) + κN(t) = P{t) + N(tf , N(0) - O .

In the linear theory of regular singular points, we assume any condition on neither P(0) nor

N(0) (see Sibuya [Si]). However then, Λ (̂0) is not determined because of the non-linearity.

We are interested only in the case where P(0) = N(0) = O. N satisfies an integral equation

r\

(a.9) N = L[P + N2], where L[Q](t) = / θκ~ι Q(θt)dθ.
Jo

Scalar equation tn'(t) + κn(t) — t + n(t)2, n(0) = 0, has the solution (see (a.5))

oo ^

n{f) = VtJK+\(V4t)/MV*t) = ΐυ\-t)/v(-t) =
/7=1 P

where {cp}°°=χ are positive zeros of Jκ(z) (see [Wa, p. 498, equality (3)]). Taylor series of

n{t) is of positive coefficients and convergent if \t\ < c2/A. Set

Λί0 = L[P], Nj+\ = L[P + N2], N(t) = lim Nj(t).

Then, N(t) converges, \\N(t)\\ < n(\t\p(\t\)) (p(\t\) = sup{||P'(ί)||; -\t\ < s < |f |}), and it

is a unique solution to (α.9) in the space CxMn as long as | ί |p( | ί | ) < c\/A. So, it is a unique

solution to (fl.8) in the space CxMn> Uniqueness follows from Lemma 2.2. Furthermore,

N e CkMn if P e CkMn (l<k< o o ) .

We set

/V N

m — \ m=\

The recurrence relation for {Nm} is the following.

1 1 / m~x \

Nm can be written as

m

(fl.l2) Nm = Σ X) cr\r2-rh Prχ

 Pr2"
 Prh (m > 1) .

h=\ rj>\,r\-\ \-rh=m

A formula for crχri...rh will be given in Proposition A.3 below. The notation in (α.13) is

defined in the following way. For the moment, a set of consecutive r integers is said to be

an interval of length r. Given a positive integer h, we set H\ = {q}h

=χ. By induction with

respect to h, we are going to construct a sequence A — [Hp}
2h~x of non-empty subintervals

#2, , H2h-\ of H\, and denote the set of all Δ's by Ih
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If A = 1, we set A = {1}, 1\ = {{1}}. If A > 2, we take an arbitrary positive integer

j smaller than A, set #2 = {q}q=\ and /fy+i = {#}ίL, + 1 . They are of lengths j and A-

j , respectively. Let {HP}J=2 be an element of 2) consisting of non-empty subintervals of

//2 obtained by induction hypothesis, and {Hp}
2hΓ2

lj+\ be an element of J/,_y consisting of

non-empty subintervals of //2./+1 obtained by induction hypothesis. In this way, we obtain an

element A = {Hp}
2hΓ{

1 of 2^.

If A e Ih, then A contains {1}, {2},... , {A}. If Hk e A is of length r and r > 2, then

{//p}^^r"~2 G Zr and / f t+i , . . . , Hk+2r-2 are non-empty subintervals of //̂  If Hp, Hq e A

and p < q, then either Hq is a proper subinterval of Hp or HpΓ\Hq = 0.

The number of Z\'s contained in 2/̂  is equal to

(2A-2) !

( A - 1)!A! '

PROPOSITION A.3. For every ( π , . . . , ΓΛ) with rj > 1,

jeH

PROOF. N\ = (l/(/c -h l))Pi from (α.9). Assume (α.12) for all m and we prove (α.12)

by induction with respect to A. The term with A = 1 comes only from L[P] on the right hand

side of (<z.9). So, cr = 1/(A: -f r) for all r > 1, proving (α.13) for A = 1. Suppose that A > 2

and that (α.13) is true up to A — 1. Terms with A indices come only from L[N2] and

Induction hypothesis applied to crχrr..rj and crj+i ...ΓΛ shows (α.13) for A. q.e.d.

A.3;. Given a C e Ck(Ω, Mn) {k > 1) such that C(0) = O and a real number *•

greater than — 1, find an element Λί of Ck(Ω, Mn) which satisfies

Λ\Λ/ΌO = C(JC) + N{x)2 , ΛΓ(O) = O .

There exists a star-shaped neighborhood Ωf of JC = 0 contained in ί2 such that λf is unique in

the space Cι'(Ω', Mn) and obtained by applying (α.8) to 7V(ί, x) = Λ/*(ί;c), P(ί, JC) = C(tx).

Let us verify that Λf is of class Ck. This is true possibly except at JC = 0 because Y is

hyperbolic except at x = 0. For a non-zero real number λ and a constant vector α e /?", set

Λ/λC*, α) = {Λ/"(x + λά) — λί(x)}/λ and C^(JC, ά) analogously, (α.9) implies that

λfλ(x, α) = / θk{Cθλ(θx, α)+λTθλ(θx9 α)N(θx)+N{θx)Nθλ{θx, α)+θλλΓθλ(θx, α)2}dθ .
Jo

For any ε satisfying 0 < ε < (K +1)/2, there exists a positive number 5 such that \\λί(x) || < ε

if |* | < δ because Λ/"(0) = O. For α, ε, 8, x, θ fixed, C^(0*, ά) -> α5(a5C)(6>jc) as λ -^ 0

because C is of class C 1 by assumption. Contraction mapping argument shows thatΛ/λO, fl)
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remains bounded as long as |λ| is small and has a limit as λ —• 0 (for a smaller δ if necessary).

The limit is equal to asdsλί(x). So, Λί is of class C1 in the ball \x\ < δ and

dsΛf(x) = [ θκ{(dsC)(θx) + (d5ΛΓ)(βx)λr(θx)+λf(βx)(d5M)(θx)}dθ ,

or

Ydsλί + (* + 1 ) 3 ^ = 95C + (

We can repeat this procedure k times because K simply augments by 1 each time we differenti-

ate ΛΛ Finally, Λί e Ck(Ωf, Mn) provided that C e Ck(Ωf, Mn) and C(0) = O. Therefore,

Λί is a unique solution to (a.Sf) in the space Ck(Ω\ Λ4n).

A.4. Real analyticity of solutions. Suppose that we have a matrix-valued power series

φ(t) = ΣJ^ot Jφj and a scalar power series ψ(t) = ΣJLo^Ψj- We s a y t n a t " ^ is a

majorant series of Φ and denote Φ ^ ψl iί ψj > 0 and if ||Φy|| < ψj for every j . If

-ψ converges absolutely in a disk {ί € C;\t\ < p}, then Φ converges in norm and it is

holomorphic in this disk. And hence Φ is real analytic in the interval —p<t<ρ.

PROPOSITION A.4. If Λ (or B) is real analytic in a star-shaped neighborhood Ω of

x = 0, then the solution U to (a.Y) (resp. V to (a A')) is also real analytic in Ω. IfC is real

analytic in Ω, then the solution λί to (a.Sf) is real analytic in a star-shaped neighborhood Ω'

of x = 0 contained in Ω.

PROOF. We can find the solutions to equations (a A), (a.4) and (a.8) in individual cases

involving a constant μ:

= uo(t)I if Φ(t) = ψo(t)I, V(t) = vo(t)I
(α.l4i)

N(t) = no(t)I if P(t) = po(t)I,

where

(aA42)
1 μ 1 a + bt

T , P 0 ( ) \ , ( + θ V ( ) μ
1 - μί 1 - μί

Also, we remark that the coefficients dn...rh in (α.3), arχ...rh in (α.7) and cπ...rΛ in (aA2) are

positive. Therefore, if μ is a positive number, we can prove that

ί/(O«"o(O/ if

N(t) « /io(ί)/ if ^ ( 0 « Pθ(t)I

Next, given matrix functions A, B, C, which are real analytic by hypothesis, for equations

(aAf), (aΆ), (a.Sf), respectively, we can choose a positive number μ in such a way that

, Λ^ Λ(x)z:φo(xι + - +xn)I, B(x)
(α.16)

C(x) <£po(xι + - - -
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respectively. Applying (a .15) to this, we see that

U(x) « uo(x] + + xn)I, V(JC) « vo(xι + + xn)I,

λί(x) « no(xι + + * " ) / ,

respectively. Consequently, U, V, Λ/" are real analytic in the star-shaped neighborhood I*11 +

h |JCΠ| < l/μ of x = 0 (see Petrovsky [P]). q.e.d.

REMARK A.I. The domain of definition of N(t) is in general smaller than that of P(t)

because of the non-linearity of (<?.8), although they coincide in (aΛ4).

For a fixed p (p φ 0), suppose that ΊZ(tp) be of class C°° or real analytic in an interval

0 < t < T\, the solution λί(tp) to (2.4) be of class C°° or real analytic in 0 < t < T2, and

that T\, T2 be optimal. Naturally, 0 < T2 < T\. On the other hand, S(tp) is of class C°°

or real analytic in 0 < t < T\ because (2.5) is a linear equation, and S{tp) is non-singular

for small t because 5(0) = /. From (2.1), λf(tp) = -tS{tp)-\d/dt)[S{tp)]. Therefore,

det S(T2p) = 0 if T2 < T\. For example, T\ = +oo for v(-t) and T2 = c\/A for n{t) (see

(α.5), (α.10)). T2 is the smallest positive zero of v(—t) (see also (5.4)).
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