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Abstract. Inthis paper, we define the notion of the complex Coxeter group associated
with a proper complex equifocal submanifold in a symmetric space of non-compact type. We
prove that a proper complex equifocal submanifold is decomposed into a non-trivial (extrinsic)
product of two such submanifolds if and only if its associated complex Coxeter group is de-
composable. Its proof is performed by showing a splitting theorem for an infinite-dimensional
proper anti-Kaehlerian isoparametric submanifold.

1. Introduction. In 1995, the notion of an equifocal submanifold in a symmetric
space was defined as a submanifold with globally flat and abelian normal bundle such that
the focal radii for each parallel normal vector field are constant [12]. This notion is a general-
ization of isoparametric submanifolds in Baclidean space and isoparametric hypersurfaces
in a sphere or a hyperbolic space. The invesiigeof equifocal submanifolds in a symmetric
space of compact type is reduced to that of isoparametric submanifolds in a (separable) Hilbert
space through a Riemannian submersgasf a Hilbert space onto the symmetric space. Con-
cretely, a submanifold/ in the symmetric space is equifal if and only if each component
of ¢~1(M) is isoparametric (see [12]). For each equifocal submanifélih a symmetric
space of compact type, a Coxeter group is defined as a discrete group generated by reflec-
tions with respect to hyperplanes in the normal spg¢é/ whose images under the normal
exponential map constitute the focal set{&f, x) (wherex is an arbitrary point of/). Simi-
larly, a Coxeter group is defined for each isoparametric submanifold in a Hilbert space. Note
that the Coxeter groups associated with the equifocal submariifodahd the isoparametric
submanifoldp—1(M) are isomorphic. In 1997, Heintze and Liu [4] showed that an isopara-
metric submanifold in a Hilbert space is decomposed into a non-trivial (extrinsic) product of
two such submanifolds if and only if the associated Coxeter group is decomposable. In 1998,
by using this splitting theorem of Heintze-Liu, Ewert [2] showed that an equifocal submani-
fold in a simply connected symmetric space of compact type is decomposed into a non-trivial
(extrinsic) product of two such submanifolds if and only if the associated Coxeter group is
decomposable.

For non-compact submanifolds in a symmetric space of non-compact type, the equifo-
cality is a rather weak condition (see [3, 8830, we have recently introduced the stronger
condition of complex equifocality for submanifolds in the symmetric space [7]. Note that
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isoparametric hypersurfaces in a hyperbolic space are complex equifocal. Furthermore, we
defined the notion of a proper complex equifocal submanifold as a subclass of the class
consisting of complex equifocal submanifolds [9]. L&t K be a symmetric space of non-
compact type, where we assume tliais a connected semi-simple Lie group admitting a
faithful linear representation and th&tis a maximal compact subgroup 6f As G admits
a faithful linear representation, we can define the complexificatbrfrespectivelyk ©) of
G (respectivelyk). Let G be the universal covering a¢ and K¢ be the connected sub-
group of G® corresponding t& €. Then(GC, K°) is a symmetric pair and¢/K ¢ is a simply
connected (pseudo-Riemannian) symmetric space. Al§pK € is an anti-Kaehlerian man-
ifold in a natural manner. We call this anti-Kaehlerian manif6$) K ¢ the anti-Kaehlerian
symmetric space associated with G/K . For simplicity, we denot&¢ and K € by G andK ¢,
respectively. For a complet&”-submanifoldM in G/ K, we defined its extrinsic complexifi-
cationM¢ as an anti-Kaehlerian submanifolddit/ K ¢, whereC® means real analyticity [8].
Also, we defined an anti-Kaehlerian submersjSof an infinite-dimensional anti-Kaehlerian
spaceH ([0, 1], g° onto G¢/K ¢, wheregC is the Lie algebra o6¢ and H2([0, 1], ¢°) is the
space of all paths which aie?-integrable with respect to an inner productgbfdefined in a
natural manner [8]. We showed that the following three conditions are equivalent [8]:

(i) M is complex equifocal;

(i) MCis anti-Kaehlerian equifocal;

(i) each component op®1(M°®) is anti-Kaehlerian isoparametric;
where an anti-Kaehlerian equifocal submardfahd an anti-Kaehlerian isoparametric one are
notions introduced in [8] (see Section 2 abthg definitions of thes notions). We defined
the notion of a proper anti-Kaehlerian isoparametric submanifold as a subclass of the class
consisting of anti-Kaehlerian isoparametric submanifolds. It is easy to showstieproper
complex equifocal if and only ipS~1(M°) is proper anti-Kaehlerian isoparametric.

Let M be a proper anti-Kaehlerian isoparametric submanifold in an infinite-dimensional
anti-Kaehlerian space. Itis shown that the focal set @f atx consists of some complex hy-
perplanes in the normal spagg M, wherex is an arbitrary point oM (see [8, Theorem 2]).

Let W be the complex reflection group generatgdcbmplex reflections of order 2 with re-
spect to these complex hyperplanes. Note Wias independent of the choice ofe M up to
isomorphism. It is shown tha¥ is discrete (see Proposition 3.7). In that case, weWathe
complex Coxeter group associated with M.

In the sequel, we assume that all proper complex equifocal submanifolds are complete
C“-ones and that all proper anti-Kaehlerian isoparametric submanifolds are complete unless
otherwise mentioned.

We first prove the following splitting theorem of Heintze-Liu type for a proper anti-
Kaehlerian isoparametric submanifold.

THEOREM 1. Let M be a proper anti-Kaehlerian isoparametric submanifold in an
infinite-dimensional anti-Kaehlerian space and W be the complex Coxeter group associated
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with M. Then M is decomposed into an extrinsic product of two proper anti-Kaehlerian
isoparametric submanifolds if and only if W is decomposable.

REMARK 1.1. LetG/K be a symmetric space of non-compact type &hbe a sym-
metric subgroup ofG. Let P(G®, H® x K := {g € HY([0,1],G% | (¢(0), g(1)) €
H® x K¢}, which acts on the path spaég®([0, 1], g% as gauge actions. It is shown that
the principal orbits of this action are proper anti-Kaehlerian isoparametric submanifolds (see
8, 9D).

Let M be a proper complex equifocal submanifold in a symmetric spgdeé of non-
compact type an®’ be the complex Coxeter group associated with the proper anti-Kaehlerian
isoparametric submanifolg—1(M¢). We call W the complex Coxeter group associated with
M. Note thatW is obtained by analyzing the complex focal normal vector&dfvithout an-
alyzing the focal set ap¢~1(M¢)) (see [8, Theorem 1]). Next, by using Theorem 1, we prove
the following splitting theorem of Ewert-type for a proper complex equifocal submanifold.

THEOREM 2. Let M bea proper complex equifocal submanifoldin a symmetric space
G/ K of non-compact type and W be the complex Coxeter group associated with M. Then M
is decomposed into an extrinsic product of two proper complex equifocal submanifoldsif and
only if W is decomposable.

REMARK 1.2. (i) All isoparametric submanifolds iG/K in the sense of Heintze-
Liu-Olmos (see [5] for the definition) are complex equifocal (see [8, Section 11]). Itis con-
jectured that the converse is also true.

(i) Itis shown that all principal orbits of the action of Hermann type (i.e. the action of
a (not necessarily compact) symmetric subgroupbn a symmetric spacg/K of non-
compact type are curvature adapted and proper complex equifocal (see [9]). See [1] for the
definition of the curvature adaptedness. Hence it is shown that those orbits are isoparametric
submanifolds with flat sections in the sense of Heintze-Liu-Olmos (see [8, Section 11]).

(i) An action H of Hermann type on a symmetric spaG¢ K of non-compact type
has the dual actiolf* (by taking its conjugate actiorf hecessary), which is a Hermann
action on the compact dual*/K. Thus, the principal orbits of th&/-action are obtained
as the duals of equifocal submanifoldsdi'/K. However, it is not clear that any proper
complex equifocal submanifolds @i/ K are obtained as the duals of equifocal submanifolds
in G*/K. Thus, we cannot reduce the study of proper complex equifocal submanifolds in
G/K to that of equifocal submanifolds iG* /K .

Here we propose the following questions.
QUESTION 1. Are all complex equifocal submanifolds homogeneous?

According to the classification by Kollross [10] of hyperpolar actions on irreducible
symmetric spaces of compact type, all homo@gerseequifocal submanifolds of codimen-
sion larger than one are obtained as principal orbits of Hermann actions. From this fact,
Remark 1.2(ii) and Question 1, the following question is naturally proposed.
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QUESTION 2. Are all complex equifocal submanifolds of codimension larger than one
curvature adapted and proper complex equifocal (hence isoparametric with flat section in the
sense of Heintze-Liu-Olmos)?

In Section 2, we recall basic notions and fadn Section 3, we define the notion of the
complex Coxeter group associated with a propei-Kaehlerian isoparametric submanifold.
In Sections 4 and 5, we prove Theorems 1 and 2, respectively.

Throughout this paper, the notatio/ K’ means thatG, K) is a symmetric pair.

2. Basicnotionsand facts. In this section, we first recall the notion of a proper com-
plex equifocal submanifold. Le¥ be an immersed submanifold with abelian normal bundle
in a symmetric spac& = G/K of nhon-compact type. Denote by the shape tensor dff.
Letv € T*M andX € T, M (x = gK). Denote byy, the geodesic iV with y,(0) = v.
The Jacobi field” alongy, with Y(0) = X andY’(0) = —A,X is given by

Y(s) = (Py |0, © (DX — DS 0 A,))(X),

whereY’(0) = V, Y, P,, |, iS the parallel translation along o),

10,51
D) = g o cosv/—T1adsg, "v)) o g, *

and
sin(v=ladsg, 'v) 4

TV Tadsgty

Here ad is the adjoint representation of the Lie alggbo& G. All focal radii of M alongy,

Dssll; = 9«

are obtained as real numbegswith Ker(Df(?v — Son(i,v o Ay) # {0}. So, we call a complex
numberzo with Ker(DZ, — ZoDZi,v o AS) # {0} acomplex focal radius of M along y,
and call dimKe(DS, — zoDS! o AS) themultiplicity of the complex focal radiuso, where

D, (respectivelyDS! ) implies the complexification of a ma@. o cosv/—Izoad(g; v)) o
97 D1 m (respectively(gs o sin(v/—1zo ad(g; *v))/v/—1zo ad(g; 1v) o g7 1) |7, 1) from T, M

to T, N©. Also, for a complex focal radiug) of M alongy,, we callzov (€ TXLMC) acomplex
focal normal vector of M at x. Furthermore, assume that has globally flat normal bundle.
Let v be a parallel unit normal vector field @f. Assume that the number (which may be
0 andco) of distinct complex focal radii along; is independent of the choice ofe M.
Furthermore, assume that the number is not equal to OfLet] i = 1, 2, ...} be the set of
all complex focal radii alongs; , where|r; | < |rit1.x] OF ‘|rix| = |riy1,x| and Rey , >
Rerit1," or ‘|rix| = |rit1x| @nd Re x = Rerip1 and Imr x = —Imripq,, > 0. Letr;

(i =1,2,...) be complex valued functions aif defined by assigning . to eachx € M.
We call these functiong (i = 1, 2, ...) complex focal radius functions for v. We callr;v a
complex focal normal vector field for v. If, for each parallel unit normal vector fieldof M,
the number of distinct complex focal radii alopg, is independent of the choice ofe M,
each complex focal radius function foris constant on/ and it has constant multiplicity,
then we callM a complex equifocal submanifold. Let ¢ : HO([0, 1], g) — G be the parallel
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transport map fot; (see [7] for this definition) ang : G — G/K be the natural projection.
It is shown thatM is complex equifocal if and only if each component(af o ¢)~1(M)
is complex isoparametric (see [7]). In particular, if each componeritros ¢)~1(M) is
proper complex isoparametric (see [7] about this definition), then watalproper complex
equifocal submanifold.

Next we recall the notion of an infinite-dimsional anti-Kaehlerian isoparametric sub-
manifold. LetM be an anti-Kaehlerian Fredholm submanifold in an infinite-dimensional anti-
Kaehlerian spac® andA be the shape tensor 8f. See [8] for the definitions of an infinite-
dimensional anti-Kaehlerian space and atdkehlerian Fredholm submanifold in the space.
Denote by the same symhglthe complex structures aff andV . Fix a unit normal vectoo
of M. If there existsX (£ 0) € TM with A, X = aX + bJ X, then we call the complex num-
bera+b+/—1 aJ-eigenvalueof A, (or acomplex principal curvature of direction v) and call
X aJ-eigenvector for a +b+/—1. Also, we call the space of all-eigenvectors four +b/—1
a J-eigenspace for a + b/—1. The J-eigenspaces are orthogonal to one another and each
J-eigenspace ig-invariant. We call the set of all-eigenvalues ofi,, the J-spectrumof A,
and denote it by Sped,. The set SpecA, \ {0} is described as follows:

SpegA,\{O}={ri |i=12...}

[Ai] > |Aita] or ‘|A;| = |Ai+1] and Rey; > Rei;t1’
or ‘|Ai| = |ri+1] and Rey; = Rex;41 and Imy; = —Imi;j41 > O

Also, the J-eigenspace for each-eigenvalue ofd, other than 0 is of finite dimension. We
call theJ-eigenvalué\; theith complex principal curvatureof direction v. Assume thaM has
globally flat normal bundle. Fix a parallel normal vector fiéldf M. Assume that the number
(which may bexo) of distinct complex principal curvatures of directiop is independent of
the choice ofc € M. Then we can define functions (i = 1,2, ...) on M by assigning the
ith complex principal curvature of directidiy to eachx € M. We call this functiont; the
ith complex principal curvature function of direction v. We consider the following condition.

CoNDITION (AKI). For each parallel normal vector field, the number of distinct
complex principal curvatures of directiaiy is independent of the choice af € M, each
complex principal curvature function of directidnis constant onM and it has constant
multiplicity.

If M satisfies Condition (AKI), then we cal an anti-Kaehlerian isoparametric sub-
manifold. Let{e;}7°, be an orthonormal system @f M. If {e;}7°, U {Je;}72, is an orthonor-
mal base off’; M, then we calle;}7°, a J-orthonormal base. If there exists &/ -orthonormal
base consisting af -eigenvectors ofi,,, thenA, is said tobe diagonalized with respect to the
J-orthonormal base. If M is anti-Kaehlerian isoparametric and, for each T+ M, the shape
operatorA, is diagonalized with respect to.&orthonormal base, then we call a proper
anti-Kaehlerian isoparametric submanifold. For arbitrary two unit normal vectorg andv;
of a proper anti-Kaehlerian isoparametric submanifold, the shape opesatoasidA,, are
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simultaneously diagonalized with respect to/ @rthonormal base. As stated in the intro-
duction, we assume that all proper anti-Kaehlerian isoparametric submanifolds are properly
immersed complete submanifolds. Ltbe a proper anti-Kaehlerian isoparametric subman-
ifold in an infinite-dimensional anti-Kaehlerian spake Let {E; | i € I} be the family of
distributions onM such that, for each € M, {E;(x) | i € I} is the set of all commou -
eigenspaces of, (v € T;-M). The relatior?, M = P,c; Ei holds. Let; (i € I) be the sec-
tion of (T M)* ® C such thatd, = Rex; (v)id + Imx; (v)J on E; ( (v)) for eachv € T+M,
wherer is the bundle projection of - M. We callA; (i € I) complex principal curvatures

of M and call distributionst; (i € I) complex curvature distributions of M. It is shown that
there uniquely exists a normal vector fieldof M with A; (-) = (v;, -) — ~/—1(Jv;, -) (see [8,
Lemma 5]). We calb; (i € I) thecomplex curvature normals of M. Note thatv; is parallel
with respect to the normal connectigtt-.

3. Thecomplex Coxeter group associated with a proper anti-Kaehlerian isopara-
metric submanifold. In this section, we introduce the new notion of the complex Coxeter
group associated with a proper anti-Kaehlerian isoparametric submanifolgit heta proper
anti-Kaehlerian isoparametric submanifold in an infinite-dimensional anti-Kaehlerian space
V,{ri | i € I} (respectively{v; | i € I}) be the set of all complex principal curvatures
(respectively the set of all complex curvature normalsyoandE; (i € I) be the complex
curvature distribution fok;. Then we showed that the following facts (i) and (ii) hold [8].

(i) The focal set of(M, x) coincides with the sunUie,(Ai);l(l) of the complex
hyperplanesi;); (1) (i € I).

(i) E; (i €I)are totally geodesic oM. If A; # 0, then the leaves df; are complex
spheres of radiug/; (v;)/|A; (v;)| (this quantity is constant oved/) and the mean curvature
vector of leaves oF; is equal tov;. Also, if A; = 0, then the leaves df; are complex affine
subspaces.

Let 7;* be the complex reflection of order 2 with respect to the complex hyperplane
¥ = (/\i);l(l) of T;-M (i.e. the rotation of angle havingl;" as the axis), which is an affine
transformation of;-M. WhenT}" is regarded as a linear transformatiorfgf M, we denote
it by RS. Also, whenl; is regarded as a linear subspacergfM, we denote it by?. Let
WA (respectivelyW!) be the group generated y* (respectivelyR) (i € I). Now we
shall show the finiteness & L. For its purpose, we prepare some lemmas.lLie a parallel
normal vector field of/ and define an immersiop, : M — V by n,(x) = exp- v, (x € M).
Denote byf the original immersion oM into V. WhenM is regarded as a submanifoldih
immersed byy,, we denote it byM,. Denote byA (respectivelyA?) the shape tensor aif
(respectivelyM,). Then we have the following relation.

LEMMA 3.1. For eachx € M, we have

Nusxx = f*x - f*x o AU_\'

and hence ny« Ty M = fix Tx M, wherewe identify TV and Ty, () V with V in the natural
manner.
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PROOF. LetX € T.M. Take acurve(: (—¢,&) — M) in M with ¢(0) = X, where
¢(0) is the velocity vector of at 0. Then we have

d d
Nusx X = E tzonv(c(t)) = E ;=o(f(C(t)) + Ver)
= f*xX + (f*ﬁ)Xv = f*x(X - Ava) s
where f*V is the connection orf*T'V induced fromV by f. Thus we can obtain,., =
fix — fux o Ay, which together with dimy,., (T, M) = dim f. (TxM) implies that
Nusx (T M) = fix (T M). O

By using this lemma, we can show the following relation.
LEMMA 3.2. Forw e T}*M = T*M,, we have

(Ai)x(w)
1— () (vy)
whereidg, () isthe identity transformation of E; (x).

AplE () = idE, (x) »

PROOF. LetX € E;(x). Take a curve(: (—e, &) — M) in M with ¢(0) = X. Letw
be the parallel normal vector field &f with (i0), = w. This vector fieldw is also regarded
as a parallel normal vector field of the parallel submanifgldof M under the identification
TyLM = Tyin (wherey is an arbitrary point of/). Then it follows from Lemma 3.1 that

V)XW = (f*V)xih = — fir (Ap X)

(Ai)x(w)
= —(XA ————— X
(Ai)x(w) fx X (}L ) (ve) — 1 NuxAX
wherenjﬁ is the connection on; TV induced fromV by 7,. On the other hand, we have
(3 V)xh = —nyxAY X. Therefore, we can obtain the desired relation. O

Let w; be the focal vector field of leaves &; defined by(w;)x = f(x)oy (x € M),
whereo, is the center of the complex sphdré". Clearly we haveyp,, (M) = f(M). Define
a diffeomorphismp; : M — M by f(¢i(x)) = n2u,; (f (x)) (x € M). Next we prepare the
following lemma.

LEMMA 3.3. For eachx € M, we have Ry ((vj)x) = (vj)g¢ ) and hence Rj.‘(i;?) =

lA‘l"(x) where we identify 7;"M with T," M.

PrROOF. Let Lx’ be the leaf ofE; throughx, which (preciserJ(Lf’)) is a complex
sphereinV. LetX € E;(x). Asv; is parallel with respect to the normal connectionpfwe
have

(f*VIxvj = =Gi)x(0)) fiX € fulTLy") .
This fact implies thab; | £; is parallel with respect to the normal connectlomfr In gen-

eral, ifw is a parallel normal vector field of a complex sph&r@vhich may not be a complex
hypersurface) in a finite-dimensional anti-Kaehlerian spacehen for eachy € S, we have
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R(wy) = wy+, wherey* is the anti-podal point of in S andR is the complex reflection of
order two with respect to the complex hyperpldne- o + V; in TyLS (whereo is the center
of S, V] is the orthogonal complement of the anti-Kaehlerian subspadg ebntainings

as a complex hypersurface). Hence, we h&Y€(v;).) = (vj)g;). This relation deduces

RE(F5) = 1% directly. O
Fromnay, (M) = f(M) and Lemma 3.2, we haj& ;(x) | j € I} = {Ej(¢;(x)) | j €

I}.
LEMMA 3.4. Let Ej(¢i(x)) = Eq(j(x) (i, j € I). Thenwe have
1/ ((vi, vi)? + (Jvi, v3)) (Vo (j)x
= {(1/2)(vi, vi)? + (1/2)(J vi, vi)% = (Vi Vi) (Ve iy i) — (JVi. Vi) (T Ve, ) V)
+ (i, vi) (T, Gy Vi) = (T 01, 1) Vg, (s iV =TIRT ((0))s0) -
PrROOF. According to Lemma 3.2, we have
Ao (1)x
G =12 ((Ag,.lx))i(zwi) ’
that is,
oy = (Vo (j))x

1— (A (j))x(Rwi)
where we identifys/—1(-) with J(-). On the other hand, according to Lemma 3.3, we have
R¥((vj)x) = (V)¢ (x)- Also, we have

1
w; = ——————5 (v, vi) (Vi)x + (Jvi, i) J(Vi)x) -
[(Ai)x (V)22
From these relations, the desired relation follows. O

By this lemma, we can show the following fact.
LEMMA 3.5. EachT/ (i e I) permut%{l’; | j eI}

PROOF. LetE;(¢;i(x)) = Eqjy(x) (i, j € I). We shallshOV\TiX(lj) = l();,(j) @, jel).
From Lemma 3.4, we see thBt(/}) and/; ;) are parallel. Hence, we have only to show that
these complex hyperplanes have a common pointw; )f, € l”; then we have* (lj?) = lj?
(o;(j) = j). Hence, we consider the case @f), ¢ lj. Let IT be the complex line
through the origin ofolM that is orthogonal t@, that is,/IT = Sparf(v;)x, J (vi)x}. De-
note by p1 (respectivelypy) the intersection point oa‘(ﬁi ) (respectivelyT;* (lj?)) with IT.
Also, denote byy; (respectivelyg;) that of I} (respectivelyl}‘.) with I7. By usingopy €
Sparf(vi)x, J(vi)x}, (Aa,(j))x((ﬁ) =1, we can explicitly expre&ﬁ as a linear combina-
tion of (v;) andJ (v;)x, where we also Us., (j))x () = ((V, (j))xs *) =/ —L(J (Vg (j))xs *)
and(R} (x), ) = (x, R’ (-)). Onthe other hand, by usin@i € Spar(v;)x, J(vi):}, opr =
20q; — oq; and (\)x(0g:) = (»j)x(6q7) = 1, we can explicitly expressps as a linear
combination of(v;), andJ(v;),. By comparing these expressions in terms of the relation
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in Lemma 3.4, we can shodpi = op, that is, p1 = p2. Therefore, we obtaiff;* (I}) =

Loty =
Also, we can show the following fact.
LEMMA 3.6. Wehavethat {I¥ | i € I}islocally finite.
PROOF. First we show that, := {i € I | w € [} is finite for eachw < TXLM.

The J-spectrum SpecA,, of A, is given by{(A))(w) | i € I}. Assume thai € I,,.
Then we havgl;),(w) = 1, that is, E;(x) C Ker(A,, — idr, »). As the multiplicity of
eachJ-eigenvalue other than O of,, is finite, we have dimKea,, — idr, ) < co. Hence,
we see that,, is finite. Take an arbitrarywg € TXLM. As Speg A, has no accumulating
point other than 0, there exisés> 0 such that the-neighborhoodB;s (1) of 1 in C does
not intersect with Speci,, \ {1}. For eachi € I\ I,,, we havewo ¢ (1;);1(Bs(1))
because ¥ (1) (wo) € Speg A,,. Fix an inner product, -)g of TXLM such thatI|TVLM is
skew-symmetric with respect {@ -)o. The 591()»[);1(35(1)) is a tubular neighborhdod of
foliated by complex hyperplane&);l(z)’s (z € Bs(1)). Assup.; [(Ai)x(w)| < oo for each
w e TXLM, we can show syp; (v;, vi)o < oo. Furthermore, we can show that there exists
io € I\ I, such that(v;,, vig)o = suge,\,wo(vi, v;)o. Clearly there exists > 0 such that
thee-tubular neighborhood dfo with respect tq-, -)g is contained ir(Aio);l(Bg(l)). Then,
for eachi € I\ Iy, it follows from (v;, vi)o < (vi,. viy)o that thee-tubular neighborhood
of I with respect to(-, -)o is contained ir(ki);l(Bg(l)). Hence, for eachh € I\ I, we
havedo(wo, I}) > ¢, thatis, B:(wo) N I = @, wheredy is the Euclidean distance function
associated with-, -)o and B (wo) is the e-neighborhood ofwg with respect to(-, -)o. This
fact together with the arbitrariness of implies that{/} | i € I} is locally finite. O

From Lemmas 3.5 and 3.6, we can show the following fact by imitating the proof of the
theorem in the Appendix of [11].

PROPOSITION 3.7. Thegroup W isdiscrete.

It is clear thatW# (x € M) are isomorphic to one another. Hence, we denote this
discrete group byw4. We call W4 the complex Coxeter group associated with the proper
anti-Kaehlerian isoparametric submanifold M. For simplicity, we denotév4 by W. We
have the following fact with respect to the decomposability of the complex Coxeter group in
a similar manner to that of a Coxeter group.

LEMMA 3.8. The complex Coxeter group W is decomposable (i.e. it is decomposed
into a non-trivial product of two discrete complex reflection groups) if and only if there exist
two J-invariant linear subspaces Py (# {0}) and P (# {0}) of T;*M such that T M =
P1 @& P (orthogonal direct sum), P1 U P, contains all complex curvature normalsof M at x
andthat P; (i = 1, 2) contains at least one complex curvature normal of M at x.

4. Proof of Theorem 1. Inthis section, we prove Theorem 1. Ldtbe a proper anti-
Kaehlerian isoparametric submanifold in an infinite-dimensional anti-Kaehlerian $pace
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Denote by the same symhslthe complex structures af andV . It follows from Lemma 3.8

that, if M is decomposed into an extrinsic product of two proper anti-Kaehlerian isoparametric
submanifolds, theV is decomposable. In the sequel, we prove the converse. Assume that
W is decomposable. Without loss of generality, we may assumeMhedntains the zero
element of V. According to Lemma 3.8, there exigtinvariant linear subspaced (# 0)

and P, (# 0) of T;-M such thal;*M = P, & P, (orthogonal direct sum)P; U P, contains

all complex curvature normals @f ato and thatP; (i = 1, 2) contain at least one complex
curvature normal off ato. Let P (i = 1,2) be the av+-parallel subbundle of M

with P;(0) = P;, whereV+ is the normal connection a¥f. SetVp, := Spary |, Pi (x)

(i =1,2)andV’ := Spary U,y T+ M, whereP; (x) (i = 1,2) andeiM are regarded as
linear subspaces df and Span(-) implies theJ-invariant linear subspace spanned by
Clearly we haveVp, + Vp, = V'. SetVp := (V)+ andM’ := M N V’, which is regarded as

an immersed submanifold i#’. Denote by’ the immersion of\/’ into V'’ and by: that of M

into V. We first prove the following fact by imitating the proof of Lemma 3.1 of [4].

PROPOSITION 4.1. (i) Thereexistanisometry F of V/ x Vo onto V and an isometry
F of the anti-Kaehlerian product manifold M’ x Vo onto M satisfying Fo(/x idyy,) =toF,
where idy, istheidentity transformation of Vo.

(i) M’ istotally geodesicin M.

(i) M’ isproper anti-Kaehlerian isoparametricin V'.

PROOF. First we shall show/y C Eo(x), wherex is an arbitrary point ofM and
Eo(x) = (,erLy KerA,. From the definition ofVp, we haveVp C T:M. LetX € E;(x)

(i €l). The leafLE of E; throughx is a complex sphere. Letbe the center of this complex
sphere ang be a geodesic ililf" with y(0) = X. As Lf" is totally geodesic inM, we have
y(t) —c e T)}(t)M C V' and hence(r) € V'. In particular, we hav&X € V'. From the
arbitrarinesses oX andi, we have®,_; Ei(x) C V' = VOL. This together WitthlM cVv
deduces/y C Eo(x). As LE is a J-invariant affine subspace &f, we haver + Vo c LE°

and hence J, ., (x + Vo) C M. ltis clear thal J, ., (x + Vo) is complete and open i .
Hence, we haveJ, ., (x + Vo) = M. This implies that there exist isometri€sand F as in

the statement (i). Also, the statement (ii) also follows from this fact. Next we showthist

a proper anti-Kaehlerian isoparametriciifh It is clear that the normal spa@e- M’ of M in

V'’ coincide with the normal spacg&-M of M in V. Lett be a parallel normal vector field

of M. ltis clear that the restriction afto M’ is a parallel normal vector field gff’. Hence,

the globally flatness of the normal bundle &f follows from that of the normal bundle of

M. Furthermore, it is easy to show that the restrictions of the complex principal curvatures
of M to M’ are the complex principal curvatures #f, the tangent spacg. M’ coincides

with @, ; Ei(x)(C TxM) and thatT.M' = P,.; Ei(x) is the commorV/-eigenspace de-
composition ofA! (v € T;-M’), whereA’ is the shape tensor @ff’. Thus,M’ is a proper
anti-Kaehlerian isoparametric submanifoldiin m]
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Define a distributiomDp; (j = 1,2) onM by Dp,(x) := Eo(x) & (@iaj Ei(x)) (x €
M), wherel; :={i e I | (vi)o € P;} (j =1, 2). Next we prove the following fact.

PROPOSITION 4.2. The subspace V' isthe orthogonal direct sumof Vp, and Vp,.
To show this fact, we prepare the following lemma.

LEMMA 4.3. Let v be a parallel normal vector field of M with v, € P;. Then v is

parallel along Lf"" (i # j) with respect to the Levi-Civita connection V of V, where x isan
arbitrary point of M.

. Dp.
PROOF. Take an arbitrarX € T, L, ‘i (= Dp,(y)). LetX = Xo+ Zkel; Xy, where
Xo € Eo(y) andXy € Er(y). Then we have

VxD ==Y 0w)y () fiuXx
kEb

== Y (W)y, Ty) fi Xk = (J (k) y, By) I f Xi) -

kEh

As iy, € Pj(y) and(vr)y € P;(y) (k € I;), we have{(ve)y, By) = (J (v)y, Iy) = 0. Hence,
we haveVy o = 0. Thus, the statement of this lemma follows. O

By using this lemma, we show Proposition 4.2.

Proof of Proposition 4.2. A¥' = Vp, + Vp,, it suffices to showp, L Vp,. Let;
(i = 1, 2) be a parallel normal vector field ad with (v;), € P;. We have only to show that

) . D .
(D1)x, L (92)x, for arbitrary two pointsc; andx, of M. SetU(x1) := | pp, Ly " 1tis
xe€Lly

clear thatU (x1) is open inM. By using Lemma 4.3, we can show th@t),, L (v2), for
everyx € U(x1). Hence, ad/(x1) is open andi; : M — V is real analytic, we see that
(V1)x, L (V2), for everyx € M. In particular, we haveévy)y, L (V2)x,. O

Let A be the interior of a fundamental domain containingf the complex Coxeter group
WA of M ato, where we note that the choice afis not unique. Define amap: M x A —
V by F(x,v) := exp-(¥x) ((x,v) € M x A), where? is the parallel normal vector field
of M with 7, = v and exg- is the normal exponential map 1. SetU = F(M x A).
This setU is a connected open dense subsel afonsisting of non-focal points aff and F
is a diffeomorphism o x A into V. Define a distributionDp, onU by Dp, (F(x,v)) =
ﬁj (x)®ng, Dp;(x) ((x,v) € M x A), Wheref’j (x) is regarded as a subspace’p{, ,)U and
ng is a map ofM into U defined byn;(x) = F(x, v) (x € M). We can show the following
fact by imitating the proof of Proposition 2.3 of [4].

LEMMA 4.4. Thedistributions Dp, (i = 1, 2) aretotally geodesic on M.

PROOF. TakeX,Y € I'(Dp,) andZ e F(Dﬁl), whererl (x) is the space of all sections
of x. LetX = Xo+ D 4y, Xk ¥ = Yo+ D ey, Yo @NdZ = 3 ), Zk, WhereXo, Yo €
I'(Eo), Xk, Yr € I'(Ey) (k € I1) andZy € I'(Ey) (k € I2). Denote byV (respectivelyz) the



404 N. KOIKE

Levi-Civita connection (respectively the second fundamental formdY oAlso, denote byi1
the second fundamental form Bfp, . We have

(X, Y), Z)=(Vx¥,Z)= > > > (Vxy Yipr Zis)
k1€1U{0} kpel1U{0} k3elr
where we note that the termwise differentiability as in Lemma 2.2 of [4] also holds on a
pseudo-Riemannian Hilbert manifold. It suffices to sh®¥, Yk,, Zk;) = 0 (k1, k2 € I1 U
{0}, k3 € o) in order to show thaDp, is totally geodesic. A$Xy,, Zk;) = (Xky, J Zis) =0,
we have

(4.1) <VY/<2 Xkl, Zk3) + (Xkl, Vykz st) =0,
and
(42) <VYk2 Xk17 JZkg) + <JXk1, VYkz Zkg) =0.

Foranyu; € E;, u; € E; and any € T+M, we have
(h(ui,uj), v) = (Ayui, uj) = (Ai(V)ui, uj)
= ((vi, viu; — (Jv;, v)Ju;, uj)
= ((ui, ujhvi — (Jui, uj)Jv;, v)
and hence
(4.3) h(ui,uj) = (ui, uj)vi — (Juj,uj)Jv; .
LetV := V* ® V* ® V+, whereV* is the dual connection o¥ and V+ is the normal
connection ofM. From (4.3), we have
@.2) (Vi M) (Yig, Ziy) = V;%kl (h(Yiys Zi3)) — h(Vixy, Yios Zig) — h(Yiy Vi Zia)
= (Vixy Yias Zis) (Vkp — Vkg) — (Vxp, Yios J Zic) T (Ui, — Vi3) -

Similarly we have
(4.5)  (Vy,h)(Xiys Zig) = (Vyi, Xigs Zig) (Vg = Vkg) — (Vv Xkys I Zig)J (g — vkg) -
As Vh is totally symmetric by the Codazzi equatioretleft-hand side of (4.4) is equal to that
of (4.5), that is,
(Vixi Yios Zis) Wiy — Vig) = (Vxy Yaoo I Zig) J (Vky — Vi3)
= (Vr, Xty Zig) (Vky = Vkg) = (Vi Xqs I Zig) T (Vky — Vk3) -
Similarly, we have
(V21 Yios X)Wy = Vhy) = (Vi Yiegs J Xy )J (W — Vky)
= (Vyi, Zigs Xiy) (ks — Vky) — (Vii, Zias S Xieg ) (Vk3 — 0iy) -

According to (4.1) and (4.2), the right-hanides of (4.6) and (4.7) coincide with each other.
Hence, we have

(kal Ykzs st)(vkz - Uk3) - <VXk1 Ykzv JZk::,)J(Ukz - Uk3)
= <VZk3Yk27 Xk;[)(vkz - Ukl) - <VZk3Yk2’ JXk1>J(vk2 - vkl) .

(4.6)

4.7)

(4.8)
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At each point ofM, the left-hand side of (4.8) does not belongApor is equal to the zero
vector. On the other hand, the right-hand sidg48) is a section ofP;. Hence, we have
(kal Yi,, Zkz) = 0. Thus,Dp, is totally geodesic. Similarly, it is shown thap, is totally
geodesic. O

By imitating the proof of Lemma 3.2 of [4], we can show the following fact in terms of
Lemma 4.4.

LEMMA 4.5. The distributions Dpl. (i = 1,2) are totally geodesic on U and hence
leaves of D p; (i =1, 2) are open potions of closed complex affine subspaces of V.

PROOF. For each tangent vector fielland eachw € A, vector fieldsX andi onU are
defined byX r(x.,) = X, andig(y.p) := Wy for (x, v) € M x A, where we identifyl'(, ,,U
with T, U. The parallel submanifold/ of M is a proper anti-Kaehlerian isoparametric sub-
manifold in V. Define distributionst” (i € I U {0}) on My by E}(F(x,w)) := E;i(x)

(x € M). According to Lemma 3.2E}" | i € I U {0}} is the set of all complex curvature
distributions ofM;. Define a distributiorD], (respectivelyD}y ) onU by

D}, (F(x,v)) := {Xp(u | Xy € Dp,(x))
(respectivelyD (F (x,v)) = {br(ev) | w € P, N A, x € M)

for (x,v) € M x A. Thenitis clear thaDp, = D}, & D} and thatD} is totally geodesic
(hence integrable). To show thétp, is totally geodesic o/, we suffice to show tha%;( Y,
Ve, V¥ and Vo (X, Y are tangent vector fields o, v, w € A) are sections oDp,.
Itis clear thatv,; ¥ andV,d vanish, that is, they are sectionsBf,. We show tha¥v; ¥ is

a section ofDp,. Denote byv*, A* andh, the Levi-Civita connection, the shape tensor and
the second fundamental form of; (u € A), respectively. By the Gauss equation, we have

(4.9) (Vi) rray = Nas (Vi V) + hu (X, Yo) - ((x.u) € M x A).

According to Lemma 4.4D} is integrable and the leaf ab}, through F (x, u) is totally
geodesic ilV;. Hence, we have

(4.10) Nax(V§Y)x € D (F(x, 1))

Let X, = (Xy)o+ Zkell_ (X)k, Where(X,)o € Eo(x) and(X,)x € Ex(x) (k € I;). Then,

foranyv e 7%, ,,Ma © D} (F(x,u)), we have

(hy (X, Yx), v) = (h,((Xx)o, Yy), v) + Z(hu((xx)k’ Yy),v)
kEh

= (A%(X0)0. Vo) + Y _(AUX)k. Yo)
kEb

00+ ()
=Yy v =0,
];Ii<1—()»k)x(ﬁx)( %)
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where we use Lemma 3.2 ariély),(v) = 0. Thus, we havés, (X, Y,) € f)N(F(x u)).
From (4.9), (4.10) and this fact, we ha(/ﬁXY)p(x w € Dp (F(x,u)). Next we show that

V W is a section oTDp As W]y, is parallel with respect to the normal connectionaf,
we have

(6§@)F(x,u) nu*(A Xy)

wF( )

(M) x (Wy) ~r
__z : nu*(Xx)kED ,(F(x,u))~
kel; 1- ()\k)x ly) p

Thus, it is shown thaﬁpl. is totally geodesic. The rest of the statement follows from the
following general fact. m]

FAcT 1. Anyconnected totally geodesic submanifold in a pseudo-Hilbert space, whose
tangent spacesare closed subspaces of the pseudo-Hilbert space, isan open potion of a closed
affine subspace of the pseudo-Hilbert space, where closednessis onefor the original topology
of the pseudo-Hilbert space.

Next we prepare the following lemma.
Dp. . . . .
LEMMA 4.6. Theleaf L, of Dp, through x is a proper anti-Kaehlerian isoparamet-
ric submanifoldin x + Dp, (x).
Dp. ~
PROOF. From Lemma 4.5, we have, ' C x + Dp,(x). Letv be a parallel normal
' o . - Dp. .
vector field of M with 7, € P;. It is clear that the restriction of to L, ' is a parallel
. Dp. . ~ 1L, Dp Dp. .
normal vector field ofL, ' in x + Dp,(x). Also the normal spacé; L, of L, atyis

~ . Dp.
equal toP;(y). These facts imply thak, " has globally flat normal bundle. Furthermore,
it is easy to show that the restrictions of the complex curvature normalg bélonging to
~ Dp. X Dp. ..
P toL," arethe complex curvature normalsb?”’, the tangent spacg, L, " coincides
. Dp. .
with Eo(y) & (@jeh E;(y)) and that7y L, L Eo(y) ® (@je,i E;(y)) is the common

. " . Dp, . D
J- elgenspace decomposition af, (v € TLL "), where A’ is the shape tensor df,

Thus, L " is a proper anti-Kaehlerian isoparametric submanifold in Dp, (x). a

Forx e M,wesetM;(x) ;=M N (x+Vp) (i =1, 2)andM’(x) := MN(x+V’). The
setM;(x) (respectivelyM’(x)) is regarded as an immersed submanifold i Vp, (respec-
tively x + V).

PROPOSITION 4.7. Thesubmanifold M; (x) isa proper anti-Kaehlerian isoparametric
submanifold in x + Vp,.
ProoOF. We show this factin the cage= 1. Accordingto Lemma 4.3, the subbundig
of T+ M is parallel along each leaf db p, with respect to the Levi-Civita connectionof V.
From this fact and the real analyticity &, we haveVp, = Spany | J Lon P1(y). Denote
YELy
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D Dp, . ~ D ~ D
by 74L, ™ the normal bundle oL, ™ in x + Dp,(x). AST;-Ly ™t = Pi(y) (v € Ly %),

D .
we haveVp, = Spary | on Tyle " Let Vﬁl be the orthogonal complement &, in
yelx

f)pl(x). On the other hand, by Lemma 4.65”1 is a proper anti-Kaehlerian isoparametric
submanifold inx + f)p1 (x). Therefore, it follows from Proposition 4.1 thlaf”l N(x+Vp)

is a proper anti-Kaehlerian isoparametric submanifold#1Vp, . Itis clear thatl , N+
Vp,) = M1(x). Hence, we obtain this statement. |

Define a distributionD; (i = 1,2) (respectivelyD’) on M by D}(x) := T M;(x)
(respectivelyD’ (x) := T,y M’ (x)) (x € M).

LEMMA 4.8. (i) Thedistributions D; (i = 1, 2) are totally geodesic.
(i) Thedistribution D" is the orthogonal direct sumof D; and D5,

P

. " D ~ . .. Dp

PrRoOF.  Applying Proposition4.1td., ' C Dp,(x), M;(x) is totally geodesic itL R
Also, by Lemma 4.4L, " is totally geodesic in. Hence,M; (x) is totally geodesic in\.
This implies thaiD; is totally geodesic. Clearly we have diip, —dim D} = dimP; (i = 1, 2)
and dimV’ —dim D’ = codimM = dim P; +dim P,. According to Proposition 4.2/’ is the
orthogonal direct sum dfp, andVp,. From these facts, we have di = dim D] 4+ dim D),

and furthermored’ = D] @ D, (orthogonal direct sum). O

For simplicity, we denoté; (o) (i = 1,2) by M;. Denote by the immersion of\’
into V" and by; that of M; into Vp, (i = 1, 2). Then we have the following proposition.

PROPOSITION 4.9. (i) Thereexist anisometry F of Vp, x Vp, onto vV’ and an isom-
etry F of M1 x M, onto M’ satisfying F o (11 x t12) = o F.
(i) M; isproper anti-Kaehlerian isoparametricin Vp, (i = 1, 2).

We prepare the following lemma to show this proposition.

LEMMA 4.10. Lety beacurvein M; and s be a one-parameter family of geodesics
in M’ with Bs(0) = y(s), Bo(0) L My and V/V.(S)Bs (0)|s—0 = 0, where V' is the Levi-Civita
connection of M’. Thenwe have (3/9s)B;(1)|s=0 € D} (Bo(1)).

PrROOF. From Lemma 4.8, we can show this statement by imitating the proof of Lemma
3.9 of [4]. O

From this lemma, we have the following fact.
LEMMA 4.11. Foreveryxi € M1 andeveryxs € Mo, we have M1(x2) NM2(x1) # @.

PrROOF. From Lemma 4.10, we can show this statement by imitating the proof of
Lemma 3.10 of [4]. a

Forxi € My C Vp, C V', we define an isometry,, of V' by Fy,(u) := u + x1
(weV.

LEMMA 4.12. (i) Forx; e M; (i =1, 2), M1(x2) N M2(x1) = {Fy,(x2)} holds.
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(i) Thisisometry Fy, maps M> isometrically onto M»(x1).

PrROOF. From Lemma 4.11, we can show these statements by imitating the proof of
Corollary 3.11 of [4]. a

By using this lemma, we prove Proposition 4.9.

PrROOF OFPROPOSITION4.9. Define an isometryﬁ of Vp, x Vp, onto V' by
F(ur, u2) == u1 + uo ((u1, up) € Vp, x Vp,). From (ii) of Lemma 4.12, we have

F(Myx M) = | ) F{xa} x M2) = ] Fuy(M2)
xX1€EMy X1€M1

= U Ma(x1) C M.

x1€My

Furthermore, it follows from the completenesseahf(i = 1, 2) that F (M1 x M) = M'.
This implies the statement (i). The statement (ii) is shown by imitating the proof of Proposi-
tion 4. 1(iii). ]

Now we prove Theorem 1.

PROOF OFTHEOREM1. From Propositions 4.1 and 4.9, it follows that there exist an
isometry F of Vp, x Vp, x Vo onto V and an isometry¥ of the anti-Kaehlerian product
manifold M1 x M» x Vo ontoM satisfyingﬁ o (11 x t2 xidy,) = to F. Thus,M is regarded
as an (extrinsic) product of the proper anti-Kaehlerian isoparametric submanifalds
Vp,) andMz x Vg (in Vp, x Vo). This completes the proof of Theorem 1. a

5. Proof of Theorem 2. In this section, we prove Theorem 2. L&t be a proper
complex equifocal submanifold in a symmetric spag&k of non-compact type ant/© be
the extrinsic complexification afZ, where we note tha¥/® is an anti-Kaehlerian equifocal
submanifold in the anti-Kaehlerian symmetric sp&t% K © associated withG /K. Let ¢€ :
HO([0, 1], g% — G°€ be the parallel transport map f6r and=¢ : G — G¢/K°€ be the
natural projection. See [8] for the definitions B([0, 1], g¢) and¢®. Note thatyp® andn®
are anti-Kaehlerian submersions. $&t:= 7o ¢°. Let W be the complex Coxeter group
associated wittdZ. As M is proper complex equifocah® 1(MC) is a proper anti-Kaehlerian
isoparametric submanifold and it extends to a complete submanifold by Theorem 1 of [8].
Denote the complete extension by the same symbot(M¢). Hence,M ¢ also extends to a
complete anti-Kaehlerian equifocal submanifold, which we denote by the same syffibol
If M is decomposed into an extrinsic product of two proper complex equifocal submanifolds,
then M€ is decomposed into an extrinsic product of two proper anti-Kaehlerian equifocal
submanifolds. Hence®1(M°) is decomposed into an extrinsic product of two proper anti-
Kaehlerian isoparametric submanifolds, thatisjs decomposable. In the sequel, we prove
the converse. Assume thit is decomposable. For simplicity, we &€ := ¢°~1(M°) and
v := HY(0, 1], g%). Without loss of generality, we may assume thet contains the zero
elemen® of V. Denote by/ the complex structure df. According to Lemma 3.8, there exist
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two J-invariant linear subspacé (# 0) and P, (# 0) of T()iMC such thafréilﬁlC =PoP
(orthogonal direct sum)P; U P, contains all complex curvature normals@F at0 and that
P; (i = 1,2) contain at least one complex curvature normaMsfat 0. Let B (i = 1, 2)
be V-+-parallel subbundle of +M¢ with P;(0) = P;. SetVp, := Spary U ;e () (i =
1,2), V' := Spary ;e T3 M and Vo := (V')1. According to Proposition 4.2, we have
V = Vp, @ Vp, ® Vo (orthogonal direct sum), which we write 8= Vp, x Vp, x V. Set
M (%) := M°N (X + V) andME(F) := M®N (¥ + Vp,), wherex € M®. For simplicity,
we denoteM® (0) (respectivelyM(0)) by M® (respectively©). According to the proof of
Theorem 1 in Section 4, there exists an isoméirpf M7 x M3 x Vo onto M® satisfying
io F =11 x I x idy,, wherel is the immersion of€ into V andi; (i = 1, 2) is that ofM?
into Vp,. Note thatF (M$ x MS x {0}) = M®. For simplicity, we setd® := $°(M°). Set
Pr o= qb:@Pi (i = 1,2). LetP* (i = 1,2) be thev+*-parallel subbundle of - M with
13;" (e) = P}, whereV1* is the normal connection di®*. Define idealg® andg® (i = 1, 2)
of g€ by

g% := Span U {go*v(x*);lg&l |ve TEM™, go e G%)
x*e M
and
of :=Span | {gow@ Mgt |ve Br(x*), goeGY).
x*eMo
Also, setgf := (g¥)*, which is also an ideal of°. Let G®, G§andG¢ (i = 1,2) be the
connected Lie subgroups 6 whose Lie algebras agg’, ggandg; (i = 1, 2), respectively.
As G¢is simply connected ang®, g andg? (i = 1,2) are ideals o§® we haveG® =
GY x GgandG® = G x G$. First we prepare the following lemma.

LEMMA 5.1. Wehave V' c H°([0, 1], g%) and Vp, C H([0, 1], g% (i = 1, 2).

PROOF. Letv € TAM® andi € ¢°~1(x*). By the fact (v) in [8, Section 6], we can
express ag = ¢ * 0 in terms of somg € P(GS, G© x ¢), whereP(G®, G® x ¢) := {§ €
H([0,1],G% | 3(1) = e}. We can show that the horizontal I'rﬁg% of v to x is equal to
gv(x); gL, where we identifyr: H9([0, 1], g% with HO([0, 1], g°). Hence, ag’:* M€ is
the horizontal lift(7: M %)% of T M to X, we have

vi=spany | ) {gv@nitetge P(GS.Goxe), veTEM™Y,
x*eM®
which implies thatv’ ¢ H9([0, 1], g%). Similarly, asP; (¥) is the horizontal liftP;* (x*)% of
P¥(x*) to ¥, we have

Ve, =Spary | J {gv(*)i et | g € P(GS GC x o), v € PF(x*))

x*eMC*

(i = 1,2), which implies that/p, ¢ H°([0, 1], gf). O
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REMARK 5.1. We cannot conclude whether Lemma 3.3 of [2] is true because the
curvew o A in its proof does not necessarily belongig(i.e. the statemery%l ¢(\())dt =0
in the proof cannot follow from the assumption tgx. Similarly, we cannot conclude whether
HO([0, 1], g%) = V' is true.

Let¢® : H([0, 1], g¢) — G (respectivelypg HO([0,~1], gg) — Gg) be the Parallel
transport map foG® (respectivelyGg). Itis clear thaip® o F = ¢% x ¢g, whereF is an
isometry ofH0([0, 11, g%) x H([0, 1], g) onto H°([0, 1], g°) defined byF (u', uo) = u'+uo
(', uo) € HO([0, 11, g%) x HO([0, 1], g5)). From0 € MC, we havee € M, wheree is
the identity element ofz¢. Set M’ := M® N G, which is regarded as an immersed
submanifold inG®. Denote by*’ the immersion of/®*’ into G® and by:* that of M®* into
G°.

PROPOSITION 5.2. (i) There exists an isometry F of the anti-Kaehlerian product
manifold M x G§ onto M® satisfying * o F = ¢/ x idgg.

(i) M isproper anti-Kaehlerian equifocal in G

PROOF. AsV’' c HY([0, 1], g% by Lemma5.1and = V' @ Vo = HO([0, 1], ¢°) &
HO([0, 1],g8) (orthogonal direct sum), we have ([0, 1],98) C Vo. Let Vy be the or-
thogonal complement af/°([0, 1], g5) in Vo. Clearly we haver/9([0, 1], ¢%) = V' & V}
(orthogonal direct sum). According to (i) of Proposition 4.1, the submanifptds regarded
as the anti-Kaehlerian product submanifi¥ x Vp. From these facts, we have

MC* — ¢C(MC) — ¢C(MC/ x VO)

= (9% x ¢§)(M® x Vg x H%([0, 11, g§))

= ¢¥(M% x V{) x G§

= ¢%(M° N HO([0, 11, g%)) x G§ = M®' x G§.
This implies the statement (i). okording to (iii) of Proposition 4.1M¢ is proper anti-
Kaehlerian isoparametric i’ and hencel/® x V, is proper anti-Kaehlerian isoparametric
in H9([0, 1], g%). On the other hand, it is clear that® x Vo= qbc”l(MC*/). Therefore, it
follows from Proposition 4 of [8] and its proof thaf®’ is proper anti-Kaehlerian equifocal
in G%. O

We can show the following lemma by imitating the proof of Lemma 3.7 of [2].

LEMMA 5.3. We have g§ L g$ and hence HO([0,1],g%) = H(0,1],¢5) &
HO([0, 1], g5) (orthogonal direct sum).

PROOF. First we showg] L g5. Let g,'*v,'(xl?“);lg;l € g7 (i = 1,2), wherex/ €
M, ¢ € G®andv; € Pi*(x;‘) (i = 1,2). We have only to showgl*vl(xi‘)glglj},
92:v2(x5);1g51) = 0. Suppose thalgr. i (x); tort, g2ev2(x3);1g5t) # 0. Takeg? e
P(G®, e x G% with ¢°(5° * 0)(= 37 (1) = xF and3’(1/2) = g (i = 1,2). Set

U (1) = (32001 (DR, P02 150
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(r € [0,11). As g2 v; (x); 152t (v,-)go*@ € Pi(5°+0) (i = 1, 2) andPy(79x0) L P(2+0)
by Proposition 4.2, we havﬁ) ¥ (t)dt = 0. There existg > 0 such thaty(r)¥(1/2) > 0
forallt € [1/2— ¢,1/2 + ¢] because ofy(1/2) # 0. For simplicity, set; = 1/2 — ¢ and

t» = 1/2 + ¢. Define a functiork over[0, 1] by

3ot 0=t=1/3
A) =200 —11—3(t2— 1)t (1/3<t<2/3)
11 — 2ty + 3tot 2/3<t<l.

Then we have

/ YO)d = — / V()i 3t2(t2 t1) / w(t)dt 0.

On the other hand, we have

1
fo Y0t = (G2 0 sv1(DFHE 0 ML (G5 0 w267 1@S 0 ) ho

((vl) (v 2) 50="0

(§02)% %0’ go)L)O

because ofP1((32 o 2) * 0) L Pa((32 o 1) * 0), where we note thapS((5° o 1) * 0) =

@@ on@W™?t =72 = xf and hence(vi)(Lgo 10x0 1S defined. Thus, a contradiction

arises. Hence, we obtaigy.vi (x1); 2g1.}, g2ev2(x3);2g50) = 0. Thus,g$ L g5 is shown,
Furthermore, agt M% = P (x*) @ P; (x*), we haveg® = g$ & g5 (orthogonal direct sum)
and hence?°([0, 1], %) = H([0, 1, ¢$) ® HO([0, 1], gS) (orthogonal direct sum). O

Let ¢¢ : H°([0,1], g5 — G¢ (i = 1,2) be the parallel transport map fGi¢. Set
M .= M* NG (i = 1,2), which is regarded as an immersed submanifold fn Denote
by ¢} the immersion of/ into G?¢.

PROPOSITION 5.4. (i) There exists an isometry F of the anti-Kaehlerian product
manifold M{* x M$* onto M satisfying (* o F = ¢} x 13,

(i) M7 isproper anti-Kaehlerian equifocal in GY (i = 1, 2).

PROOF. LetV/ (i = 1, 2) be the orthogonal complementf, in H([0, 1], g). From
Lemma 5.3, we have® = ¢f x ¢5. Also, from the proof of Proposition 5.2, we have
M = ¢% (M x Vp), whereVy is as in the proof of Proposition 5.2. Itis clear thét=
V] @ V; (orthogonal direct sum). Also, according to Proposition 4.9(i), the submaniféid
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is regarded as the anti-Kaehlerian product submanifﬁjck Mg From these facts, we have
M = (¢S x ¢S)(MF x M§ x V§)
= (@5 x 5 (M x V]) x (M3 x V3))
= PT(MF x V]) x $5(M5 x V3)
= ¢§(M° N HO([0, 11, g9)) x ¢5(M° N HO([0, 1], g3))
= M7 x M5*.

This implies the statement (i). okording to Proposition 4.9(ii),1\7ll.c is proper anti-
Kaehlerian isoparametric iip, and hence17ll.C x V! is proper anti-Kaehlerian isoparametric
in H9([0, 1], g;). On the other hand, it is clear tha?tf x V! = qbl.c‘l(Ml.C*). Therefore, it
follows from Proposition 4 of [8] and its proof tha#™ is proper anti-Kaehlerian equifocal

in G7. O
We have the following splitting theorem fa¢®* from Propositions 5.2 and 5.4.

THEOREM 5.5. There exists an isometry F of the anti-Kaehlerian product manifold
MY x M$* x G§onto M® satisfying * o F = ¢} x 15 x idgg.

Next we prove a splitting theorem fa¢®. Lets : G — G be the involution ofG such
that the set of all fixed points ofis equal toK and set := s..(: g — g). Also, letd® : g¢ —
g¢ be the complexification af. Then it is clear thatg®, 6°) is the orthogonal symmetric Lie
algebra associated withi®/ K ©. First we show the following lemma by imitating the argument
in [2, Section 4].

LEMMA 5.6. Wehave6°(g)) =g (i =0, 1, 2).

PROOF. Letg=Hh1 & ---® b, be the simple ideal decomposition@fThen it is clear
thatg® = h @ - - - @ b is the simple ideal decomposition gf. Asgf (i =0, 1, 2) are ideals
of g, we can express @ = b @ - -@bg”’_ (i =0,1,2). Let(g, 0) = (i1, 601) x - - - x (if, O))
be the irreducible orthogonal symmetric Lie algebra decomposition 69, whered; = Oli;
(j = 1,...,1). Then itis clear thatg®, 6 = (if,6;) x --- x (if, 6f) is the orthogonal
symmetric Lie algebra decomposition gf¢, 6¢). For each(i;, 6;), one of the following
holds:

() i; =b; forsome;’ e {1,...,r}; or

() ij=by®bh;»forsomej’, j” e {1,...,r}andd;(h;) = b,
(see [6]). Suppose that®(g{) # gj. Then there existdko, j1,j2) € {1,...,I}x
{11, oo Dy} < ({01, oo, O U {21, ..., 20,1 satisfyingi,fo = h?l <) h?z. Clearly we have
{X +6%X) | X €S} C f° Also, fromM* = 7% 1(M°®), we havef® ¢ T, M. Hence, for
eachX e bjl, we have

X +60%X) e T.M™ = T,M$* © T,MS* @ g,

thatis, X € T.M{* ando°(X) € T.Mz" & gg. Thus, we haveys C T.M* andbS, C
T.M5* & g§. Therefore, we hav§0 c T.M%. Next we show thayo*i,fo C T4,M® for each
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go € M. We denote the quantities fgglMC* corresponding ta? (i = 0, 1, 2) (defined for
M%) by §¢ (= 0,1, 2). Then we have

=Spanp [ J {onvG tert v e 6ot P (gox™). g1 € GO
x*eg&lMc*

=span | {02000, 0) (90x™); Mg0e g, | v € PF(gox™), g1 € G}
x*ego’lMC*

=span | J (g0 D00 ago D v e Pr(x™). g1 € G%) = gf

x*eM©

(i = 1,2). Hence, we also havi§ = g. Therefore, we can shox‘/ﬁ0 - Te(go‘lMC*) in a

similar manner tay  C 7, M. Thatis, we haveo.i; C TgM®. Let1° (j=1,...,0)be
the connected Lle subgroup 6F whose Lie algebra |r>c We haveG® = IC - x If. For
simplicity, we express a6 = I x H, whereH := IC X I g% IkOJrl X e x IF

As Tgog0l, = gosiy, C TgoM, we haveM® = UgoeMC* gl That isM® is expressed
asM® = Jgemenm U5, x {90}). This fact deduceg; C Gg, thatis, i C g5, which
contradictsi,g0 Ng; = hjl # {0}. Therefore, we obtaifi®(g]) = g$. Similarly, we can obtain
6°(g5) = g5. Hence, we also hav#(gg) = g, O

LetfC (i =0,1, 2)bethe elgenspace@Ifg c for 1, where we note thaugc is an involution
of gf by Lemma 5.6. LetKC (t = 0,1,2) be the connected Lie subgroup@f whose Lie
algebra isf?. Letg, := gfNg (i = 0,1,2) andG; (i = 0, 1,2) be the connected Lie
subgroup ofG whose Lie algebra ig;. We can show(g;)® = g7 (i = 0,1,2). It follows
from this fact andb®(g)) = g5 thatf(g;) = g; (i = 0,1,2). Letf; (i = 0,1,2) be the
eigenspace df|g, for 1 andK; be the connected Lie subgroup@fwhose Lie algebra if.

It is shown thatGF/K? (i = 0,1, 2) is the anti-Kaehlerian symmetric space associated with
Gi/Ki, G°/K® = G$/K x G5/KS x G5/K§ and thatG /K = G1/K1 x G2/K2 x Go/Ko.
RegardG{/K? (respectivelyG;/K;) (i = 0, 1, 2) as totally geodesic submanifolds@¥/K ©
(respectivelyG/K) througheK® (respectivelyeK). SetM? := M°N GY/KP (i = 1,2),
which is regarded as an immersed submanifoldfiK °. Denote by; the immersion of\/?

into GY/K ¢ and by: that of M® into G°/K©. We have the following splitting theorem faf°©
from Theorem 5.5.

THEOREM 5.7. (i) Thereexistsanisometry F of the anti-Kaehlerian product mani-
fold M7 x M5 x G§/K§onto M® satisfying o F =11 x 12 x idge/ kg

(i) M? isproper anti-Kaehlerian equifocal in G§/K? (i = 1, 2).

PrROOF. Denote byr? (i = 0, 1, 2) the natural projection of? onto G¢/KF. Clearly
we havenffl(Mf) = M7 (i =1,2). AsM* is identified with the anti-Kaehlerian product
submanifoldM$* x M5* x Gg by Theorem 5.5, we have

M® = g(M%) = (7] x 75 x 7H(MT* x M5* x G§)
= ny(M7*) x n5(M5*) x Gg/Kg = M5 x M5 x G§/Kg,
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which implies the statement (i). A% is proper anti-Kaehlerian equifocal @&? by (ii) of
Proposition 5.4 and/** = nl.cfl(Ml.C), it follows from Proposition 4 of [8] and its proof that
M¢ is proper anti-Kaehlerian equifocal @G/ K . 0

SetM; := M N G;/K; (i = 1,2), which is regarded as an immersed submanifold in
G;/K;. Denote by; the immersion of; into G;/K; and byt that of M into G/K .

PROOF OFTHEOREM2. Letig/x be the natural immersion @ /K into G¢/K° and
tG;/k: (i = 1,2) be that ofG;/K; into G{/K{ (i = 0,1,2). Clearly we haveg/x =
120 tG,/k;- As M®is identified with the anti-Kaehlerian product submanifol§ x Mg x
Gg§/K§ by Theorem 5.7, we have

Lok (MO = 1G7 i (MF) x 152 (M§) x Go/Ko.

Let M (i = 1,2) be the maximal connected open submanifoldg#,(i (M?) containing

eK. As M is the maximal connected open submanifold@fK(MC) containingeK , we have
M = M; x M} x Go/Ko. This factimpliesM! = M; (i = 1, 2). Therefore, it follows that
there exists an isometry of the Riemannian product manifold; x M2 x Go/Ko onto M
satisfyingi o F = 11 x 12 x idgo/k,- As MY is proper anti-Kaehlerian equifocal /K¢

(i = 1,2) by Theorem 5.7(ii), it follows from Theorem 6 of [8] and its proof thid} is
proper complex equifocal i; /K; (i = 1,2). Thus,M is decomposed into the extrinsic
product of two proper complex equifocal submanifoMs (in G1/K1) andM2 x Go/Kp (in
G2/K2 x Go/Ko). O

6. Thecomplex Coxeter groupsof the principal orbits of actionsof Her mann type.
In this section, we recall examples of proper gdex equifocal submanifolds given in [9] and
describe explicitly the generators of the complex Coxeter groups associated with them. Let
G /K be a symmetric space of non-compact type Anloe the subgroup aff consisting of all
fixed points of an involutiow of G. Note that the{-action onG /K is conjugate to the dual
action of a Hermann action on the compact diéf K of G/ K. Hence, we call such an action
onG/K anaction of Hermann type. Denote byd the Cartan involution associated witly K .
We may assume thato 6 = 0 o o by replacingH to a suitable conjugate group if necessary.
Then the orbitHeK is totally geodesic (see [9, Lemma 4.2]). Lyebe the eigenspace 6f,
for —1. In [9], we showed the following fact.

FACT 2. The principal orbits of the H-action on G/K are curvature adapted and
proper complex equifocal.

Now we describe explicitly the generators of the complex Coxeter group associated with
the principal orbit. LetH (expZ)K (Z € p) be a principal orbit of theH -action. Denote
this orbit by M and its shape tensor by. For simplicity, setg := expZ. There exists
anr-dimensional abelian subspatef p’ := TLj(HeK(c p) containingZ, wherer is the
cohomogeneity of thé7-action. Leta be a maximal abelian subspacepofontainingt and
p=oa+ ZaeA+ po be the root space decomposition with respect tds HeK has Lie triple
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systematic normal bundle ad is a partial tube oveldeK (see [9, Lemma 4.2]), we have

(6.1) TykM = ( P XziXepsn TeKHeK}> < ( P o vs ﬂp’)) :

UEA+U{0} ﬂEA+
whereX is the horizontal lift ofX to Z andpg = a. For simplicity, we set, := {X |
X € po NToxHeK} (@ € AL U{O}) and Vg := g (pg Np') (B € A4). Furthermore, ableK
is totally geodesic, it follows from Corollary 3.2 of [9] that

(6.2) AyXz = —a(g;v)tanha(2)Xz (X7 € Hy, v € TjxM).

Let L be the group of all fixed points afo6. Then we can show thdt/ H N K is a symmetric
spaceyp’ is regarded a8, (unx)L/H N K and thatA! = {«|¢ | « € AL} is regarded as a
positive root system with respect to a maximal abelian subsipaicg = T,(znk)L/H N K.
As M N exp-(p) is catched as a principal orbit of the isotropy actiorL.g#f N K, we have

_ Bty
~ tanhB(2)
in terms of Proposition 3.1(i) in [9], where we noBgZ) # O becauseH (expZ)K is a

principal orbit, that isZ is a regular element of the linear isotropy actionlgfd N K. On
the other hand, we have

(6.3) AyY (Y € Vg, v € Tjx M)

9 TgxM =tCa), g Hy=poNT.kHeK and g 'VgCpgny'.
These facts together with (6.2) and (6.3) imply that
(DL — 2D o A,)(X7) = (coshza(g; 1v)) + sinh(za(g; 1v)) tanha(Z)) X 7 (X7 € Hy)

sinh(zB (g, 'v))
tanhg(Z)
According to these relations and (6.1), the set of all complex focal radii gipiggiven by

(—a<z>+ (j+§)m/——1) \jez, oe AH\AU}

(DS —2D3, 0 A)(Y) = <cosf(z/3(g*lv)) - )y (Y € Vp).

1
{oc(g*lv)

U{ ]_-1 (,B(Z)—Fj]'[\/—_l)‘jEZ,,BEAv\AU},

B(gs V)

whereAy (= {a € Ay | po N ToxgHeK #£ {0}}, Ay = {a € Ay | po NP # {0}} and
Ay = {a € Ay | a(g;tv) = 0}. Denote byA the shape tensor afr o ¢)~1(M), where
¢ is the parallel transport map fa¥ andx is the natural projection off onto G/K. Then,
according to [8, Theorem 1], follows from (6.4) that the/-spectrum SpegA®, of A,
(wherev! is the horizontal lift ofv) is given by

(6.4)

a(g;tv) ‘
—a(Z) + (j +1/2m /1

Bz ) . }
_— Z v
U{ﬁ(Z)Jrjm/—_l Jes pedvia

SpegASLz{ jeZ,aeAH\AU}
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Set
@ = e (@€ Ap)
J —a(Z)+(+1/2nv/-1
and .
By Ple BeAy).

7@+ ja-1
The complex Coxeter group associated withis isomorphic to the group generated by the
complex reflections (of order two)ith respect to the complex hyperplan]§,§ = (&J'.*)*l(l)

(jeZ aecApy) andl/;”j = (B}’)—l(l) (j € Z, B € Ay)int°. These complex hyperplanes
are described as
Iy = @) H=a(2) + (j + 1/27v/-1)
Iy ;= B%e) B2 + jnv=1).
Thus, we can describe explicitly the generators of the complex Coxeter groups associated

with principal orbits of theH -action in terms of the positive root system of the associated
symmetric spacé/H N K.

(6.5)

REMARK 6.1. (i) The complex hyperplanégj (j € Z) are parallel and so ai%(’j
(j € 2). Also, fora € Ay N Ay, l(':j andlo\ij are parallel.

(i) If H = K, thenthe complex Coxeter group associated Witlis generated by the
complex reflections of order two with respec’rlg% (j € Z, B € Ay) becausddeK consists

of one point. The complex hyperpla%j is described as

(6.6) Iy ;=B B2 + jnV/-1)

because of = a.
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