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Abstract. The aim of this paper is to give, for any real cyclotomic field, elements of
the group ring of the Galois group which anifélte the ideal class group. Our annihilators
are constructed by using the prime decomposition of an element which is an analogy of the
Gaussian sum. This method is essentially due to Thaine.

1. Introduction. For a positive integeN, we put¢y = exp(2r+/—1/N) . In this
paper, we fix a positive integer and a cyclotomic field = Q(¢,,). We assume that is the
conductor oft. Let E be the group of units of and letG = Gal(k/ Q). Let A = A,, be the
subgroup ofk* generated byl — ¢/ |0 <a <m, a € Z} . WeletD = A- E C k*. For
anyu € Hom(D, Z) and an integer which is not divisible byn, we sete(r) = ¢/, — 1 and
defined (u, (¢)) € Z[G] by

O(u, e(1)) = Z u(e(®)o L.
oeG
By a simple computation, we can show théi, ¢(¢)) is an element ofl + j)Z[G], wherej
is the complex conjugation i&G. Moreover, we can prove the following theorem.

THEOREM 1.1. X (u, &(z)) annihilatestheideal class group of Q ().

0(u, £(t)) is constructed by using some cyclotomic units. This remarkable method was
initiated by Thaine ([T]). It was proved in [T] that for an ideal clasghere is an annihilator
6. of ¢c. Moreover, we prove that®R annihilates all elements dhe ideal class group (see
Proposition 3.2 and Theorem 3.7). Hence, the assumption that the order of an ideal class is
prime to[ Q(¢,) : Q]is not neccesary for our proof of Theorem 1.1 (see [T], §4).

Let f > 1 be a divisor ofn andx a Dirichlet character of conductgt. We set

-1
u(x) =Y uf—Dyx(a.

a=1

Let {¢;} be a system of fundamental unitskfi = Q (¢, + ¢, 1) and letG* = Galk*/ Q).
We define

Ry, = detu(s?)),

whereo € Gt — {1} and 0< i < [kT : Q]. In Section 4, we prove the following class
number formula.
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THEOREM 1.2. If R, # 0,then

1
Wre=+ [ e,
x(=D=1.x#1
where 1 is the class number of k™ and the product is taken over the nontrivial Dirichlet
characters x that are even.

Essentially, this formula is deduced from the classical class number formula. However,
we note that all factors of the formula are algebraic integers.

In Section 5, we study the indgR™ : S(A)], whereR™ = (1 + j)Z[G] andS(A) is
the G-submodule ofR* generated byd, (n) |u € Hom(D, Z), n € A}.

2. 1-cocycleof aunit group. We denote byOr the ring of integers of a number field
F and by Er the group of units ofOf. Letk be a finite extension o2, andK a finite
Galois extension field ovdr. Let I' = Gal(K/k) and letz = {z, |0 € '} be a 1-cocycle
with values inEx . The linear independence of automorphismg’iimplies that there exists
A € K* with
9z 0 =) A7 #£0.

oel’

Sinceg(z, M) = z;lg(z, A) for T € I, we have the following decomposition of ideals:

(9(z, ) = AR [ [P},
i=1
where2((k) is the lift of an ideal of , 3; (1 < i < r) is a prime ofK which is ramified over
k ands; is the exponent df3; in the decomposition ofg(z, A)). LetT be the inertia group of
B = P overk. Sincez, = 7,z modB foro, t € T, the mapr — z, mod’P is an element
of Hom(T, (Og/P)*). Let p be the characteristic @ g /3 ande = egp” ((eo, p) = 1) the
ramification index ofj3 overk N‘P. Letx be an element of order one@t andy,, denote the
mapo (e T) — 7°~1 modp. Itis not difficult to show that Hor", (Ox /%)) is a cyclic
group generated by, and its order iz ([Se]). Hence there is an integeisuch that
26 = X, (o) mod*P
foranyo € T. Furthermore, we can show the following
PrROPOSITION 2.1. Letn bean integer satisfying
26 = X, (o) modP
foranyo € T. Then
ordpg(z, 1) =n modeg .
PROOF. Suppose ofdg(z, ) = m. Then there is an elementin K> prime tol} such
thatg(z, A) = n™v. Foro € T, we have

g(z, )"t = (@ Hm = (o) modR .
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Sinceg(z, A)° = z;lg(z, 1), we havey” = x2. Hencem = n modeg. O

For the rest of this section, we assume thad an odd prime and splits completely&n
Moreover, we leK = k(¢), whereg is a primitive p-th root of unity. As is well-known, there
is a unique elemend € Hom(I", (O /P)*) such that® = ¢“). Sincew is a generator of
Hom(I", (Ok /B)*), there is an integer such that

e =w "(0) modP
forz € Z1(I', Ex). The next proposition is essentially due to Thaine ([T]).
PROPOSITION 2.2. Letn bean integer satisfying
e = (o) modP
foranyo € I'. Then
ordpg(z,A) =nmodp — 1.

PROOF.  Sincep is unramified ink, ordg(¢ — 1) = 1. Letm be an integer such that
w (o) =m mod‘B. Then
¢-1° @-D+h"-1 1+(DC-D+(PE-D*+--- -1
-1 ¢—1 a ¢—1
=m modP = w(c) modP.

Therefore, Proposition 2.2 is an easy consequence of Proposition 2.1. O
From Proposition 2.2 , we have the following decomposition
(9(z, 2)) =Ak) [ [F"P,
Blp

where for each prime off3 lying above p, n() is an integer satisfying z,
o "P (o) modP andA(k) is an ideal irk.

3. Cyclotomic units. Let m be a positive integer ang,, a primitive m-th root of
unity. We assume that is the conductor ok = Q(¢,). Let p be a prime number and
assume that dividesp — 1. Asin § 2, letz be a primitivep-th root of unity,K = k(¢) and
I' = Gal(K /k). Lety be a generator of and letr be an integer with # 0 modm. For a
positive integer. we define an element,» as follows:

¢ 1 24 .41
Zyn = (g — DIV

Sincer is not divisible bym, z,» is an element of k. Moreover,

tp_

p 1
Ng/i(Che —1) = 0 —1 =1.

Hence, by Hilbert's Theorem 90, there is an elemenf K such taht/ ¢ — 1 = «¥~1. This
implies thatz,» = «”" 1. Thereforez = {z, |0 € I'} is an element o X(I", Eg).
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LetP3 be a prime ideal ok over p, and lets(r) = ¢/, — 1. Then we have
zyn = ()" mod*P.

As in §2, letw be the element in Honi{, (Z/ p)*) satisfyingz? = ¢ for p € I'. Sincep
is of absolute degree 1, for an elemert Gal(K/ Q) there is an integey; such that

e(t) = w % (y) modP*.

Let A be an element oK satisfyingg(z, ») # 0. By Proposition 2.2, we have the following
decomposition of principal ide@N g« g(z, 1)):

(Nk/kg(z, ) = AP~ ] 97,
oeG
where2((k) is an ideal ink, p =B Nk andG = Gal(k/ Q). Let
Oz e() =) o5, € ZIGl,

oeG

wheres, is an integer satisfying(t) = o™ (y) mod3° for eacho € G . Then we have
the following

PrRoOPOSITION 3.1. With the notation being as above, suppose that p — 1isdivided by
the class number of k. Then p®@¢®) jsa principal ideal.

Let N be an integer and suppose tiat= 0 modmh , whereh is the class number éf
Let A be the subgroup df* generated byl — ¢ | 0 < a < m}. We letD = AE; and, for
brevity, writeZ(N) = Z/NZ. For an element € Hom(D, Z(N)) ande € D, we define

n(, &) = Z v(e)o e Z(N)[G].
oeG

Let/ be a prime number such thiat= 1 mod N and( a prime ideal ink overl. Letr = r(l)
be a primitive root modulé. Sincel is of absolute degree 1, there is an elemgnt u(r, ) €
Hom(D, Z(N)) such that!~D/N = ,(=Du@)/N mod{ for any elemens € D. Letrg be
another primitive root modulband letug = u(ro, [). Then there is an integemprime tol — 1
such that

ro=r® modl/.
Hence we have
n(ug, 8) = sn(uo, 8) .

By means of Proposition 3.1, we now prove

PROPOSITION 3.2. n(uy, &), — 1) € Z(N)[G] annihilates the ideal class of I.
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PROOF. Lety, be a generator of G&l(¢;)/k) and, as abovey, € Hom(Gal(k(¢;)/ k),
(Z/D)>) satisfyngy = ;l‘”’(t) for r € Gal(k(¢;)/k). By Proposition 3.1y s, annihi-
lates the ideal class of Here,s,; is an integer satisfying

¢l —1=w"*(y) modl.
Letr; be a primitive root moduld such that; = w;(y;) modl. Then
(gl = DUDN = n D% /N mog e
Hence there is an integemprime to/ — 1 such that
se = suy((¢, —1)° ) mod N .

Therefore, we have

Z ose = sn(u, &), —1) modN,

oeG
which proves Proposition 3.2.

Given an ideal class of k, we definePy (¢) as the set of prime idealsn ¢ lying above

rational primes= 1 modN. Letk™ = Q(¢n+¢,, 1) andO,” = kTN Ox. For each elemettiof
Py (c) we select a primitive root = r(I) modulol (IZ =[N Z). Let Ly(c) be the subgroup

of Hom(D™, Z(N)) generated byu(r, )| p+ | [ € Py(c)}, whereD' = {@ € DNk |a > O}.
Then we have

PROPOSITION 3.3. If ¢ isan element of Hom(D™, Z(N)), then2¢ € Ly(c).
For the proof of this proposition, we need the following lemmas.
LEMMA 3.4. Py(c)isaninfinite set.

PROOF. Let ¢y be a primitive N-th root of unity and letF = Q(¢y). We assume
that N is the conductor ofF. It is well-known that there are infinitely many prime ideals
of absolute degree 1 in any ideal classFyfand a rational primeé splits completely inF if
and only ifl = 1 modN([L]). Let N/m = [[;_; pf’ be the prime factorization oV /m.
Definemg = m andm; = m,-,lpf" @i=1...,5).LetF; = Q(¢»,) and letC; be the ideal
class group inF;. Since a prime ideal of; over p; is totally ramified overF;_j, the norm
mapN; : C; — C;_1 is surjective ([L2]). Therefore, there is an ideal cldss F such that
Nr/ik(d) = c. This implies thatPy (¢) is an infinite set. IV is not the conductor of’, we let
M = 2N andF = Q(Zuy). SincePy(c) is infinite andPy; (¢) C Py (c), Py (c) is an infinite
set. This proves Lemma 3.4.

The following lemma is due to Thaine ([T], Proposition 4 of §2).

LEMMA 3.5. Let y bea positive element of O,j. Suppose that for all, except possibly
a finite set, prime ideals I € Py(c) there exists ; € Oy such that y = g mod(. Then
y2 = pN for some g € O .
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PrROOF (Proof of Proposition 3.3). Lét = D*. SinceV/ V" is a finite abelian group,
we have a dual paring

V/VN x Hom(V, Z(N)) — Z(N).
If Ly(c) # Hom(V, Z(N)), then there is an elemenbf V — V" such that(¢) = 0 for any
veLy(c). Letu=u(r 1) € Ly(c). Then
8(171)/N = r(lil)u(e)/N = 1 mOd[
If s is an integer such that= r* modI, then
=DV = pU=Ds/N — 1 modl.

Hences is a multiple of V. By Lemma 3.5¢2 = gV for someg ¢ O,j. Sinces is an element
of D = AEy, we have

e =s0] [(¢; — D%,

qlm

wheregg is a unit ofk, g ranges over the prime divisors @fandi = i(¢) denotes the maxi-
mum integer such that’ | m. Let q be a prime ideal abowg in k. Then 2, = Norgy =
0 modN. Hence, if we writeb, = ordy, then

8 N
P ) e
<n1(§qi - 1)b") 70

Thereforeg is an element oD. If N is odd, theng > 0, otherwises?2 = gV = (—p)V.
Hence we conclude that is an element of’ V. By the duality we have 2 Hofl, Z(N)) C
Ly (c). O

LEMMA 3.6. Supposethat N isdivisible by 4mh. Let j be the complex conjugation,
andlet§ € A andv € Hom(D, Z(N)). Then thereisan element « in Z(N)[G] such that

n, 8 = n(v, 8) + 2ha .

PROOF. Since(s, — 1)/ = —C,;l(ém — 1), there is a root of unityg in £ such that
8/ = 8¢o. Hence we have

n(, 8) =n(v, 8 +n(v, %),
which implies that

n, 8) —n(, 8) € %Z(N)[G],

because2v(¢o) = 0. By our assumption, we havé/2m = 0 mod Z. This completes the
proof of Lemma 3.6.

Now, we can show the main theorem in this section. ForaayHom(D, Z) ande € D,
we define

O(u, e) = Z u(&)ot e Z[G].

oeG
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THEOREM 3.7. Letu beanelement of Hom(D, Z) . Thenfor each§ € A, 26(u, §)
annihilates theideal class group of k.

PROOF We assume thaw is divisible by 4nh. For anye € D, we definev €
Hom(D, Z(N)) by v(e) = u(e) mod N. Here we note(—¢) = v(e). Letk be an element in
AND;. Then

n, k) = Z v(k%)o L = Z v(k®)o "+ Z v(—kH)T L.

oeG k°>0 kT<0

Letc be anideal class. By Proposition 3.3, there are prime ide@ls= 1, 2, ..., s) in Py(c),
u; =u(r;, ;) €e Hom(D, Z(N)) anda; € Z(N) such that

2v(y) =) aiui(y)

foranyy € D4. Hence we have

2n(v, k) = Z Zaiui(KU)U_l+ Z Zaiui(_’(r)":_l

k>0 i kT<0 i
-1 -1
= Z Zaiui(/ca)a + Z T Zaiu,-(—l).
oeG i kT<0 i

Since 2;(—1) = u; (1) = 0, we have

N
20, k) =) Y a0+ -0,

i o0eG

whereag € Z(N)[G].
Lets be an integer not divisible byt. Then

u((@h — D) = u(=¢," (& — 1) = ugl, - 1),

which implies thaw (8/) = v(8) for anys € A. Hence, by Lemma 3.6, there is an element
in Z(N)[G] such that

an(v, §) = 2n(u, 81 = Zam(u,-, sy = Zain(ui, 82) + 2ha
- 21261,-;7(”,-, 8) + 2ho¢l.
Therefore, there exists an elemgng ZI(N)[G] such that
2n(v, 8) = Zam(ui, 8) + ha + %ﬂ.
i

Hence, by Proposition 3.2, we conclude that2 §) annihilatesc. This completes the proof
of Theorem 3.7.
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4. Classnumber formula. As in Section 3, we let = Q(¢,) andG = Gal(k/ Q).

For an element € Z(m)*, we defines, € G by

Oc 2 {m > Q;~
Let G = Hom(G, C*) be the character group Gf. For a characteg € G, thereis a unigue
primitive Dirichlet characteg, such thaty (o.) = x4(c). Foru € Hom(D, Z) and non-trivial
charactery, we defineu(x) by

f-1

w(x) =Y u(@§—1xaa,

a=1
wheref = f, is the conductor of,. We setu(1) = 1 for the unit character £ 1, € G.In
the rest of this section, for a charactere G, we use the symbal,; to denote the associated
primitive Dirichlet character. Since(g}?” -1 = u(;‘f’ — 1), we haveu(x) = 0 whenever
x4 1S 0dd. Letk™ = Q(gy + ¢, 1) andG* = Gal(k™/ Q). Let{e;} be a free base of the unit
group ofk*. We define

R, = det (u(ef)), tv#1.

teGt,i

Our aim in this section is to prove the following

THEOREM 4.1. For anelementu € Hom(D, Z), we have

1
WRo=%x [] Zuto.
xa(=D=1

where it isthe class number of k.

We prove first that there exists an elemant Hom(D, Z) satisfyingR, # 0. For
a € D andu € Hom(D, Z), we defing, («) by

Ou(@) = > u@’)o .
oeG
Let T be aG-submodule ofD, then the correspondenee : u +— 6, induces a map:
Hom(T, Z) — Hom(T, Z[G]). Itis easy to see thatis an injective homomorphism. More-
over, we have

LEMMA 4.2. Im6 = Homg (T, Z[G)) .

ProOOF. Form € T and¢ € Hom(T, Z[G]), there are elemends, € Hom(T', Z) such
that

$m) = po(mo".
oeG
Hence, for an elemem € G, the equalityp¢(m) = ¢(m”) is equivalent tap,, (m) =
¢, (m?) for anyo € G. Lete be the unit element off. Then we have, (m) = ¢.(m?). If
we setu = ¢., then we have, = ¢. This implies that In® > Homg (T, Z[G)). Itis easy to
show the inverse inclusion. This completes the lemma.
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LEMMA 4.3. Thereisaneement u € Hom(E, Z) such that Ker 6, = i, where 1y
isthe group of roots of unity in k.
PROOF. There is a uni) such that,, = {n* |« € Z[G]} is a subgroup of finite index
in E. Hence the homomorphismx: — n® induces the following homomorphisgm
0IG1=ZIG1® 0 - E®Q=E,90.

Since Q[G] is completely reducible by Maschke’s theorem, there &-aubmoduleM of
Q[G] such thatQ[G] = Ker¢ & M. Moreover, the surjectivity of implies thatM is
isomorphic toE ® Q. Hence there is an injective homomorphism:

E® Q0 — 0IG],
which yields the sequence
E— E®Q— QI[G],

where the first arrow is the canonical homomorphism. £ &ke the composition of the above
homomorphisms. Then there is an integsuch thatf(E) C Z[G]. It is obvious that the
kernel oft f is ux. Hence, this lemma is derived from Lemma 4.2. O

LEMMA 4.4. For an element u of Hom(E, Z), there is an element v of Hom(D, Z)
suchthat v(e) = u(e) forany e € E.

PROOF  SinceD/E is torsion-free,D/E is a free abelian group. Therefotecan be
extended orD. This completes the proof.

We define the subséf ¢ Hom(D, Z) by
H={veHom(D, Z)|v|g =u and Kero, = ur}.

Then, by Lemmas 4.2 and 4.3/ is nonempty. LetC = Cy = A N E be the group of
cyclotomic units, and leb € H andu = v|g. Sinceu; C C, 6, induces the following
isomorphism:

E/C=0,(E)/0.(C).

Let s be the number of distinct primes dividimg. The groupE/C is finite and the order is
given by the following

THEOREM 4.5 (Sinnott [Si]). [E : C] = 2h™*.Herebisaninteger defined asfollows:
22 _1—5, s>1,
b=
0, s=1.
Let R = Z[G] ande; = 1/|G|) ,.;0. For any ideall C R, we setly = {a €
I|leiqx =0}. Letj =0_1,andJ = {1, j} C G. Let{r; |i =1,...,|G|/2} be acomplete set
of representatives af/J, and{e;} a free base of.. We defineR, (E) by

R (E) = (?(/?I{M(Sf)}, i #|Gl/2.
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Sinceu(Ni/g(e)) = 0 andu(e®/) = u(e), it is easy to showd,(E) C (1 + j)Ro.
Moreover, we have

LEMMA 4.6. Letu € HOm(E, Z). Then R,(E) # 0if and only if Ker 6, = uy. If
R, # 0,then 6, (E) hasfiniteindexin (1 + j)Ro and the index is given by

[+ j)HRo: 0,(E)] = |R,(E)|.

PROOF. Since dimE ® Q@ = dim(1+ j)Ro ® Q, it is easy to show that,(E) has
finite index in(1 + j)Ro if and only if Ker, = ux. LetT = 6,(E) + (1 + j)Z. Since
1+ j)Ro+ 1+ j)Z = (1 + j)R, we have the following isomorphism

A+ )HR/T =1+ j)Ro/0u(E).
as a base ofl + j)R. Sinceu(¢°/) = u(¢’), we have

Ou(e) = ) u(e™)(L+ )y .

Hence we obtain that iR, (E) # 0, then[(1+ j)R : T] = |R,(E)|. This proves the lemma.

We select(1+ /)7, %}

In the rest of this section, we compute the indék+ j)Ro : 6,(C)]. The techniques
here are due to lwasawa and Sinnott [Si].

Let V be a finite dimensionaf)-vector space, andl, N finitely generated subgroup in
Vsuchthat. ® Q = N ® Q = V. Then there is a nonsingular linear map V — V such
thatA(L) = N. We define

(L : N) = |detA)].

Note that(L : N) does not depend on the choiceAafWe use the following properties. Let
M be a finitely generated subgrouplih If (L : M), (L : N) and(M : N) are defined, then
(L:M)M :N)=(L:N).If Nisasubgroup of finite index if, then(L : N) is defined
and(L : N) =[L : N].

For a charactey € G, we define the idempoteaf in C[G] by

_1 1
ey = Gl Zx(c)a .

oeG

Let f be a divisor ofn . Then we definéd; C G by
Hy ={o; € G|t=1modf, (r,m) =1},
and lets(H ) denote the sum if'[G] of the elements off ;. For a prime numbep, let
Gp =) Ka(pley
X
whergxd denotes the complex conjugate of the primitive Dirichlet charggiexssociated to
x € G. Forv e H, let
w=w({)= Z v(x)ey ,

x#1



THAINE’S ANNIHILATOR 551

the sum taken over the nontrivial charactgrof G. The following proposition is due to
Sinnott [Si].

PROPOSITION 4.7.
1-e1)ty(bd) =w- U,

where e; is the idempotent associated to the trivial chatacter of G, and U is the R-module
generated in C[G] by the elements of

{s(Hf) ]_[(1 — &) | flm} .
rlf
PrROOF. Forr e (1/m)Z — Z, let

w(r) =v(e

Then we havev(r + 1) = w(r). Let!/ be a divisor ofn and satisfying:l ¢ Z. Then
!

a
Zw(r—i— 7) =w(r).

a=1
Hence, Proposition 4.7 follows fronirgott’s Proposition 2.1 ([Si]). O

COROLLARY 4.8. Let u = v|lg € Hom(E, Z). Then R, = O if and only if
[Tun=1v00 =0.
PrROOF Forn € C, we have

1
16, (1) = ﬁev(nm) =0.

Hencef,(C) = (1 — e1)6,(C) is a submodule ofl — e1)8,(A). Since
|G[(1—e1)0,(A) C 6,(C)
and
(1 —e1)0,(A) D (1 —e1)0,(C) = 0,(C),
we have
dim6,(E) ® Q@ = dim(1 — e1)0,(4) ® Q.

Therefore, by Proposition 4.7, we obtatp = 0 if and only if dimwlU ® Q < |G|/2— 1. In
order to prove this corollary, we may notice that

U® Q= 0[G]
as stated in [Si, Proposition 2.2]. This proves the corollary.

If vis an elemenH, by Lemma 4.6[(1+ j)Ro : 6,(E)] is finite. Hence[(1+ j)Ro :
0,(C)] is also finite. Here we write, formally,
[+ j)Ro: 6,(C)]
=1+ HRo: A+ jHUo)((1+ j)Uo: (1 —e1)0,(A) (1 —e1)0,(A) : 6,(C)) .
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The numbel(1+ j)Ro : (1+ j)Up) does not depend on the choicewof H, and is computed
by Sinnott. Moreover, the computation(Gf+ j)Up : (1 — e1)0,(A)) is essencially the same
as in [Si]. Hence we have

(A4 HUo: A —-en)bu(4)) = (A4 HUo: V) =

[T

x(H=1
where the product is taken over the nontrivial characteo$ G satisfyingy (j) = 1.
The following lemma completes our theorem.

LEMMA 4.9. Ifs isthe number of distinct primes dividing mz, then
[(1—e1bu(A) : 6,(C)] = |G|27".

PROOF. Letm = []}_; pf" be the primary decomposition of andn; = Epi = 1.
SinceA/C is a free abelian group generated{yC}, we have l

N
0u(A) =Y Z6,(71)0,(C).
i=1
Let 7; be the inertia group irG of a prime ideal ovep;. Then it is well-known thatG is
the internel direct product df;. Let Z; = ]_[Hél T;. Then we have(G) = s(Z;)s(T;) and
|G| = |Zi||T;]. Hence,

s(Zy) (T 1
0, () = ——0,(pi) .
|Z | T |7;]

Letn be an element afA. Then we have

0o () = 0,(e) + Y iy (i) ,

e10,y(m;) =

wheree € C andw; € R. Moreover, we writay; = ), «;(0)o (¢ (o) € Z) ande; (0) =
>, (o). Since

e16, () = Zela,evm)—Za,(m J0u(pi)

we have

(1—enby(n) = Za,(0)<9 (i) — T |9(p,)> modé, (C)
—Zal(O) (m)
|T;] o pi )’

which implies that1 — ¢1)0,(A)/6,(C) is generated by

(e (o}
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Suppose that there exigt} C Z and$ € C satisfying

= o (7)) )
va( >—v(.

i=1 pi

Letu = v|g. We note thairi'T"‘/p,- is a unitink and, by our assumption, Ké; = . Hence
there is an elememt of uy satisfying

nITi\ rilZil
NE

; Di

Let pl.l/‘T"' be the unique positive root of the following equation:
xITil — pi .
Then there is a root of unity satisfying
ri
T
n( 1/T,-) =4
i “Pi

Let
ri/|T;
ﬁznpi/\ \‘
i

Since € Q(m, &), Q(B) is a real abelian extension ove. Hence for anyo €
GaI(Qab/ 0), p°Lis real and a root of unity. Therefore we conclude thatis an inte-
ger. This implies; = 0 mod|7;|/2 for all ;.

On the other hand, we have

17:]
|T;] 1 <7T' 1 ITi—s(Tp), _ 1 1—
(1 —en)by (i) = 56u| — =0y ) = o E 0y (r; 7).
2 27\ 2 2 &

We note thafo| g,y o € T;} = Gal(Q(m;)/ Q). Hence there is an elemepte T; such
thatp = j|g(x,). Therefore, fow € T;, we have

po __ —0_0o
== gy,
Pi

which implies that
0, (") = 0,1} 7).
LetJ, = {1, p} andlet{r;} C T; be a representative Gf/J,. Then we obtain
1 _ _
52 B =3 6w ™.
oeT; !
Hence,
|7; |
2

(1 —e1)0u(mi) € 6,(C) .
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We then conclude that

[(1—e1)0y(A) : 6,(C)] = H

i

7|
2

=|G|-275.
This completes the proof of Lemma 4.9.

Hence we have

1 1
[GU(E):GU(C)]=iR 5 (14 HRo: A1+ jHUoI|GI2™* ]_[ E”(X)'
Ry (E)] x (=L x#1

We now use the following formula:
THEOREM 4.10 (Sinnott [Si]).
[E:Cl=h"(eTRo: e Uo)|G|027%,
where Q = [E : iy Et]ande™ = (14 j)/2.
Consequently, we have
IRy(E)QhT =+ ] %vu).
x(N=1x#1
Let {n;} be a free base di ™. Asin §1, we define
Ry, = Q?ﬂv(n;")}, i #1G|/2.
Then we haveR, = +QR,(E). This proves Theorem 4.1.

5. Theideal of annihilators. Letk = Q(¢,) andG = Gal(k/ Q) as in 83. Let
j € G be the complex conjugation and [Rt= Z[G]. We assume that the conductatis an
odd prime powep’. In this section we discuss the indg&k* : S], whereR™ = (14 j)Z[G]
ands is the ideal ofR generated by elements

0(u, ) = Z u(@)o 1t

oeG

forall § € A andu € Hom(D, Z). The fact thatS ¢ R™ is easily derived from the following
lemma.

LEMMA 5.1. DY/ = A=/ = ;, where 1 isthe group of roots of unity in k.

PROOF. It is easy to show thanl=/ = u, and E1™/ ¢ u. Hencep = A/ ¢
EYiaYT = . ]

SinceZ is torsion-freeu(¢) = 0 for anyu € Hom(D, Z) and¢ € n. By Lemmab5.1 we
have

u(@y =u(%),
which implies thatS ¢ R™.
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LetD = D/uandA = A/u. ThenD is a free abelian group. Lét" = Q(g, + ¢, Y
andG*t = Gal(k*/ Q). It follows from Lemma 5.1 thaj acts trivially onD, and hencei is
aZ[G*]-module. Furthermore, we can prove the following lemma.

LEMMA 5.2. Aisisomorphicto Z[G1]asa Z[G*]-module.

PROOF  We note that for any integemprime tom, there is an elemeit of G such that
Gm—1)° =¢, — 1. LetG , be the unique subgroup @f of orderp’ (i < r), andF the
fixed field of G i in k. Then we have

[T @n—D° = Neyr@n — 1 =y —1.
PEG i

Therefore, for any elemeite A, there is an element € R such that = (¢, —1)“. Let: be
the canonical homomorphism D — D andk = (¢, — 1). We define the homomorphism
Vv ZIGT] — A by y(ax) = k% SinceA is generated by as aZ[GT]-module, is
surjective. We note thatt N E is the group of cyclotomic units ik. By the class number
formula of cyclotomic fieldsA N E is a subgroup of of finite index. HenceA is also of
finite index in D. Therefore, by Dirichlet’s unit theorem, the rank4fis equal to the order
of GT. This proves Lemma5.2 .

Forv e Hom(D, Z) andy € A, we definep (v, y) € Z[G*] as follows:
¢, y)= Y vyT)ot.
oeGt
Let S(A) denote the ideal o [G*] generated by the elementgv, y) with y € A and
v € Hom(D, Z). The following proposition is essential in this section.
PROPOSITION 5.3. (Z[GT1]: S(A)) = (D : A).

PROOF. Letr = [kt : Q]. SinceD is a free abelian group of rank Hom(D, Z) is
also a free abelian group of rankLet {u; |i =1, ..., r} be a base of HotD, Z). We first
prove thatS(A) is generated bye (u;, )} as an abelian group, whetds the same as in the
proof of Lemma 5.2. Let € Hom(D, Z) ands € A. Then there are integets , b, such
thatu = >7_; a;u; ands = [, g+ k% . Hence we have

G, 8) =Y aibod(ui, 7).
i,0
For eachr € Gt andu € Hom(D, Z), we define:® as follows:
u®(8) =u(s?%).
It is clear thatx® is an element of HoD, Z). Hence, for each ando, there are integers
¢;j (o) such that

Gui, %) = $u? 1) = Y cij(0)puj, k).

J
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This proves thaS(A) is generated by (u;, «)}. To prove Proposition 5.3 it suffices to show
the following equality:

detu; (k%)) = £(D : A).
Since{«x°} is a base ofp, it is easy to show that the absolute value ofldgi )} is equal to
(D : A). This proves the proposition.

THEOREM 5.4. Let R™ = (1 + j)Z[G] and S the ideal of Z[G] generated by
0,8 |u € Hom(D, Z),5 € A}. Then (RT : S) = h™, where i is the class number
of kt.

PROOF. The exact sequence & u — D — D — 0 yields the following exact
sequence:

Hom(D, Z) — Hom(D, Z) — Hom(u, Z) = 0.

Furthermore, HortD, Z) and Hom(D, Z) have the same rank. Therefore Hdm Z) can be
identified with Hom(D, Z).
LetJ = {1, j} C G. For eachr € G the following map:

A+ jr—Jr
induces an isomorphism
1+ )HZIG] — ZIG/J] = Z[G™].
For each coset € G/J we lett be a coset representative. Then we have
0. 8)= D u@)HT T+ Y u@HT =@+ )) Y uEHi
reGt reGt teGt

which implies that
Z[GT]/S(A) ~ RY/S.
By Proposition 5.3 we haveR™ : §) = (D : A). Sincex C A by Lemma 5.1, we have
(D:A)=(D: A).
Hence we have
(RT:S)=(EA:A)=(E:ENA).

We note thatr N A is the group of cyclotomic units. Theorem 5.4 is then immediate from the
class number formula ([L2]). ad
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