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Abstract. We study when the pull-back of an eigenform of the Laplacian on the base
of a compact RiemannianV -submersion is an eigenform of the Laplacian on the total space of
the submersion, and when the associated eigenvalue can change.

1. Introduction. We first review the situation in the smooth context. Letπ : Z → Y

be a Riemannian submersion, whereY andZ are compactsmooth manifolds without bound-
ary. LetΦp be an eigenp-form of the Laplacian onY with eigenvalueλ. Suppose thatπ∗Φp
is an eigenp-form of the Laplacian onZ with corresponding eigenvalueµ. This is, of course,
a rather rare phenomena that greatly restricts the admissible geometry. We showed [6, 7] that
λ ≤ µ. If p = 0, then in fact the eigenvalue does not change, i.e.,λ = µ. Forp ≥ 2, we
constructed examples in which the eigenvalue actually changes, i.e., whereλ < µ. The case
p = 1 is still open.

In the present paper, we shall generalize these results to the case whereY andZ are
RiemannianV -manifolds; we must deal with the complications introduced by the singular
sets to extend the results known in the smooth setting to the situation at hand. Throughout the
paper, we shall only deal with compactV -manifolds without boundary. We use the Friedrichs
extension to define thep-form valued Laplacian�pM on aV -manifoldM; let Epλ (M) be the
associated eigenspaces. We shall always supposethat the singular set has codimension at least
2; this has some important analytic consequences as we shall see in Section 2.

There is a rather elegant geometric characterization of the situation when the pull back of
every eigenp-form onY is an eigenp-form onZ; necessarily the eigenvalues do not change
in this setting:

THEOREM 1.1. Let π : Z → Y be a Riemannian V-submersion of closedV -manifolds,
where the singular sets of Z and Y are of codimension at least 2.

(1) Let p = 0. The following conditions are equivalent :
(a) �0

Zπ
∗ = π∗�0

Y .
(b) For any λ ≥ 0,π∗E0

λ(Y ) ⊂ E0
λ(Z).

(c) For any λ ≥ 0, there exists µ(λ) ≥ 0 such that π∗E0
λ(Y ) ⊂ E0

µ(λ)(Z).
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(d) The fibers of π are minimal.

(2) Let p > 0. The following conditions are equivalent :
(a) �

p
Zπ

∗ = π∗�pY .
(b) For any λ ≥ 0,π∗Epλ (Y ) ⊂ E

p
λ (Z).

(c) For any λ ≥ 0, there exists µ(λ) ≥ 0 such that π∗Epλ (Y ) ⊂ E
p

µ(λ)(Z).
(d) The fibers of π are minimal and the horizontal distribution is integrable.

Theorem 1.1 shows that if all the eigenspaces are preserved, then all the eigenvalues are
preserved as well. We now focus on what happens if just a single eigenform is preserved. The
eigenvalue can not change ifp = 0; more generally, the eigenvalue can not decrease ifp > 0.
We remark that this fails in the context of manifolds with boundary; Neumann eigenvalues
can decrease [14].

THEOREM 1.2. Let π : Z → Y be a Riemannian V-submersion of closed V -manifolds,
where the singular sets of Z and Y are of codimension at least 2.

(1) If 0 �= Φ ∈ E0
λ(Y ) and if π∗Φ ∈ E0

µ(Z), then λ = µ.
(2) Let p > 0. If 0 �= Φ ∈ Epλ (Y ) and if π∗Φ ∈ Epµ(Z), then λ ≤ µ.

Theorem 1.2 is sharp ifp ≥ 2. We refer to [6, 7] for the proof of the following result in
the smooth setting; the result in the more general context is then immediate.

THEOREM 1.3. Let p ≥ 2 and let 0 ≤ λ < µ < ∞ be given. There exists a Riemann-
ian V-submersion π : Z → Y and there exists 0 �= Φ ∈ Epλ (Y ) so that π∗Φ ∈ Epµ(Z).

Here is a brief outline of the paper. In Section 2, we review the definition of aV -
manifold, the Friedrichs extension of the Laplacian, and a basic regularity result. In Section 3,
we recall some useful formulae intertwining the coderivative on the base and on the total space
of a Riemannian submersion. We also discuss submersions in the context ofV -manifolds. In
Section 4 we introduce the Hopf fibration. We then take the quotient of the Hopf fibration
by suitably chosen cyclic group actions to construct a useful family ofV -submersions. We
conclude the paper in Section 5 by completing the proof of Theorems 1.1 and 1.2.

It is a pleasant task to acknowledge useful conversations with Professor Yorozu and
anonymous referees’ helpful comments concerning this paper.

2. V-manifolds and V-submersions. The notion of aV -manifold was introduced
by Satake [16]; he used the symbol ‘V ’ to indicate that one was dealing with a cone-like
singularity. Such manifolds are also calledorbifolds, see, for example, [18, 19]. Their spectral
geometry has been studied by many authors; for example, see [8]. They also appear in the
study of foliations [10, 20].

In this paper, we follow the notational conventions of [12, 16, 17]. LetO(m) be the
orthogonal group. LetBδ be the ball of radiusδ in Rm centered at the origin. IfG is a finite
subgroup ofO(m), thenG acts by isometries onBδ ; let Bδ/G be the associated quotient
space.
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It is worth noting for further use the following fact. LetG be a finite group acting on an
open neighborhoodO of the origin inRm. If G preserves some Riemannian metric onO and
if G fixes the origin, then in geodesic coordinates, the action ofG is linearizable in the sense
given above.

LetM be a compact metric space. We say thatM is aV -manifold if every pointP ∈ M
has an open neighborhoodUP which is homeomorphic toBδ(P )/GP for someδ(P ) > 0 and
some finite subgroupGP ⊂ O(m). Let ŨP = Bδ(P ) and let

ρP : ŨP → ŨP /GP = UP

be the natural projection. Let

S̃P := {Q̃ ∈ ŨP ; there existsγ ∈ GP such thatγ �= Id andγ Q̃ = Q̃}
be thefixed point set of GP . We then have that

ρP : ŨP \ S̃P → UP \ ρP (S̃P )
is a covering projection. Thesingular set ofM is defined to be

SM :=
⋃
P∈M

{ρP S̃P } .

Note thatS̃P is the union of a finite number of linear subspaces ofŨP . We suppose that these
subspaces all have codimension at least 2. We shall suppose thatM \ SM has the structure of
a smooth manifold and that the mapsρP from ŨP \ S̃P to UP \ ρP (S̃P ) are local diffeomor-
phisms. TheV -manifold is a smooth manifold ifSM is empty or, equivalently, ifGP = {Id}
for everyP ∈ M.

We assume that the metric onM is induced from a Riemannian metric onM \ SM . We
also assume that there is a Riemannian metricg̃P on eachŨP , which is invariant under the
action of the groupGP such thatρP is a local isometry fromŨP \ S̃P toUP \ SP .

LetM be a RiemannianV -manifold. Letdx be the associated Riemannian measure on
M \ SM . We shall take the Friedrichs extension of the Laplacian fromM \ SM to define the
Laplacian�pM onL2(Λp(M)). LetC∞

0 (Λ
p(M \SM)) be the space of smoothp-forms which

are compactly supported inM \ SM . Then theL2 spaceL2(Λp(M)) and the Sobolev space
H1(Λ

p(M)) are defined as the completion ofC∞
0 (Λ

p(M \ SM)) with respect to the inner
products

(φ,ψ)0 :=
∫
M\SM

(φ,ψ)dx and

(φ,ψ)1 :=
∫
M\SM

{(dφ, dψ)+ (δφ, δψ)+ (φ,ψ)}dx ,

respectively. Introduce the quadratic form

Ip(φ,ψ) :=
∫
M\SM

{(dφ, dψ)+ (δφ, δψ)}dx .
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TheFriedrichs extension �pM is then defined [15] by the identity:

(�
p

Mφ,ψ)0 = Ip(φ,ψ) for φ,ψ ∈ H1(Λ
p(M)) .

We remark that if we removed a setS of codimension at least 2 from a smooth manifoldM,
then this definition of the spaceH1(Λ

p(M)) and�pM would agree with the usual definition.
We set

E
p
λ (M) = {φ ∈ H1(Λ

p(M)) ; �pMφ = λφ} .
The following regularity result is a central one in the subject — we shall derive it from

results of Harvey and Polking [9] but there are many other proofs see, for example, the dis-
cussion in [1, 2] forp = 0. It identifies the eigenforms onM with the smooth equivariant
eigenforms on the desingularization.

THEOREM 2.1. LetM be a closed Riemannian V -manifold, where the singular set has
codimension at least 2. Let φ ∈ L2(Λp(M)). Then the following conditions are equivalent :

(1) φ ∈ Epλ (M).
(2) For any P ∈ M, there exists φ̃P ∈ C∞(Λp(ŨP )) so that

(a) φ̃P |(ŨP \S̃P ) = ρ∗
P (φP |(UP \ρP (S̃P )),

(b) φ̃P ∈ Epλ (ŨP ), and
(c) γ ∗φ̃P = φ̃P for any γ ∈ GP .

SinceSP has codimension at least 2,C∞
0 (ŨP \ S̃P ) is dense inH1(ŨP ). It is now

immediate from the discussion given above that Condition (2) implies Condition (1). The
converse is a smoothness result which shows that the pull-back eigenforms extend smoothly
across the singular set. Before establishing thisimplication, we first recall a technical Lemma.

LEMMA 2.2. LetΩ be an open subset of Rm andA a closed subset ofΩ . Let P(x,D)
be a vector valued partial differential operator on Ω .

(1) Assume that ν := m − 2 · order(P ) ≥ 0 and that the lower Minkowski content
Mν(K) is finite for every compact set K ⊂ A. If φ ∈ L2

loc(Ω) and if Pφ = 0 onΩ −A, then
Pφ = 0 on Ω .

(2) If P is elliptic, if φ ∈ L2
loc(Ω), and if Pφ is smooth on Ω , then φ is smooth on Ω .

PROOF. Assertion (1) follows from Corollary 2.4 (a) of Harvey and Polking [9], who
generalized earlier work of Littman [13]. Assertion (2) is a standard elliptic regularity result,
see, for example, Gilkey [3]. �

PROOF OFTHEOREM 2.1. Letφ be anL2 eigenform of the Friedrichs extension of�
corresponding to the eigenvalueλ; we omitp from the notation. Note that

‖φ‖2
1 := ‖φ‖2

L2 + ‖(d + δ)φ‖2
L2 .

Let ρP : ŨP → UP = ŨP /GP be a local desingularization. Let̃d and δ̃ denote the
exterior derivative and co-derivative oñUP , respectively. We then haveρ∗

P d = d̃ρ∗
P and

ρ∗
P δ = δ̃ρ∗

P , sinceρP is an isometry off the singular set. We set

φ̃P := ρ∗
P φ .
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As the singularity set has codimension at least 2 and asφ ∈ H1(M), φ̃P ∈ H1(ŨP ). The
equivariance property is immediate, sinceγ ∗ρ∗

P = ρ∗
P . To complete the proof, we must show

thatφ̃P extends smoothly to all of̃UP .
We decomposẽ�− λ as the product of two first order operators:

�̃− λ = (d̃ + δ̃ + √
λ)(d̃ + δ̃ − √

λ) .

We set

ψ := (d + δ − √
λ)φ and ψ̃P := ρ∗

Pψ = (d̃ + δ̃ − √
λ)φ̃P .

We then have that̃ψP is inL2. We may express:

(d̃ + δ̃ + √
λ)ψ̃P = (d̃ + δ̃ + √

λ)(d̃ + δ̃ − √
λ)φ̃P = (�̃− λ)φ̃P

= ρ∗
P (�− λ)φ = 0 on ŨP \ S̃P .

By assumption,̃SP is the finite union of finite number of linear subspaces of codimension
at least 2 intersected with̃UP . Thus them− 2 dimensional lower Minkowski measure of any
compact subset of̃SP is finite. Lemma 2.2 (1) shows that

(d̃ + δ̃ + √
λ)ψ̃P = 0 on ŨP .

Sinced̃ + δ̃ + √
λ is elliptic, Lemma 2.2 (2) implies that̃ψP is smooth onŨP .

Sinceφ̃P is in H1(ŨP ), (d̃ + δ̃ − √
λ)φ̃P = ψ̃P in L2(ŨP ). Sinceψ̃P is smooth on

ŨP and since this operator is elliptic, another application of Lemma 2.2 (2) yields thatφ̃P is
smooth onŨP as desired. �

Theorem 2.1 shows the pull-back eigenforms of the Friedrichs Laplacian onM are ordi-
nary eigenforms of the Laplacian oñUP for anyP ∈ M which are invariant under the groups
GP . Conversely, if we are given a collection of eigenformsφ̃P in Epλ (ŨP ) which are invariant
under the action of the groupsGP and which patch together, then they define an eigenform of
�
p

M onM.
We can construct the associated spectral resolution using Theorem 2.1 and Rellich com-

pactness. We refer to [2, 11, 18] for additional details. Let

λ1 := inf
0�=φ∈H1(Λ

p(M))

Ip(φ, φ)

(φ, φ)0
.

The infimum is attained by a functionφ1 ∈ Domain(�pM) so that�pMφ1 = λ1φ1. The second
eigenvalueλ2 is then defined by setting:

λ2 := inf
0�=φ∈H1(Λ

p(M)), φ⊥φ1

Ip(φ, φ)

(φ, φ)0
;

where ‘⊥’ is with respect to theL2 inner product. Again, the infimum is attained by a function
φ2 ∈ Domain(�pM). One proceeds in this fashion to construct a complete orthonormal basis
{φi}∞i=1 for L2(Λp(M)) so that�pMφi = λiφi . The collection{λi, φi} is called adiscrete
spectral resolution of �pM and we have that

E
p
λ (M) = span{λ=λi}{φi} .
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Again, this definition coincides with the usual definition in the smooth setting. We summarize
the discussion given above in the following result.

LEMMA 2.3. Let M be a closed Riemannian V -manifold, where the singular set has
codimension at least 2. Then the following hold.

(1) �
p
M is self-adjoint and non-negative.

(2) There exists a discrete spectral resolution {λi, φi} for �pM , where λi → ∞.
(3) We have a complete orthogonal direct sum decomposition

L2(Λp(M)) =
⊕
λ

E
p
λ (M) .

3. Submersions in the context of V-manifolds. We begin by reviewing some of the
geometry of a Riemannian submersion in the smooth setting. Letπ : Z → Y be a Riemannian
submersion of closed smooth manifolds. Forz ∈ Z, we decomposeTzZ = Vz ⊕Hz, where

Vz := ker(π∗z) and Hz := V ⊥
z

are thevertical andhorizontal spaces, respectively; by assumptionπ∗ is an isometry fromHz
toTπzY . We introduce the following notational conventions. Let indicesi, j andk index local
orthonormal frames{ei} and{ei} for the vertical distributions and co-distributionsV andV∗
of π . Let indicesa, b, andc index local orthonormal frames{fa} and{f a} for the horizontal
distributions and co-distributionsH andH∗ of π . If ξ is a covector, then let ext(ξ) and int(ξ)
denoteexterior multiplication and the dual,interior multiplication, respectively. We define
tensorsθ andω and endomorphismsE andΞ by setting

θ := −
∑
i,a

gZ([ei, fa], ei)f a, ωabi := 1

2
gZ(ei , [fa, fb]) ,

E :=
∑
a,b,i

ωabi extZ(ei) intZ(f a) intZ(f b), Ξ := intZ(θ)+ E .
(3.a)

The tensorθ is the unnormalized mean curvature co-vector of the fibers ofπ andω is
the curvature of the horizontal distribution. We say that the fibers areminimal if θ = 0. We
say that the horizontal distributionH is integrable if ω = 0.

The pull-backπ∗ is a linear map fromC∞(Λp(Y )) to C∞(Λp(Z)), which commutes
with the exterior derivative, i.e.,π∗dY = dZπ

∗. However,π∗ doesnot in general commute
with the coderivative. We refer to [7] for the proof of the following result; what is crucial for
our present considerations is that the result in question is purely local — it does not rely on
any compactness considerations.

LEMMA 3.1. Let π : Z → Y be a Riemannian submersion of Riemannian manifolds.
Then δZπ∗ − π∗δY = Ξπ∗ and�Zπ∗ − π∗�Y = (dZΞ +ΞdZ)π

∗.
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If p = 0, the situation is simpler. IfΦ is a 0-form, i.e., a function, then
∑
a,b,i

ωabi extZ(ei) intZ(f a) intZ(f b)π∗Φ = 0 ,

∑
a,b,i

ωabi extZ(ei) intZ(f a) intZ(f b)dZπ∗Φ = 0 , and

intZ(θ)π∗Φ = 0 .

The following Corollary is now immediate.

COROLLARY 3.2. Let π : Z → Y be a Riemannian submersion of Riemannian mani-
folds. Then �0

Zπ
∗ − π∗�0

Y = intZ(θ)dZπ∗ on C∞(Y ).

We say that the horizontal distribution is integrable ifω = 0. We refer to [5] for the
proof of the following result which relatesθ to the local volume element in this setting.

LEMMA 3.3. LetX be the fiber of a Riemannian submersion π : Z → Y . Assume that
the horizontal distribution of π is integrable. Then there exist local coordinates z = (x, y) on
Z so π(x, y) = y,

ds2
Y =

∑
a,b

hab(y)dy
a ◦ dyb , and

ds2
Z =

∑
i,j

gij (x, y)dxi ◦ dxj +
∑
ab

hab(y)dy
a ◦ dyb .

If we set gX := det(gij )1/2, then θ = −dY ln(gX).

We now extend these notions to the singular setting. LetX be a closed smooth manifold.
We enlarge slightly the notion of admissible charts and consider an action

γ · (ũ, x) = (γ ũ, γ (ũ)x) on ŨP ×X for γ ∈ GP .(3.b)

DEFINITION 3.4. LetY andZ beV -manifolds and letX be a smooth manifold. We
say thatπ : Z → Y is aV -manifold fiber bundle with fiberX if we can choose charts̃Uy/Gy
overY and charts{Ũy ×X}/Hy overZ so that we have a diagram

Ũy ×X
ρZy−→ {Ũy ×X}/Hy

↓ π̃ ↓ π

Ũy
ρy−→ Uy := Ũy/Gy

with π ◦ ρZy = ρy ◦ π̄ .(3.c)

HereHy is a subgroup ofGy , π̃ andπ are projection on the first factors, the action ofHy

on Ũy × X is as discussed above in Equation (3.b), and the projectionsρZy andρy are the
associated quotient maps. We say thatπ is a RiemannianV -submersion if additionallỹπ is a
Riemannian submersion.

We remark that the Riemannian metric onŨy ×X is not in general a product metric and
that the decomposition in question is only local; in general, of course,Z is notY ×X.
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Let π : Z → Y be a RiemannianV -submersion. LetYr := Y \ SY andZr := Z \
π−1{SY }; these are open Riemannian manifolds. AlthoughYr is the regular set ofY , the
regular set ofZ may be larger thanZr . Let πr be the induced Riemannian submersion from
Zr to Yr .

LEMMA 3.5. Let π : Z → Y be a Riemannian V -submersion of closed V -manifolds,
where the singular sets of Z and Y are codimension at least 2. If Φ ∈ Epλ (Y ) and if π∗

r Φ ∈
E
p
µ(Zr), then π∗Φ ∈ Epµ(Z).

PROOF. Let y ∈ Y . Let Ũy/Gy and{Ũy ×X}/Hy be desingularizing local charts onY
and onZ, respectively. By Theorem 2.1,̃Φy := ρ∗

yΦ extends smoothly from̃Uy \ S̃y to Ũy
with �p

Ũy
Φ̃y = λΦ̃y . Pulling back then yields that̃π∗Φ̃y is smooth onŨy ×X. Since

�
p

Ũy×Xπ̃
∗Φ̃y = µπ∗Φ̃y on {Ũy \ S̃y} ×X

and sinceS̃y ×X has co-dimension at least 2 iñUy ×X, we have by continuity that

�
p

Ũy×Xπ̃
∗Φ̃y = µπ∗Φ̃y on Ũy ×X .

As the equivariance property is immediate, Theorem 2.1 impliesπ∗Φ ∈ Epµ(Z). �

We shall need to generalize thefiber product from the smooth setting to the singular one.
Letπi : Zi → Y be RiemannianV -submersions with fibersXi for i = 1,2. The fiber product
is defined by setting

Z = Z(Z1, Z2) := {z = (z1, z2) ∈ Z1 × Z2 ; π1(z1) = π2(z2)} .
We now study the local geometry. Choose charts onY , associated charts onZi , and local

projections as given above. We shall assume that the associated groups onZi are the same,
i.e.,Hy,1 = Hy,2 for all y ∈ Y ; this is a crucial point. The assumptionHy,1 = Hy,2 causes no
difficulty as we shall be takingZ1 = Z2 subsequently. Then local charts for the fiber product
and the fiber product action which generalize those given in Equation (3.b) are defined by
taking the action:

γ · (ỹ, x1, x2) = (γ ỹ, γ (ỹ)x1, γ (ỹ)x2) on Ũy ×X1 ×X2 for γ ∈ Hy,1 = Hy,2 .

This shows thatπ : Z → Y is aV -manifold fiber bundle with fiberX1 ×X2. A similar argu-
ment can be used to show thatπ is a RiemannianV -submersion, where a suitable rescaling
of the metric on the horizontal distribution is used, exactly as was done in the non-singular
setting [6]. Letσ1(z1, z2) := z1 andσ2(z1, z2) := z2 define mapsσi : Z → Zi . These are
RiemannianV -submersions as well.

LEMMA 3.6. Adopt the notation given above. If Φ ∈ E
p
λ (Y ), if π∗

1Φ ∈ E
p
λ+ε1

(Z1),

and if π∗
2Φ ∈ Epλ+ε2

(Z2), then π∗Φ ∈ Epλ+ε1+ε2
(Z).

PROOF. Off the singular locus, we use the computations given in [6] to see

θZ = σ ∗
1 θZ1 + σ ∗

2 θZ2 and EZπ∗ = σ ∗
1 EZ1π

∗
1 + σ ∗

2EZ2π
∗
2 .
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A straight forward application of Lemma 3.1 then shows that

�
p

Zπ
∗Φ = (λ+ ε1 + ε2)π

∗Φ on Zr .

The desired conclusion now follows from Lemma 3.5. �

4. The Hopf fibration. There is a useful family of examples which we can describe
as follows. We give the unit sphereSn in Rn+1 the standard metricgn of constant sectional
curvature+1. We identifyR4 = C2 to regardS3 ⊂ C2 and we identifyR3 = C ⊕ R to regard
S2 ⊂ C ⊕ R. TheHopf fibration h̃ : S3 → S2 is then defined by setting

h̃(z1, z2) := (2z1z̄2, |z1|2 − |z2|2) .
One then has that̃h : (S3, g3) → (S2, (1/4)g2) is a Riemannian submersion;(S2, (1/4)g2)

is, of course, just the sphere of radius 1/2 in R3.

EXAMPLE 4.1. LetZn be the group ofn-th roots of unity inC. We define actionsρ2

andρ3 of Zn onS2 and onS3, respectively, by setting

ρ2(γ )(w, t) := (γw, t) and ρ3(γ )(z1, z2) = (γ z1, z2) for γ ∈ Zn .

Since the actions in question are by isometries, this gives the quotient spaces

M2
n := S2/ρ2(Zn) and M3

n := S3/ρ3(Zn)

the structure of RiemannianV -manifolds. Furthermore, as the group actions are compatible
with the Hopf fibration, we have a diagram

S3 π3−→ M3
n

↓ h̃ ↓ h

S2 π2−→ M2
n

with h ◦ π3 = π2 ◦ h̃ .(4.a)

The induced Hopf maph is a RiemannianV -submersion.
Let N = (0,1) andS = (0,−1) be the north and south poles ofS2 ⊂ C ⊕ R. Then

h̃−1(N) is the circle(z1,0), while h̃−1(S) is the circle(0, z2). The action ofZn on h̃−1(N)

is without fixed points; thus the image of this circle inM3
n is non-singular; the singular set

of M3
n is h̃−1(S). Thus this example illustrates that the singular set of the total space is not

simply the inverse image of the singular set of the base. Note that the singular sets ofM3
n and

ofM2
n have codimension 2.
Let ν̃2 be the volume form on(S2, (1/4)g2). Sinceν̃2 is invariant under the action ofZn,

it descends, by Theorem 2.1, to define a harmonic 2-formν2 ∈ E2
0(M

2
n). One computes that

h̃∗ν̃2 ∈ E2
4(S

3), see [4] for details. Thus similarlyh∗ν2 ∈ E2
4(M

3
n). This illustrates Theorem

1.3 by providing an example where the eigenvalue changes.

EXAMPLE 4.2. Let(p, q) be coprime integers and letn = pq. Choose integersa and
b so thatap − bq = 1. We define actionsρ2 andρ3 of Zn onS2 and onS3, respectively, by
setting

ρ2,p,q(γ )(w, t) := (γw, t) and ρ3,p,q(γ )(z1, z2) := (γ apz1, γ
bqz2) for γ ∈ Zn .
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Since the actions in question are compatible with the Hopf map, we once again have a com-
mutative diagram of the form given above in Diagram (4.a). The action ofZn on the fiber
circlesh̃−1(N) = (z1,0) andh̃−1(S) = (0, z2) in S3 is not faithful. The isotropy group for
these fiber circles isZq andZp, respectively. This example illustrates that the structure groups
can be different over different components of the singular set.

EXAMPLE 4.3. LetN be an arbitrary closed Riemannian manifold. We extend the
actions ofZn defined in Example 4.2 to act trivially onN to define a diagram

S3 ×N
π3×Id−→ M3

n × N

↓ h̃× Id ↓ h× Id

S2 ×N
π2×Id−→ M2

n × N

with (h× Id) ◦ (π3 × Id) = (π2 × Id) ◦ (h̃× Id) .(4.b)

By replacingν2 by ν2 ∧ µp−2 for a suitably chosen eigen-formµp−2 onN , and by rescaling
the metrics appropriately, a family of examples can be constructed illustrating Theorem 1.3 in
full generality. We omit details in the interests of brevity and refer to [6, 7] for further details.

EXAMPLE 4.4. One can also consider the higher dimensional Hopf fibration
h̃ : S2n+1 → CPn, where the sphereS2n+1 is given the standard metric and where complex
projective spaceCPn is given a suitably scaled Fubini-Study metric. Letµ2 ∈ E2

0(CPn) be
the Kaehler form; this restricts to a multiple of the volume form onS2 = CP1. If 1 ≤ p ≤ n,
then

µ
p

2 ∈ E2p
0 (CPn) and h̃∗µp2 ∈ E2p

4p(n+1−p)(S
2n+1) .

We refer to Remark 3.6 [4] for further details. Again, suitable cyclic group actions yield
appropriateV -manifold examples.

5. Proof of theorems.

PROOF OFTHEOREM 1.2 (1). Letπ : Z → Y be a RiemannianV -submersion, where
Z andY are closedV -manifolds. We assume that the singular sets of bothY andZ have
codimension at least 2. Let 0�= Φ ∈ E0

λ(Y ). Assume thatΨ := π∗Φ ∈ E0
µ(Z). Let

ρy : Ũy → Uy be anV -manifold chart onY . We apply Theorem 2.1 to see thatΦ̃y := ρ∗
yΦ is

smooth onŨy . SinceΦ̃y is invariant under the action of the groupGy ,Φ is continuous on the
quotientUy = Ũy/Gy . SinceΦ is continuous on a compact spaceY , we may choosey0 ∈ Y
soΦ(y0) is maximal. By replacingΦ by −Φ if necessary, we may assume without loss of
generality thatΦ(y0) > 0.

Let Z̃y0 := Ũy0 ×X and letΦ̃y0 := ρ∗
y0
Φ. By a slight generalization of Theorem 2.1,

Φ̃y0 ∈ E0
λ(Ũy0) and π̃∗Φ̃y0 ∈ E0

µ(Z̃y0) .

We apply Corollary 3.2 to the Riemannian submersionπ̃ : Z̃y0 → Ũy0 to see

(µ− λ)π̃∗Φ̃y0 = {�0
Z̃
π∗ − π∗�0

Ỹ
}Φ̃y0 = int(θ̃ )dZ̃π̃

∗Φ̃y0 = int(θ̃)π̃∗dỸ Φ̃y0 .(5.a)
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Choosez̃0 so π̃ z̃0 = ỹ0. SinceΦ̃y0 has a maximum at̃y0, (π̃∗dỸ Φ̃y0)(z̃0) = 0. Since
(π∗Φ̃y0)(z̃0) > 0, evaluating Equation (5.a) atz̃0 impliesµ = λ. �

PROOF OFTHEOREM 1.2 (2). Letπ : Z → Y be a RiemannianV -submersion, where
Z andY are closedV -manifolds. We assume that the singular sets of bothY andZ have
codimension at least 2. Letp > 0, and let 0�= Φ ∈ Epλ (Y ). Assume thatπ∗Φ ∈ Epµ(Z). We
wish to showλ ≤ µ.

We generalize the argument given in [6]. LetZ0 := Z and letZ1 := Z(Z0, Z0) be the
fiber product. Letε0 := µ− λ. Then by Lemma 3.6,

π∗
1Φ ∈ Epλ+2ε0

(Z1) .

We now inductively setZn := Z(Zn−1, Zn−1) and apply the same argument to see

π∗
nΦ ∈ Epλ+2nε0

(Zn) .

Since�pZn is a non-negative operator by Theorem 2.3, we haveλ + 2nε0 ≥ 0 for all n. This
implies thatε0 ≥ 0 and henceµ ≥ λ. �

PROOF OFTHEOREM 1.1. We extend the arguments given in [7]. Letπ : Z → Y be
a RiemannianV -submersion, whereZ andY are closedV -manifolds. We assume that the
singular sets of bothY andZ have codimension at least 2.

We first show that Assertion (1d) implies Assertion (1a) and that Assertion (2d) implies
Assertion (2a). Assume that off the singular set the fibers ofπ are minimal, and that ifp > 0,
then the horizontal distribution is integrable. Let 0�= Φ ∈ E

p
λ (Y ). Then Lemma 3.1 and

Corollary 3.2 imply that

�
p

Zπ
∗Φ = λπ∗Φ on Zr .

Thus by Lemma 3.5,π∗Φ ∈ Epλ (Z). This shows that

π∗Epλ (Y ) ⊂ E
p
λ (Z)

for all λ; the intertwining relations of Assertions (1a) and (2a) now follow, as the span of the
eigenspaces is dense in the appropriate topology.

It is immediate that Assertion (1a) implies Assertion (1b) and that Assertion (2a) implies
Assertion (2b). Similarly, Assertion (1b) implies Assertion (1c) and Assertion (2b) implies
Assertion (2c). We complete the proof by showing that Assertion (1c) implies Assertion (1d)
and that Assertion (2c) implies Assertion (2d).

Suppose thatπ∗Epλ (Y ) ⊂ E
p

µ(λ)(Z) for all λ. LetΦλ ∈ Epλ (Y ). By Lemma 3.1 we have

(µ− λ)π∗Φλ = {dZ(intZ(θ)+ E)+ (intZ(θ)+ E)dZ}π∗Φλ on Zr .(5.b)

Suppose first thatp = 0. By Theorem 1.2 (1), we haveµ(λ) = λ. We use Corollary 3.2
to rewrite Equation (5.b) in the form:

intZ(θ)π∗dYΦλ = 0 on Zr .
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LetΦ be any smooth function which is compactly supported near a regular pointy of Y . We
can approximateΦ in the Sobolev-H1 topology as a finite sum of eigenfunctions. Thus

intZ(θ)π∗dYΦ = 0 .

Sinceθ is a horizontal co-vector and sinceΦ(y) is arbitrary, this impliesθ = 0 at any point
z ∈ π−1(y). Thusθ vanishes onZr ; passing to a local desingularization, we concludeθ̃

vanishes everywhere by continuity. This completes the proof of Theorem 1.1 (1).
We now suppose thatp > 0. LetπH be orthogonal projection fromΛp(Zr) toΛp(H).

LetΦλ ∈ Epλ (Y ). We apply(1 − πH) to Equation (5.b) to see that

0 = (µ− λ)(1 − πH)π∗Φλ
= (1 − πH){dZ(intZ(θ)+ E)+ (intZ(θ)+ E)dZ}π∗Φλ on Zr .

The natural domain of this identity is the Sobolev spaceH1(Yr ) and, as the eigenfunctions are
dense inH1(Yr ), by continuity we then have

0 = (1 − πH){dZ(intZ(θ)+ E)+ (intZ(θ)+ E)dZ}π∗Φ for Φ ∈ H1(Yr ) .(5.c)

Let πz0 = y0 ∈ Yr . ChooseF ∈ C∞
0 (Yr ) so thatF(y0) = 0. Let ξ := dF(y0). Since

intZ(θ) + E is a 0th order operator, we apply Equation (5.c) to the productFΦ and evaluate
at z0 to see

0 = (1 − πH){extZ(π∗ξ)(intZ(θ)+ E)+ (intZ(θ)+ E) extZ(π∗ξ)}π∗Φ(y0) .

Since
0 = (1 − πH){extZ(π∗ξ) intZ(θ)+ intZ(θ) extZ(π∗ξ)}π∗ ,

and sinceE always introduces a vertical covector, we conclude that

0 = (1 − πH){extZ(π∗ξ)E + E extZ(π∗ξ)}π∗

= {extZ(π∗ξ)E + E extZ(π∗ξ)}π∗ .
(5.d)

Let {f a, ei} be the orthonormal frames of the dual distributionsH∗ andV∗. Adopt the notation
of Equation (3.a). To simplify the notation, set

ei := extZ(e
i) , ea := extZ(f

a) , and ia := intZ(f
a) .

We then have the Clifford commutation relations:

ea ib + ibea = δab .

ChooseF so thatπ∗ξ(z0) = f c(z0) and apply Equation (5.d) to compute atz0 that

0 =
∑
a,b,i

ωabi {ecei iaib + ei ia ibec} =
∑
a,b,i

ωabiei{−eciaib + ia ibec}

=
∑
a,b,i

ωabiei{iaecib + iaibec − δacib}

=
∑
a,b,i

ωabiei{−ia ibec + ia ibec − δacib + δbcia} = −2
∑
b,i

ωcbiei ib .

As p ≥ 1, we may conclude thatω = 0 onZr and consequentlyH is integrable.
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We must now show that the fibers are minimal. LetdX denote exterior differentiation
along the fiber. We setE = 0 and use Equation (5.c) to compute

0 = (1 − πH){dZ intZ(θ)+ intZ(θ)dZ}π∗

= (1 − πH)dX intZ(θ)π∗ on C∞
0 (Λ

p(Yr)) .

This impliesθ is constant on the fibers so thatθ = π∗Θ is the pull back of a globally defined
1-form away from the singular set on the base.

We apply Lemma 3.3. Letdνex be the Euclidean measure and let

ψ(y) :=
∫
X

gX(x, y)dνex

be the volume of the fiberπ−1(y) for y ∈ Yr . Then

dYψ(y) = dY

∫
X

gX(x, y)dνex =
∫
X

(gXg−1
X dY gX)(x, y)dνex

= −
∫
X

gX(x, y)θ(x, y)dνex = −Θ(y)
∫
X

gX(x, y)dνex

= −Θ(y)ψ(y) , so

θ = −π∗dY lnψ on Yr .

If y is a singular point, we let̃Uy be the desingularization ofY and Ũy × X be the
desingularization ofZ. SinceẼ = 0 on (Ũy \ S̃y) × X, we haveẼ = 0 on Ũy × X by
continuity, since the singular set has codimension at least 2. Thus we can apply exactly the
same argument given above to see thatψ̃ := ρ∗

yψ extends to a smooth functioñψy on all of

Ũy .
We define a conformal variation of the metric on the vertical distribution, which leaves

the metric on the horizontal distribution unchanged by setting

g(t)Z = ψ2t ds2
V + ds2

H on Zr .

The argument given that above shows that this variation extends to the desingularization to
define a smooth one-parameter family of RiemannianV -submersions.

We have thatπ : Z(t) → Y is a Riemannian submersion with integrable horizontal
distribution. We use Lemma 3.3 to seeθ(t) = (1 + t dim(X))θ away from the singular set
and thus

�
p

Zπ
∗ − π∗�pY = (1 + t dim(X))(dZ intZ(θ)+ intZ(θ)dZ)π

∗

= (1 + t dim(X))(�pZπ
∗ − π∗�pY ) .

LetΦ ∈ Epλ (Y ) and letπ∗Φ ∈ Epµ(Z). Setε = µ− λ. Then

�
p

Zπ
∗Φ = {λ+ (1 + t dim(X))ε}π∗Φ on Zr .

Consequently, by Lemma 3.5,

π∗Epλ (Y ) ⊂ E
p

λ+(1+t dim(X))ε(λ)(Z(t)) .
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By Lemma 2.3,λ+ (1 + t dim(X))ε(λ) ≥ 0. Sincet is arbitrary,ε(λ) = 0. Thus

(dZ intZ(θ)+ intZ(θ)dZ)π∗ = 0 on E
p
λ (Y ) .(5.e)

Since these eigenspaces are dense in the Sobolev spaceH1, Equation (5.e) continues to be
valid onH1. Let y0 ∈ Yr . Letf ∈ H∗(z0), whereπ(z0) = y0. ChooseΦ ∈ C∞

0 (Uy) so that

Φ(y0) = 0 and π∗dΦ(y0) = f .

Let Ψ ∈ C∞
0 (Yr ) with Ψ (y0) arbitrary. We apply Equation (5.e) to the productΦΨ and

evaluate aty0 to see

(extZ(f ) intZ(θ)+ intZ(θ) extZ(f ))π∗{Ψ (y0)} = 0 .

Since

extZ(f ) intZ(θ)+ intZ(θ) extZ(f ) = gZ(f, θ) ,

gZ(f, θ)(z0) = 0. Sinceθ is horizontal and sincef was an arbitrary horizontal covector, we
concludeθ vanishes away from singular set; passing to a local desingularization, we complete
the proof by checking that̃θ = 0 everywhere by continuity. �
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