Tohoku Math. J.
57 (2005), 505-519
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Abstract. We study when the pull-back of an eigenform of the Laplacian on the base
of a compact Riemanniavi-submersion is an eigenform of the Laplacian on the total space of
the submersion, and when the associated eigenvalue can change.

1. Introduction. We first review the situation in the smooth context. ketZ — Y
be a Riemannian submersion, whé&randZ are compacsmooth manifolds without bound-
ary. Let®, be an eigenp-form of the Laplacian oy with eigenvalue.. Suppose that*®,
is an eigerp-form of the Laplacian o with corresponding eigenvalye This is, of course,

a rather rare phenomena that greatly restricts the admissible geometry. We showed [6, 7] that
A < u. If p =0, then in fact the eigenvalue does not change, i.e- n. Forp > 2, we
constructed examples in which the eigenvalue actually changes, i.e., wheye The case

p = lis still open.

In the present paper, we shall generalize these results to the case X\wvhartkZ are
RiemannianV-manifolds; we must deal with the complications introduced by the singular
sets to extend the results known in the smoetiirsg to the situation at hand. Throughout the
paper, we shall only deal with compac¢tmanifolds without boundary. We use the Friedrichs
extension to define the-form valued Laplaciam\}, on aV-manifold M; let E{ (M) be the
associated eigenspaces. We shall always suppasthe singular set has codimension at least
2; this has some important analytic cegsiences as we shall see in Section 2.

There is a rather elegant geometric charazé¢ion of the situation when the pull back of
every eigerp-form onY is an eigerp-form on Z; necessarily the eigenvalues do not change
in this setting:

THEOREM 1.1. Letrw : Z — Y beaRiemannian V-submersion of closed V -manifolds,
where the singular setsof Z and Y are of codimension at least 2.
(1) Let p = 0. Thefollowing conditions are equivalent:
€)) A%n* = n*A?,.
(b) Foranyi >0,7*E%(Y) C EX(2).
(c) Forany i > 0,thereexists (1) > Osuchthat 7*E(Y) C Egm(Z).
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(d) Thefibersof = are minimal.
(2) Let p > 0. Thefollowing conditions are equivalent:
(@ Alm*=n*Al.
(b) Foranyi >O0,7*El(Y) C EV(2).
(c) Foranyi > 0,thereexists u(x) > Osuchthat 7*E} (Y) C El’j(k)(Z).
(d) Thefibersof = are minimal and the horizontal distribution isintegrable.

Theorem 1.1 shows that if all the eigenspacespeserved, then all the eigenvalues are
preserved as well. We now focus on what happens if just a single eigenform is preserved. The
eigenvalue can not changepif= 0; more generally, the eigenvalue can not decrease-if0.

We remark that this fails in the context of manifolds with boundary; Neumann eigenvalues
can decrease [14].

THEOREM 1.2. Letw : Z — Y beaRiemannian V-submersion of closed V -manifolds,
where the singular setsof Z and Y are of codimension at least 2.

(1) 1f 0#@ e EXY)andifr*® € E(Z), then A = p.

(2) Letp>0.1f 0# ® € E(Y)andif n*® € E[}(Z),then 1 < p.

Theorem 1.2 is sharp ji > 2. We refer to [6, 7] for the proof of the following result in
the smooth setting; the result in the more general context is then immediate.

THEOREM 1.3. Letp>2andlet0 < A < u < oo begiven. There exists a Riemann-
ian V-submersion : Z — Y and thereexists 0 # @ € E(Y) sothat n*® € E}(Z).

Here is a brief outline of the paper. In Section 2, we review the definition Uf a
manifold, the Friedrichs extension of the Laplacian, and a basic regularity result. In Section 3,
we recall some useful formulae intertwining the coderivative on the base and on the total space
of a Riemannian submersion. We also discuss submersions in the contexhahifolds. In
Section 4 we introduce the Hopf fibration. We then take the quotient of the Hopf fibration
by suitably chosen cyclic group actions to construct a useful family -submersions. We
conclude the paper in Section 5 by completing the proof of Theorems 1.1 and 1.2.

It is a pleasant task to acknowledge useful conversations with Professor Yorozu and
anonymous referees’ helpful comments concerning this paper.

2. V-manifolds and V-submersions. The notion of aV-manifold was introduced
by Satake [16]; he used the symb®’‘to indicate that one was dealing with a cone-like
singularity. Such manifolds are also calladifolds, see, for example, [18, 19]. Their spectral
geometry has been studied by many authors; for example, see [8]. They also appear in the
study of foliations [10, 20].

In this paper, we follow the notational conventions of [12, 16, 17]. O&tn) be the
orthogonal group. LeBs be the ball of radiug in R” centered at the origin. I is a finite
subgroup ofO (m), thenG acts by isometries oBs; let Bs/G be the associated quotient
space.
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It is worth noting for further use the following fact. L&t be a finite group acting on an
open neighborhoo® of the origin inR™. If G preserves some Riemannian metric®@mand
if G fixes the origin, then in geodesic coordinates, the actiafi &f linearizable in the sense
given above.

Let M be a compact metric space. We say tMais a V-manifold if every pointP € M
has an open neighborho®d which is homeomorphic t®spy/G p for somes(P) > 0 and
some finite subgroug p C O(m). LetUp = Bj(py and let

pp:Up — Up/Gp =Up
be the natural projection. Let
Sp:={0 € Up ; there existy € Gp suchthat #Id andyQ = 0}
be thefixed point set of G p. We then have that

pp:Up\ Sp — Up\ pp(Sp)

is a covering projection. Thengular set of M is defined to be

Sm = U {ppSp}.
PeM

Note thatSp is the union of a finite number of linear subspace&/'pf We suppose that these
subspaces all have codimension at least 2. We shall suppos¥ th&j, has the structure of
a smooth manifold and that the magps from Up \ Sp to Up \ pp(Sp) are local diffeomor-
phisms. TheV-manifold is a smooth manifold i§, is empty or, equivalently, itz p = {Id}
foreveryP € M.

We assume that the metric @t is induced from a Riemannian metric o \ S;. We
also assume that there is a Riemannian metsion eachUp, which is invariant under the
action of the grouf p such thaipp is a local isometry front/p \ Sp to Up \ Sp.

Let M be a Riemanniai¥ -manifold. Letdx be the associated Riemannian measure on
M \ Sy. We shall take the Friedrichs extension of the Laplacian fidg Sy, to define the
LaplacianA@ onL2(AP(M)). Let Co° (AP (M \ Syr)) be the space of smoophforms which
are compactly supported i \ Sy;. Then theL? spaceL2(A”(M)) and the Sobolev space
Hy(AP(M)) are defined as the completion 6f°(A”(M \ Sy )) with respect to the inner
products

6. ¥)0 = / 6. ¥)dx and
M\Sy

(¢, ¥)1:= /M\S {(d¢.dy) + (8¢, 6Y) + (¢, ¥)}dx ,

respectively. Introduce the quadratic form

17(6, %) = / (g, dy) + (56, 8y} .

M\ Sy
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TheFriedrichs extension A}, is then defined [15] by the identity:

(Ay¢. o= 17(p. ) for ¢,y € Hi(AP(M)).
We remark that if we removed a sg&bf codimension at least 2 from a smooth manifaid
then this definition of the spadéi(A”(M)) and Af‘} would agree with the usual definition.
We set
E}(M) = {¢ € Hi(AP(M)) ; Ay = A}

The following regularity result is a central one in the subject— we shall derive it from
results of Harvey and Polking [9] but there are many other proofs see, for example, the dis-
cussion in [1, 2] forp = 0. It identifies the eigenforms oW with the smooth equivariant
eigenforms on the desingularization.

THEOREM 2.1. Let M beaclosed Riemannian V-manifold, wherethe singular set has
codimension at least 2. Let ¢ € L?(A”(M)). Then the following conditions are equivalent:

(1) ¢ <€ EJ(M). ) i

(2) Forany P € M,thereexistspp € C*°(AP(Up)) so that

(a) ¢P|(f/P\§P)~= PP PP\ pp(5p))s
(b) ¢p € EJ(Up), and
() y*¢p=dpforanyy e Gp.

Since Sp has codimension at least 25°(Up \ Sp) is dense inHy(Up). It is now
immediate from the discussi given above that Condition (2) implies Condition (1). The
converse is a smoothness result which shows that the pull-back eigenforms extend smoothly
across the singular set. Before establishingithjgication, we first recall a technical Lemma.

LEMMA 2.2. Let £2 bean open subset of R” and A a closed subset of §2. Let P(x, D)
be a vector valued partial differential operator on 2.

(1) Assumethat v := m — 2 - orderP) > 0 and that the lower Minkowski content
M, (K) isfinite for every compact set K Cc A.If¢ € L%C(Q) andif Pp =0on 2 — A, then
Pp=00ng2.

(2) If Pisdliptic,if ¢ € L2 (£2), andif P¢ issmooth on 2, then ¢ is smooth on £2.

loc
PROOF. Assertion (1) follows from Corollary 2.4 (a) of Harvey and Polking [9], who
generalized earlier work of Littman [13]. Assertion (2) is a standard elliptic regularity result,
see, for example, Gilkey [3]. m]

PROOF OFTHEOREM2.1. Let¢ be anL? eigenform of the Friedrichs extension af
corresponding to the eigenvaldipwe omit p from the notation. Note that

IplIZ = Ip1%, + I1(d + 8)pl|%, -

Let pp : Up — Up = Up/Gp be a local desingularization. Letands denote the
exterior derivative and co-derivative dip, respectively. We then have,d = dp} and
Ppd = Sp};, sincepp is an isometry off the singular set. We set

bp = ppd.
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As the singularity set has codimension at least 2 ang & Hi1(M), ¢p € H1(Up). The
equivariance property is immediate, sinceoy = pj. To complete the proof, we must show
thatép extends smoothly to all df p.

We decompos@ — A as the product of two first order operators:

A-r=@+5+VNUA+5-Vn.
We set
Yo=d+8—vN¢ and Yp:=phy =d+5—VNpp.
We then have that p is in L2. We may express:
d+8+vVNUp=d+5+vNUA+35—VNdp =(A—1)dp
=ph(A—2)¢p=0 on Up\Sp.

By assumptionS is the finite union of finite number of linear subspaces of codimension
at least 2 intersected witlip. Thus then — 2 dimensional lower Minkowski measure of any
compact subset ifp is finite. Lemma 2.2 (1) shows that

d+38+~2)yp=0 on Up.

Sinced + § + /4 is elliptic, Lemma 2.2 (2) implies thatp is smooth orl/p.

Sincegp is in H1(Up), (d + 8§ — v/A)¢p = ¥p in L2Up). Sinceyp is smooth on
Up and since this operator is elliptic, another application of Lemma 2.2 (2) yields thist
smooth onlUp as desired. O

Theorem 2.1 shows the pull-back eigemhs of the Friedrichs Laplacian au are ordi-
nary eigenforms of the Laplacian @y for any P € M which are invariant under the groups
G p. Conversely, if we are given a collection of eigenforgsin Ef(l?p) which are invariant
under the action of the grougsp and which patch together, then they define an eigenform of
AR, onM.

We can construct the associated spectral resolution using Theorem 2.1 and Rellich com-
pactness. We refer to [2, 11, 18] for additional details. Let

_ 17(¢, ¢)
O#peH (AP(M) (B, P)o

The infimum is attained by a functigh, € Domain(A” ) so thatA?,¢1 = A1¢1. The second
eigenvalue., is then defined by setting:

Al

. . 17(¢, ¢)
Ao = in —_—
O#pe Hi(AP (M), o L1 (¢, B)o
where ‘L’ is with respect to the.2 inner product. Again, the infimum is attained by a function
P2 € Domair(A]’l’l). One proceeds in this fashion to construct a complete orthonormal basis
{¢i}2, for L2(AP(M)) so thatAqus,- = M\;¢;. The collection{A;, ¢;} is called adiscrete
spectral resolution of A7, and we have that

E} (M) = span, ;. (i} .
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Again, this definition coincides with the usual definition in the smooth setting. We summarize
the discussion given above in the following result.

LEMMA 2.3. Let M bea closed Riemannian V-manifold, where the singular set has
codimension at least 2. Then the following hold.

(1) AR, isself-adjoint and non-negative.

(2) Thereexists a discrete spectral resolution {4;, ¢, } for A”M, where A; — oo.

(3) We have a complete orthogonal direct sum decomposition

L*(AP(M)) = P Ef (M) .
A

3. Submersionsin the context of V-manifolds. We begin by reviewing some of the
geometry of a Riemannian submersion in the smooth settingr Let — Y be a Riemannian
submersion of closed smooth manifolds. ke Z, we decompos&,Z = V, & H,, where

V. :=ken(r,,) and H,:= V>

are thevertical andhorizontal spaces, respectively; by assumptignis an isometry fromH,
to T, Y. We introduce the following notational conventions. Let indiesandk index local
orthonormal framese; } and{e’} for the vertical distributions and co-distributiolsand V*
of 7. Let indicesa, b, andc index local orthonormal framdg,, } and{ ¢} for the horizontal
distributions and co-distributiori§ andH* of . If £ is a covector, then let efé) and in{(§)
denoteexterior multiplication and the dualinterior multiplication, respectively. We define
tensor®) andw and endomorphismS$ andZ by setting

1
0= =) gzllei fal.eDf*,  wani = 59z(ei. Lfas foD)
(3.a) ha '
£:=) wapi eXtz(e)intz(f)intz(f7), & :=intz(®)+E.

a,b,i

The tenso# is the unnormalized mean curvature co-vector of the fibers ahdw is
the curvature of the horizontal distribution. We say that the fibersnamamal if 6 = 0. We
say that the horizontal distributidh is integrable if @ = 0.

The pull-backr* is a linear map fromC°(A?(Y)) to C*°(AP(Z)), which commutes
with the exterior derivative, i.er*dy = dzz*. However,m* doesnot in general commute
with the coderivative. We refer to [7] for the proof of the following result; what is crucial for
our present considerations is that the result in question is purely local—it does not rely on
any compactness considerations.

LEMMA 3.1. Letw : Z — Y beaRiemannian submersion of Riemannian manifolds.
Thendzn* — a*8y = Ex*and Azn™* — n*Ay = (dzE + Edz)w*.
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If p =0, the situation is simpler. kb is a O-form, i.e., a function, then

D wabi €Xtz () intz(f4) intz (f)r*® =0,

a,b,i

Za)ab,' exty(e') intz (f4)intz(f2)dzn*® =0, and

a,b,i
intz(@)n*® = 0.
The following Corollary is now immediate.

COROLLARY 3.2. Letn :Z — Y beaRiemannian submersion of Riemannian mani-
folds. Then A97* — 7*A% = intz(0)dzm* on C(Y).

We say that the horizontal distribution is integrablevif= 0. We refer to [5] for the
proof of the following result which relategsto the local volume element in this setting.

LEMMA 3.3. Let X bethefiber of a Riemannian submersionr : Z — Y. Assumethat
the horizontal distribution of 7 isintegrable. Then there exist local coordinates z = (x, y) on
Zson(x,y) =y,

dsg =Y hap(y)dy* ody”, and

a,b
dsf =) gij(x, )dx' odx + Y “hap(y)dy* o dy”.
i,j ab

If we set gy := det(g;j)¥/?, then 6 = —dy In(gx).

We now extend these notions to the singular setting XLbe a closed smooth manifold.
We enlarge slightly the notion of admissible charts and consider an action

(3.b) y (@, x)=(yi,y@)x) on UpxX for yeGp.

DEFINITION 3.4. LetY andZ be V-manifolds and lefX be a smooth manifold. We
say thatr : Z — Y is aV-manifold fiber bundlewith fiber X if we can choose chartg, /G,

overY and chart§U, x X}/H, overZ so that we have a diagram
z

O, x X 25 (0, x X}/H,
(3.0) 7 I with nopyZ:pyoﬁ'.

7, 2 v, =0,/G,
Here H,, is a subgroup oG, 7 andx are projection on the first factors, the actionff
on Uy x X is as discussed above in Equation (3.b), and the projec}dﬁmxnd py are the
associated quotient maps. We say thas a Riemanniary -submersion if additionally is a
Riemannian submersion.

We remark that the Riemannian metricfm x X is notin general a product metric and
that the decomposition in question is only local; in general, of codrsenotY x X.
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Letr : Z — Y be a RiemanniatV-submersion. Let, := Y \ Sy andZ, := Z \
7~1{Sy}; these are open Riemannian manifolds. Althoughis the regular set of, the
regular set oZ may be larger thai,. Let r, be the induced Riemannian submersion from
Z,t0Y,.

LEMMA 3.5. Letw : Z — Y beaRiemannian V-submersion of closed V-manifolds,
where the singular setsof Z and Y are codimension at least 2. If @ € Ef(Y) andif 7@ €
EL(Z,), thenn*® € El(Z).

PROOF. Lety €Y. Let Oy/Gy and{ﬁy x X}/H, be desingularizing local charts on
and onZ, respectively. By Theorem 2.8, := p}® extends smoothly fronv, \ S, to U,
with A7 &, = 1&,. Pulling back then yields that*®, is smooth or/y x X. Since
g
Ag)ﬁxxﬁ*é}, = pr*d, on {(Uy\ S} x X
and sinceS, x X has co-dimension at least 24, x X, we have by continuity that

Agyxxﬁ*qsy =pr*d, on U, xX.

As the equivariance property immediate, Theorem 2.1 implies ® € E/(Z). ]

We shall need to generalize tfiber product from the smooth setting to the singular one.
Letrw; : Z; — Y be RiemanniatvV-submersions with fiberX; fori = 1, 2. The fiber product
is defined by setting

Z=27(Z1,72) ={z=1(21,22) € Z1 x Z3; mi(z1) = m2(z2)}.

We now study the local geometry. Choose chart¥ passociated charts dfy, and local
projections as given above. We shall assume that the associated grodpsi@ithe same,
i.e.,,H,1= H,forally € Y;thisis a crucial point. The assumptiéfy 1 = H, » causes no
difficulty as we shall be taking1 = Z» subsequently. Then local charts for the fiber product
and the fiber product action which generalize those given in Equation (3.b) are defined by
taking the action:

y - (5, x1,x2) = (5, yF)xr, y(F)xz) on Uy x X1 x Xo for y € Hy1=Hy .

This shows thatr : Z — Y is aV-manifold fiber bundle with fibek; x X2. A similar argu-

ment can be used to show thatis a RiemanniarV -submersion, where a suitable rescaling

of the metric on the horizontal distribution is used, exactly as was done in the non-singular
setting [6]. Leto1(z1, z2) := z1 ando2(z1, z2) := z2 define maps; : Z — Z;. These are
RiemanniarV -submersions as well.

LEMMA 3.6. Adopt the notation given above. If & € EJ(Y), if nf® € Ef+81(Zl),

andif m3® € E,, (Zo),thenm*® € E,, |, (2).

PrRooOF Off the singular locus, we use the computations given in [6] to see

0y, = Gf@zl +C72*922 and Ezn* = Cffgzln’f +U;5227r§ .
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A straight forward application of Lemma 3.1 then shows that
AVn*® = (L +e1+e)n*® on Z..

The desired conclusion now follows from Lemma 3.5. O

4. TheHopf fibration. There is a useful family of examples which we can describe
as follows. We give the unit sphe® in R**! the standard metrig, of constant sectional
curvature+1. We identifyR* = C? to regards® c C? and we identifyfR® = C @ R to regard
§2 c C@® R. TheHopf fibration 4 : $2 — $2 is then defined by setting

h(z1, z2) = (22172, 1211 — |22/?) .

One then has that : (53, g3) — (52, (1/4)¢») is a Riemannian submersio(§2, (1/4) g)
is, of course, just the sphere of radiy@in R.

ExaAMPLE 4.1. LetZ, be the group ofi-th roots of unity inC. We define actiong,
andpz of Z, on 52 and ons?, respectively, by setting

p2(y)(w, 1) = (yw,t) and p3(y)(z1,22) = (yz1,22) for y eZ,.
Since the actions in question are by isometries, this gives the quotient spaces
M7 :=S?/p2(Z,) and M) :=S%/p3(Z,)

the structure of Riemanniavi-manifolds. Furthermore, as the group actions are compatible
with the Hopf fibration, we have a diagram

s B M3
(4.a) L Lh with homs=mooh.
S2 2 M2

The induced Hopf map is a Riemanniary -submersion.

Let N = (0,1) andS = (0, —1) be the north and south poles.@? Cc C®R. Then
h~Y(N) is the circle(z1, 0), while 7~1(S) is the circle(0, z). The action oz, onh~1(N)
is without fixed points; thus the image of this circle My’ is non-singular; the singular set
of M3 is h=1(S). Thus this example illustrates that the singular set of the total space is not
simply the inverse image of the singular set of the base. Note that the singular Mi,ftsmﬂ
of M2 have codimension 2.

Let 7» be the volume form ois2, (1/4)¢»). Sinceds is invariant under the action &,
it descends, by Theorem 2.1, to define a harmonic 2-figrra Eg(M,f). One computes that
h*, € E2(S), see [4] for details. Thus similarly*v, € E2(M2). This illustrates Theorem
1.3 by providing an example where the eigenvalue changes.

EXAMPLE 4.2. Let(p, q) be coprime integers and let= pg. Choose integers and
b so thatap — bg = 1. We define actiong, and p3 of Z,, on $2 and ons3, respectively, by
setting

02,94V, 1) := (yw, 1) and p3 p4(¥)(z1,22) i= (yPz1, y?22) for y € Z,.
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Since the actions in question are compatible with the Hopf map, we once again have a com-
mutative diagram of the form given above in Diagram (4.a). The actiof, ajn the fiber
circlesh 1(N) = (z1,0) and2~1(S) = (0, z2) in $3 is not faithful. The isotropy group for
these fiber circles ig, andZ,, respectively. This example illustrates that the structure groups
can be different over different components of the singular set.

ExAMPLE 4.3. LetN be an arbitrary closed Riemannian manifold. We extend the
actions ofzZ,, defined in Example 4.2 to act trivially oM to define a diagram

I
S3x N ngd M,?XN

(4.b) | ixid Lhxid  with (hxId)o (73 x Id) = (7r2 x Id) o (& x Id).
S2x N nz—XLd Mf x N
By replacingv, by vo A u),—2 for a suitably chosen eigen-form,_, on N, and by rescaling
the metrics appropriately, a family of examples can be constructed illustrating Theorem 1.3 in
full generality. We omit details in the interests of brevity and refer to [6, 7] for further detalils.

EXAMPLE 4.4. One can also consider the Ihég dimensional Hopf fibration
h : §2*1 _ CP”, where the spher§?+1 is given the standard metric and where complex
projective spac€P” is given a suitably scaled Fubini-Study metric. let € Eg(CP”) be
the Kaehler form; this restricts to a multiple of the volume form®8n= CP. If 1 < p <n,
then

2 ~ 2
uh € EQP(CP™) and h*uj € EjP +1_p)(sz"+l).

We refer to Remark 3.6 [4] for further details. Again, suitable cyclic group actions yield
appropriateV -manifold examples.

5. Proof of theorems.

PROOF OFTHEOREM1.2 (1). Letr : Z — Y be a RiemanniafY -submersion, where
Z andY are closedV-manifolds. We assume that the singular sets of botind Z have
codimension at least 2. Let & & € EJ(Y). Assume thaW := n*® € E}(Z). Let
py : Uy — Uy be anV-manifold chart orv'. We apply Theorem 2.1 to see th# := p} & is
smooth orJ,. Sinced, is invariant under the action of the groay, @ is continuous on the
quotientU, = Uy/Gy. Sinced is continuous on a compact spaewe may chooseg € Y
S0 @ (yp) is maximal. By replacingd by —@ if necessary, we may assume without loss of
generality thatp (yg) > 0.

Let Zy, := Uy, x X and letd,, := p}, @. By a slight generalization of Theorem 2.1,

By, € EXUy,) and 7%y, € EX(Zy,).
We apply Corollary 3.2 to the Riemannian submersionZ,, — U,, to see
(5-a) (= WF*Dy, = {Adr* —a* AV Dy = INt(O)d; 7By, = INO)F*dy Dy,
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ChooseZg so 7% = Jo. Sinced,, has a maximum afo, (7*d;®,,)(Z0) = 0. Since
(m*®y,)(Z0) > 0, evaluating Equation (5.a) & impliesy = A. O

PROOF OFTHEOREM1.2 (2). Letr : Z — Y be a RiemannialY-submersion, where
Z andY are closedV-manifolds. We assume that the singular sets of Botind Z have
codimension at least 2. Lgt> 0, and let 0% @ € EY (Y). Assume that*® € E},(Z). We
wish to showi < .

We generalize the argument given in [6]. L& := Z and letZy := Z(Zo, Zo) be the
fiber product. Letg := u — A. Then by Lemma 3.6,

b e E] 260 Z1) -
We now inductively se¥, := Z(Z,-1, Z,—1) and apply the same argument to see

p
TP € EL i (Zn).

SinceAgn is a non-negative operator by Theorem 2.3, we have2"¢g > O for all n. This
implies thateg > 0 and hencer > A. O

PrROOF OFTHEOREM1.1. We extend the arguments given in [7]. lzet Z — Y be
a Riemanniar¥/ -submersion, wher& andY are closedV-manifolds. We assume that the
singular sets of botlir andZ have codimension at least 2.

We first show that Assertion (1d) implies Assertion (1a) and that Assertion (2d) implies
Assertion (2a). Assume that off the singular set the fibers afe minimal, and thatip > 0,
then the horizontal distribution is integrable. Let® @ € Ef(Y). Then Lemma 3.1 and
Corollary 3.2 imply that

Abn*® =rn*® on Z..
Thus by Lemma 3.57*® € E!(Z). This shows that
n*EX(Y) C EL(2)

for all ; the intertwining relations of Assertions (1a) and (2a) now follow, as the span of the
eigenspaces is dense in the appropriate topology.

Itis immediate that Assertion (1a) implies Assertion (1b) and that Assertion (2a) implies
Assertion (2b). Similarly, Assertion (1b) ifips Assertion (1c) and Assertion (2b) implies
Assertion (2c). We complete the proof by showing that Assertion (1c) implies Assertion (1d)
and that Assertion (2c) implies Assertion (2d).

Suppose that*E (Y) Eﬁ(k)(Z) forall . Let®, € EI(Y). By Lemma 3.1 we have

(5.b)  (u— NI = {dz(intz(0) + ) + (intz(0) + E)dz)n*®;, on Z,.

Suppose first thgt = 0. By Theorem 1.2 (1), we haye(A) = A. We use Corollary 3.2
to rewrite Equation (5.b) in the form:

intz(Q)Tl’*d)f@)L =0 on Z.
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Let @ be any smooth function which is compactly supported near a regular point. We
can approximate in the SobolevH1 topology as a finite sum of eigenfunctions. Thus

intz(@)m*dy® =0.
Sinced is a horizontal co-vector and sind&(y) is arbitrary, this implie® = 0 at any point
z € 77 1(y). Thus# vanishes orZ,; passing to a local desingularization, we concléde
vanishes everywhere by continuity. This completes the proof of Theorem 1.1 (1).

We now suppose that > 0. Letry be orthogonal projection from?”(Z,) to A? (H).
Letd, e E){’(Y). We apply(1 — my) to Equation (5.b) to see that

0= (u—2NA—-mp)n*P,
= (1 —mp{dz(intz(0) + &) + (intz(0) + E)dz}n* P, on Z,.

The natural domain of this identity is the Sobolev spag€Y,) and, as the eigenfunctions are
dense inH1(Y;), by continuity we then have

(5.0) 0= 1 —mp){dz(intz (@) + &) + (intz (V) + E)dz}x*® for & € Hi(Y;).
Letrmzo = yo € Y. ChooseF € Cy°(Y;) so thatF(yo) = 0. Leté := dF(yo). Since

intz(0) + £ is a " order operator, we apply Equation (5.c) to the prodidt and evaluate
atzg to see

0= (1— mp){extz(x*&)(intz(0) + &) + (intz(0) + &) extz (7w *&)}m* P (yo) .
Since
0= (1 — mp){extz(m*E)intz(0) + intz () extz (m*&)}m*,
and since€ always introduces a vertical covector, we conclude that
0= (1—mr){extz(r*E)E + E exty (™ &) )™
= {extz(w*E)E + Eextz (n*E)}m™.

Let{f¢, ¢'} be the orthonormal frames of the dual distributidtisand)*. Adopt the notation
of Equation (3.a). To simplify the notation, set

(5.d)

e = extz(el), ei:=extz(fY, and i, :=intz(f%).
We then have the Clifford commutation relations:
eqip + ipeq = Sab -
ChooseF so thatt*£(z0) = f“(zo0) and apply Equation (5.d) to computezatthat

0= Z Wapi {eceiiaip + eiigipec) = Z wapiei{—¢eclalp + iaipec}

a,b,i a,b,i

= Z wapiifiaecip + igipec — Sacip)
a,b,i

= Z wapiei{—laipec +igipec — Sacip + Spcia} = —2 Z Wepi &iip -
a,b,i b,i

As p > 1, we may conclude that = 0 onZ, and consequently{ is integrable.
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We must now show that the fibers are minimal. dgtdenote exterior differentiation
along the fiber. We s&t = 0 and use Equation (5.c) to compute

0= (11— m){dzintz(0) +intz(0)dz}m*
= (1—mp)dxintz(@)n* on CF(AP(Y,)).

This impliesé is constant on the fibers so thtat= 7*® is the pull back of a globally defined
1-form away from the singular set on the base.
We apply Lemma 3.3. Lefv¢ be the Euclidean measure and let

v = [ ot pas
X
be the volume of the fiber ~1(y) for y € ¥,. Then

dyy(y) = dy /X gx(x, y)dvE = /X (x g5 ¥y gx) (x, y)dV®

= —/ng(x,y)é’(x,y)dwi = —@(y)/xgx(x,y)dvf}

=-OMy¥(»), so
0 =—n*dylny on Y,.

If y is a singular point, we let/, be the desingularization df andU, x X be the
desingularization oZ. Sinceé = 0 on (Uy \ S,) x X, we have€ = 0 onU, x X by
continuity, since the singular set has codimension at least 2. Thus we can apply exactly the
same argument given above to see that= p;‘w extends to a smooth functio}ny on all of
0,.

We define a conformal variation of the metric on the vertical distribution, which leaves
the metric on the horizontal distribution unchanged by setting

9z =y¥dsg +dsz, on Z,.

The argument given that above shows that this variation extends to the desingularization to
define a smooth one-parameter family of Riemaniasubmersions.

We have thatr : Z(r) — Y is a Riemannian submersion with integrable horizontal
distribution. We use Lemma 3.3 to se&) = (1 + ¢ dim(X))6 away from the singular set
and thus

ADa* —*AY = (L+ tdim(X))(dz intz(0) + intz(0)dz)*
= (L+tdimX)(ALx* —7*Ad).
Let® € EI'(Y) and letr*® € E/(Z). Sete = u — 1. Then
Aba*® = (A + (1 +tdim(X))e}n*® on Z,.
Consequently, by Lemma 3.5,

p p
TE; (Y) C E5 14 dimexyey(Z @) -
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By Lemma 2.3A + (1 + ¢t dim(X))e(1) > 0. Sincer is arbitrary,e (1) = 0. Thus
(5.e) (dzintz(0) +intz(®)dz)n* =0 on E’(Y).

Since these eigenspaces are dense in the Sobolev Bha&guation (5.e) continues to be
valid onHj. Letyo € Y;. Let f € H*(z0), wheren (zo0) = yo. Choosep e C3°(Uy) so that

@(yo) =0 and 7*d®(yo) = f.

Let ¥ e Cg°(Y,) with ¥ (yo) arbitrary. We apply Equation (5.e) to the prodde¢ and
evaluate ag to see

(extz(f)intz(0) + intz(0) extz (1)) *{¥ (yo)} = 0.
Since
extz(f)intz(0) + intz(0) extz(f) = gz(f. ),

9z(f,0)(zo) = 0. Sincel is horizontal and sincg was an arbitrary horizontal covector, we
conclude& vanishes away from singular set; passing to a local desingularization, we complete
the proof by checking that = 0 everywhere by continuity. o
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