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POSITIVE SOLUTIONSOF ELLIPTIC AND PARABOLIC EQUATIONS
WITH CONVEX-CONCAVE NONLINEARITIES
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Abstract. We consider, respectively, the Dirichlet problem and the initial-boundary
value problem of elliptic and parabolic equations with two power nonlinearities. We find that
these problems are closely related to the so-called quenching problem. We obtain the existence
and nonexistence of positive solutions to these problems on bounded and unbounded domains,
by using the results of quenchingailem and sub-super solution method.

1. Introduction. Letg2 be an arbitrary domain in EuclidearspaceR”. We consider
the Dirichlet problem of the semi-linear elliptic equation

—Au=ul+ul, xes2,
(1.1) {u:O, x €082,
and the initial-boundary value problem of its parabolic version
ad
8—?—Au=u”+uq, x,)) e 2 x(0,T),
(1.2) u=0, (x.1) €32 x (0, T),
u(x,0) = uo(x), x € 2.

In most cases, we assume thakOg < 1 < p. Wheng2 is a bounded domain, problems
similar to (1.1) were studied by many authors. Iklg < p < (n + 2)/(n — 2), we refer to
[18-20] and the references cited therein. &0y < 1 < p, we refer to Ambrosetti, Brezis
and Cerami [1], Boccard, Escobedo and Peral [2], Jin [3], Bartsch and Willem [4], Cabre
and Majer [5] and so on. Problems similar toQ)lwere studied by Cazenave, Dickstein and
Escobedo [6]. Compared to these circumstances, there are few results for Problems (1.1)
and (1.2) on unbounded domains. This motivates us to study Problems (1.1) and (1.2) on
unbounded domains in the present paper. Our main focus is the existence and nonexistence
of positive solutions to Problem (1.1), as well as the existence and nonexistence of global
solutions to Problem (1.2). However, we firtht to accomplish this task, some new results
for Problems (1.1) and (1.2) on bounded domains are needed. Accordingly, we have to first
revisit Problems (1.1) and (1.2) on bounded domains.

The paper is organized as follows. In Section 2, we will study Problem (1.1) on bounded
domains in the case 8 ¢ < 1 < p and show that there exist two positive numhetsand
a, such that Problem (1.1) has at least one positive solutionfa?) > a*, whereas has
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no positive solution foi1(2) < a,. Here,A1(£2) is the first eigenvalue of the eigenvalue
problem

(1.3) {—A(p:kgo, x €82,

¢=0, x €052.

We emphasis here that our results differ from these available so far; for details we refer to
Conclusion 2.3 and Example 2.4 in Section 2. In Section 3, we will study Problem (1.1) on
unbounded domains and prove that if the in-radius of the dofaminfinite, then Problem

(1.1) has no positive solution; while, if the in-radius of the dom@iis finite, then Problem

(1.1) has at least one positive solution under some suitable conditions. It is worth pointing out
that these conditions may be satisfied by sorseBan-Lions domains. Hence, the presence
of the sub-linear term? tremendously changes the structure of the solution set of Problem
(1.1) (see Example 3.8). In Section 4, we will study Problem (1.2) on bounded domains and
prove that it has a global solution for some suitable initial vadgier) provided that1 (£2) is

large enough, while it has no global solution for any nonnegative initial vajue) if A1(£2)

is small enough. This result is different to some extent from the result given in [6]. In Section
5, we will study Problem (1.2) witl? = R", i.e., the Cauchy problem. The main contribution

of this section is a computation of the critical exponent of Fujita’s type. In Section 6, we state
a result for Problem (1.2) on general unbounded domains.

2. Elliptic Equation on Bounded Domains. Let 2 € R" be a bounded domain. In
this section, we investigate the following Dirichlet problem
—Au=uP+ul, xe$,
(2.1) u>0, X €,
u=20, X €052.

Since the case of ¥ p,q < (n + 2)/(n — 2) is well studied in recent years, we are mainly
interested in the casef g < 1 < p. Letr1(£2) denote the first eigenvalue of the eigenvalue
Problem (1.3). The main result of this section can be stated as

THEOREM 2.1. () If M(2) < [A—q)/(p — DIP D=0 4 [1 - q)/(p -
1)]@—D/(P=9) then Problem (2.1) has no solution.

(i) If A1(£2) = Co(n), then Problem (2.1) has at least one solution, where Co(n) =
16(n /7w e)”  (wn—1/n)Y2+8(2/7)" 2wy_1T" (n/2), wp—1 isthe area of unit spherein R” and
I" (x) isthe Gamma function.

Before proving Theorem 2.1, some remarks are in order.

REMARK 2.2. The nonlinear term(z) = u” + u? in the differential equation of
Problem (2.1) satisfies the conditions imposed in [3]. Hence, a typical result obtained in [3]
in the present context is

CONCLUSION 2.3 ([3]). Thereexistsa positive number A(n, p, ¢) depending only on
n, p and ¢ such that Problem (2.1) hasat least one solution, provided that |2| < A(n, p, ).
Here |£2| denotes Lebesgue’s measure of £2.
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It is worth pointing out that there is a significant difference between the Conclusion 2.3
and our result Theorem 2.1(ii). This may be illustrated by the following example.

EXAMPLE 2.4. LetB’~1(0) denote the ball iR~ with radiusa and centep. Let
wn1(a) be the first eigenvalue of the eigenvalue problem

Ap+pp=0, xeB 10,

2.2
22 ¢ =0, x € 3B 1(0).

We chooseig so small thafwi(ag) > Co(n) and set2 = BgO*l x (0, b) in Problem (2.1).
It is obvious that$2| > A(n, p, g) for b large enough, sincg2| = |B,,| x b — 400 as

b — +o0. This implies that Conclusion 2.3 cannot apply to verify this example for large
However, by a separation variable method, we can easily see that

2
M(2) = plao) + Z—Z > Con) forall b >0.

Hence, we may apply Theorem 2.1(ii) to obtain one solution of Problem (2.1) fab ang.

REMARK 2.5. Inthe case 0f1(£2) > Con) and 1< p < (n + 2)/(n — 2), one
can prove that Problem (2.1) has at least two solutions by an argument similar to that used in
Section 4 of [1]. The sub-linear terid plays an important role in finding the second solution
of Problem (2.1).

To prove Theorem 2.1, some lemmas are needed. First, we prove the following
LEMMA 2.6. Let ) bea positive number,and0 < ¢ < 1 < p. Then we have

Ac (p—q)/(1=q)
cP + cd

szz”—i—( P foral z=>0,

wherec = [(1— q)/(p — 1)]1/(17—(])_

PROOF.  Since the conclusion of Lemma 2.6 is obviously validfee 0, we have only
to prove Lemma 2.6 for > 0. From now on, let us assume that 0 and set

F(z) = " +nz)/(r2),
wheren is a positive real number to be determined later.

Since
(p— Dz —n(l—q)z!
F'(z) = ,
@ 1z2
we can easily find that
1/(p—q)

p q 1—

minF(z)zc te , c=<—q) .

7>0 Ac p—1

Moreover, this minimum is attained at= cn/(?—).
Consequently,
2 + 0zt > f+c n(p—l)(p—q)
AZ - Ac

forall z>0,
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that is,

p

Az zv.

rend=a)/(p=49) A 1\ @=D/(p=9)
< Zq + -
- cP + ¢4 cP4+c1 \n

Choosingy suitably so that

rend=0/(p=a)

’

cP + 1
we get

zP forall z>0.

AC (r—q)/(1—q)
rz <z
752 +|:cl’+cqi|

This completes the proof of Lemma 2.6.

Next, we consider the initial-boundary value problem

v 1
— —Av=——, (x,H)e 2 x(0,T),
(23) ot 1—v
’ v=20, (x,1) €02 x (0,T7),
v(x,0) =0, x €S2,
and its elliptic version
A ——1 2
(2.4) ATy T

w=0, x €052.

Problem (2.3) has its own interest. It is the so-called quenching problem and has been
studied by many authors since 1976 (see [25]). For the most recent progresses, we refer to
Souplet [7], Dai and Gu [21], Dai and Zeng [22] and Dai and Gu [23]. Since previous results
for Problems (2.3) and (2.4) do not satisfy the present need, we shall give some results of
Problems (2.3) and (2.4) here. The crucial result needed in the proof of Theorem 2.1 is

LEMMA 2.7. Let Co(n) be the same constant as that in Theorem 2.1(ii). If X11(£2) >
Co(n), then Problem (2.4) has at |east one classical solution w(x). Moreover, w(x) satisfies
0<wkx)<l/2forall x € 2.

To prove Lemma 2.7, we will need the following lemma.

LEMMA 2.8. Let (etA)tZO be the heat semigroup on £2 with the Dirichlet boundary
condition, and [e’ 2| oo = ||e"®|| 2 (1L(52)) denotethe normof ¢’ asan operator from L>(£2)
intoitself. Let A1(£2) bethefirst eigenval ue of the eigenvalue Problem (1.3). Then the estimate

1
le"] 0o < 1—6CO(")€_M(Q)1/4
isvalid. Here Co(n) isthe same constant as that in Lemma 2.7.
REMARK 2.9. Lemma 2.8 is essentially proved in Souplet [7] except an explicit for-

mula ofCp(n). To obtain an explicit expression of the const@ptn) and for the completeness
of this paper, we give a proof of Lemma 2.8 here.
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PrROOF oOFLEMMA 2.8. Let! be an arbitrary function defined b whose sup-norm
equals 1. For fixed > 0 andx € 2, let B(x,p) = {y € R"; |x — y| < p} andw =
£ N B(x, p). If we denote by, andIg\,, the restrictions of onw and$2 \ o respectively,
thene’2 1 (x) can be written as

eBI(x) = e M ly(x) + e P Ig\w(x) .
First, by the semigroup property and thé-L> estimate, we have

le 2 ulos < ut) ™€ 1| 2
< @)Ly l| po(gye D12
< @0) "y /m)ME(p? /1) eI ENIZ,

On the other hand, by comparing with thewg@n of the heat equation in the whole space,
we have

et o) < (4m)*"/2/ efleywz/(ztz)dy
lx=y|>p
2 02 00 2
:]‘[7"/2/ ei‘zl dz=m n/ wn—l/ rl’l e r dr
lel>p/ VA o/v4t
1
< 5(Z/n)”/zwn,lr(n/z)efpz/(so '

By choosingo = t4/211(£2), it follows that
e'21(x) < C1(n) (M (2)1)4e 1 EDI2 4 Co(n)e—1(D/4

where
C1(n) = 7 "M war/mY?, Ca(n) = %(Z/n)"/zwn_lr(n/zy
Since
(M (2)1)4e=M1(D/4 < yn/h,—n/4
we have

"1 (x) < [C1(n)(n/e)"* + Ca(n)]e "1 (D1/4

1
= 1—6C0(n)ef)‘l(m'/4.

Sincer andx are arbitrary, we finally get
1 _
"% loo < T Co(mye™ 121/%,

This completes the proof of Lemma 2.8.
With Lemma 2.8 established, we can prove

LEMMA 2.10. If A1(8£2) > Co(n), then Problem (2.3) has a unique global solution
v(x,r)suchthat 0 < v(x,r) < 1/2 for (x,t) € £2 x (0, +00).
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PROOF. Itis easy to see that the mild solution of Problem (2.3) is

! ds
— (t—s)A
v /0 ¢ 1—-v(s)’

To obtain a global solution of Problem (2.3), we consider the following iterative process

vo(t) =0,

4 ds
vk41(1) = / el —
" 0 1— v (s)

and prove that the sequeniag} converges to a global solution of Problem (2.3kas +oo,
provided that.1(£2) > Co(n). Obviously, this can be done by proving that

() vkrr1=wv >0 for k>0,
1
(i) Ogvkgé for k > 0.
Itis easy to see that (i) follows immediately from the comparison principle and the induc-

tion method. Hence, we have only to prove (ii). Now, we prove (ii) by the induction method.
Sincevg(t) = 0 < 1/2, it suffice to prove that ity (1) < 1/2, thenvi11(z) < 1/2. Noting

that
t ds
(t—s)A
1) = _—,
vk4+1(7) /Oe 1= 0ts)

we have
t
vpy1(t) < 2/ e8| ds .
0

By Lemma 2.8, we also have

t
Vk+1(2) < —CO(H)/ e M=/ ¢
=g |,

N Co(n) _—h()t/4 Co(n)
@ ) S ey

Taking the assumptioky (£2) > Co(n) into account, we finally obtain

ve+1(t) < 1/2.
This completes the proof of Lemma 2.10.

PROOF OFLEMMA 2.7. Letv(x,1) be the solution of Problem (2.3) obtained in Lemma
2.10. First, we may conclude thatx, ) is monotonically increasing with respect#toand
that there exists a integrable functierix) such thatw(x) = lim;— 4 v(x, 7) andw(x) =0
forx € 052.

Indeed, for any: > 0, the auxiliary function

Hx,t) =v(x,t +h) —v(x,t)
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satisfies
oH
W—AH:a(x,t)H, (x,1) € 2 x (0, +00),
H(x,t) =0, (x,1) € 382 x (0, +00),
H(x,0)>0, x€S2.

Hence, the maximum principle ofpabolic equations yields that
H(x,t) > 0.

This implies thatv(x, ) is monotonically increasing with respect #psinceh is arbitrary.
Moreover, noting that < v(x,t) < 1/2, we know that(x, r) converges point-wisely on
2 ast — +oo. Letw(x) = lim;_ 1o v(x, ). It follows thatw(x) is integrable ons2.
Furthermore, we also have(x)|3 = 0, sincev(x, t) = 0 for any(x, ¢) € 92 x (0, +00).

Next, we conclude thab(x) is a solution of Problem (2.4) and thus complete the proof
of Lemma 2.7.

Indeed, from the above discussion, we know théat) is integrable and satisfies
O0<w(kx) <12, wkx)lse =0.

So, we have to prove that(x) satisfies

—Aw(x) = xe.

1-wk)’
To this end, lelG = G(x, y) be Green’s function of the Laplace operatorf@rwith the zero

Dirichlet boundary condition. Multiplying the differential equation in Problem (2.3§tgnd
then integrating o2, we obtain

d G
— | Guv(y,t)d )= ——dy.
dt/ﬂ v(y, t)dy +v(x, 1) /Ql_v(y’t) y

Integrating the above equation gms + 1] with respect ta, we get

t+1 t+1 G
/ G[v(y,t+1)—v(y,t)]dy+/ v(x, t)dt :/ / ———dydr.
2 t t 2l-v(, 1)

By the mean value theorem, we know that there exist> € [z, r + 1] such that
G

—dy.

1 - U()U %‘2)

Lettingr — +o00 on the both sides of the above equality, we obtain

G
= —  d ,
e /gl—w(w Y

/ Glo(y, 1 +1) —v(y. )ldy + v(x, §1) = /
2 2

which implies that

_Aw(X):l—ij‘[;)(_x)’ x € f2.

Summarizing the above discussion, we complete the proof of Lemma 2.7.
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PROOF OFTHEOREM 2.1. LetA1(£2) be the first eigenvalue of the eigenvalue Prob-
lem (1.3), andp1(x) the corresponding eigenfunction which is chosen so¢hét) > 0 for
x € £2.

First, we prove (i) of Theorem 2.1. To this end, multiplying the differential equation in
Problem (2.1) byp1(x) and then integrating of2, we obtain

Al(.Q)/ u(pldx=/ up(pldx—i—/ ulpidx .
Q Q Q

Employing the conclusion of Lemma 2.6, we deduce that

(p—q)/(1—q) 1/(p—q)
2(82)c / 1-g¢g

2.5 1- Ppoidx <0 and ¢c=|—— .
(2-5) [ <C”+Cq> ] Qu(plx_ ‘ <P—1

Suppose thai(x) be a solution of Problem (2.1). We then have
(2.6) / u?p1dx > 0.
2

It follows from (2.5) and (2.6) that
r(2) > P4 a7t

This implies that Problem (2.1) has no solution for

1—¢ (r=D/(p—9) 1—¢ (g=1)/(p—q)
M) < | — L .
p—1 p—1

The proof of Theorem 2.1(i) is completed.
Next, we are going to prove (ii) of Theorem 2.1. Since @ < 1, it is easy to see that

—A(ep1(x)) = er(2)g1(x) < P (x) + e7¢ (x)
for all ¢ > 0 small enough. Hencegy; (x) is a sub-solution of Problem (2.1), provided that

is sufficiently small. On the other hand, by the assumptigs2) > Co(n) and Lemma 2.7,
we know that there exists a functien(x) satisfying 0< w(x) < 1/2, w(x)|s = 0 and

—Aw(x) = =1+ w) + wix) + - > wl(x) + wl(x).

1—wk)
This means thaiv(x) is a super-solution of Problem (2.1). Moreover, we can cheose0
so small that

ep1(x) < w(x).
Now, by the sub-super-solution method (see [24]), we know that Problem (2.1) has at least
one solutioru(x), provided thak1(£2) > Co(n) andeg1(x) < u(x) < w(x). This completes
the proof of Theorem 2.1(ii).

REMARK 2.11. The conclusion (ii) of Theorem 2.1 can be generalized to a little more
complicated problem such as
—Au= f(u), x €2,
2.7) u>0, x € £2,
u = O, X € 89 N
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wheref (s) is a continuous function defined ¢@, +o0) satisfying
(F1)  limg_ o+ f(s)/s > 11(£2), and
(F2) there exist two positive constant$ and M> such that

f(s) < M1s? + Mps? for s>0, O0<g<l<p.

Indeed, (F1) implies thatep1(x) is a sub-solution of Problem (2.7) faer sufficiently
small. Hence, to obtain a solution of Problem (2.7), it suffices to find a super-sotution
of Problem (2.7) with propertyo;(x) < w(x). To this end, we consider the problem

—Aw = Miw?P + Maw?, x e 82,
(2.8) w >0, x e,
w=0, x €052.

It follows from (F») that any solution of Problem (2.8) is a super-solution of Problem (2.7).
To solve Problem (2.8), we transform

1Y(p=4)
M 12— /20—
w(x) = <_M2) W),y = MYV A/ 2]
1

and set
U(.x) — h(sz(Pfl)/{z(pfq)}Ml—(l—q)/{z(p—q)}y) — h(x) ,
& = {y = MYV R0y 0/Rr-a) gy
Then it is easy to check that Preloh (2.8) is transformed into
—Av=v" +v7, yef2,
(2.9) v(y) >0, y€S2,
v(y) =0, yed.
By Theorem 2.1(ii), we know that if1($2) > Co(n), then Problem (2.9) has at least one
solutionv(x). Consequently, Problem (2.8) has at least one solutior) under the same
condition. Since\1(2) = Mz_(p_l)/(”_")Ml_(l_")/(”_")kl(.{z), we conclude that Problem
(2.8) has at least one solutian(x) providedi1(£2) > Co(n)Mé”’l)/(p’q)Mil’q)/(”’q).

Moreover, by choosing > 0 possibly smaller, we havep;(x) < w(x). Thus, we have
proved

THEOREM 2.12. Let (F1) and (F2) hold, and 11(2) > Co(myMy’ /P~
M{l_")/(”_q). Then Problem (2.7) has at least one solution.

REMARK 2.13. Inthe case of (s) = s” + As?, Problem (2.7) was studied by Am-
brosetti,Brezis and Cerami in [1], who showed the following result.

CONCLUSION 2.14. There exists a positive number A such that Problem (2.7) with
f(s) =sP 4+ As? hasat least one solution for 0 < A < A, but hasno solution for » > A.

Using Theorem 2.12 and the method employed to prove Theorem 2.1(i) in Section 2, we
can estimatet as follows.
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COROLLARY 2.15. For the number A in Conclusion 2.14, the following estimate is

valid L L
)\,]_(Q) (p—q)/(p=1) A= )\‘1(9) (p—q)/(p=1)
Co(n) — T \er et

wherec =[(1—¢q)/(p — 1Y P9 and 0 < qg<1l<np.

3

3. Elliptic Equation on Unbounded Domains. Let 2 € R" be an arbitrary un-
bounded domain. We now introduce the following

DerINITION 3.1. £2 is calledsmooth if there exists a sequence of bounded domains
{£2;} with C2 boundary such that

() $i41D 82,

(i) £2=U72;%.

Let BX(y) = {x € R* | |x — y| < a} denote the ball irR* with radiusa and center.
It is not difficult to see that an infinite cylindrical domaili, = B{;—l(O) X (—00, +00), a
semi-infinite cylindrical domaid1;” = B! (0) U (Bg—l(O) x [0, +00)) and an infinite strip
R"1 x (a, b) are smooth domains.

DEFINITION 3.2. Let§2 be an unbounded domain. Letx) denote the outward unit
normal tod 2 at a pointx € 952. £2 is called arEsteban-Lions domain if there exists an unit
vectorX € R" such thaii(x) - X > Oandn(x)- X Z0o0nas2.

Obviously, the half spac®” = {x € R" | x = (x1,...,X,), x, > 0} and the semi-
infinite cylindrical domain/7; are Esteban-Lions domains.

DEFINITION 3.3. Lets2 be an unbounded domain. Then theadius p(£2) of £2 is
defined by
p(£2) = supla | there is a balB,(y) such thatB,(y) C £2}.

REMARK 3.4. Lets2 be a bounded domain iR”, and set2¢ = R" \ 2. Then itis
easy to see thai(2°) = +oo. If £2,_1 is a bounded domain iR" ! and2 = £2,_1 x
(a, +00), thenp(£2) < +oo.

An important result in [9] implies that there is a strong relation between the finiteness of
p(£2) and the validity of the Poincare inequality. More precisely, we have

CoNcLUSION 3.5. Thereexists a constant C(£2) such that
ull 22y < CE)Vull 2y foral ue HY(2),
if and only if p(£2) < +o0.

Based on Conclusion 3.5, if(£2) < +o0, then we can define

/|Vu|2dx
rM(2)= inf 2

1
u€Hy(2) / Mzdx
u#0
2
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It is well-known that if 2 is a bounded domain, then (£2) can always be attained by a
positive function inHol(Q) and is just the first eigenvalue of the Laplace operataf2onith
zero Dirichlet data. However, for Esteban-Lions domain&?2) cannot be achieved by any
function in Hol(Q) due to a result of Esteban and Lions [8].

From now on, unless specified, we assume fhas a smooth unbounded domain and
consider the problem

—Au=ul+u?, xes2,
(3.1 u>0, X €,
u=20, x €082,

whereO0< g <1< p.
The main result we prove in this section is

THEOREM 3.6. Let Co(n) be the same constant as that in Theorem 2.1(ii), ¢ = [(1 —
q)/(p — 1)1 (P=9)_ Then the following hold.

(i) Problem (3.1) has at least one solution on domains such that p(£2) < +o0o0 and
21(82) = Co(n).

(i)  Problem (3.1) hasno solution on domainssuchthat p (§2) = 400, 0r p(£2) < +o0
and 21(2) < ¢P~1 4 171,

To understand an important role played by the sub-linear igrin Problem (3.1), we
compare Problem (3.1) with the following problem

—Au=ufl, xef2,
(3.2 u>0, xef,
u=20, x €082,

and examine the following examples.

ExampLE 3.7. Itis well-known that if2 = R" andp > (n + 2)/(n — 2), then
Problem (3.2) has infinitely many solutions. However, the presence of the sub-linearfterm
yields an nonexistence result for Problem (3.1), sin¢R") = +o0. Hence, the appearance
of the sub-linear term? destroys the structure of the set of solutions for Problem (3.2).

ExampLE 3.8. Itis known from [8] that if2 is an Esteban-Lions domain, then Prob-
lem (3.2) has no solution. However, the conditions imposed in Theorem 3.1(i) can be satisfied
by the Esteban-Lions domaif, for sufficiently smalla. So, the presence of the sub-linear
termu? yields an existence result for Problem (3.1) on this kind of domains, and also sub-
stantially changes the structure of the set of solutions for Problem (3.2).

Now, we are going to state and prove some lemmas needed in the proof of Theorem 3.6.

LEMMA 3.9. Assume that 2 be a bounded domain and that A1(£2) > Co(n). Then
Problem (3.1) has a minimal solution u™ (x) in the sense that any solution u(x) of Problem
(3.1) satisfiesu™ (x) < u(x) for all x € £2. Moreover, 0 < u™(x) < 1/2.

The proof of this lemma is similar to that of lemma 3.4 in [1], so we omit it here.
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LEMMA 3.10. Supposethat £2;,i = 1, 2, be two bounded domains satisfying 21 C
22, and u7' (x) and u%' (x) be the minimal solution of Problem (3.1) with respect to £2; and
22, respectively. Then u' (x) > uf' (x) for any x € £2;.

PrROOF.  Evidently,u% (x) is a super-solution of Problem (3.1) with respect2g. At
the same timesg1(x) is a sub-solution of Problem (3.1) with respect2g. Furthermore, by
choosinge possibly smaller, we see thap; (x) < u' (x) for x € £21. Thus, by the sub-super
solution method, we know that Problem (3.1) with respecg?idias a solutiom (x) satisfying
ep1(x) < u(x) < uf (x). Itfollows from Lemma 3.9 and the strong maximum principle that

ui'(x) <u(x) <uy(x) for x e 2.
This is just the desired conclusion.

PROOF OFTHEOREM 3.6. (i) Sinces2 is a smooth unbounded domain, we know
by the definition 3.1 that there exists a sequenc€®bounded domaing;}7°, such that
£2; C Qi1 fori = 1,2,..., and Uj’il 2; = 2. Furthermore, by the assumption that
A1(82) > Co(n) and the monotonicity of1 (£2;) with respect ta?;, we haver1(£2;) > Co(n).

It then follows from Lemma 3.9 and Lemma 3.10 that the problem
—Au=uf +ul, xe€s2,
u>0, x € £2;,
u=0, X € 082;

has a minimal solution}" (x) such that

(P1)  u"(x) <uf’(x), forany x € £2;,

(P2) O<ul"(x)<1/2, foranyx e £2;.

By (P7) and the regularity theory of elliptic equations, we know from the diagonal conver-
gence method that, up to a sub-sequefe®(x)} converges uniformly in any bounded sub-
domain ofs2 to a functionu (x) which satisfies
—Au=uf +ul, xef2,
{ u=0~0, x €052.
Moreover, it follows from(Py) thatu(x) > O forx € £2. Henceu(x) is a solution of Problem
(3.1). The proof of Theorem 3.6(i) is completed.

(i) By the assumption thai(£2) = 400, Or p(£2) < +o00 andr1(2) < ¢P~1 4471,

we know that there exists a bounded dom@mc §2 such that

M(2) < M(R0) < P H 417
We now consider the Dirichlet problem

—Av=vP+1v?, x €,
(3.3) v>0, x € 20,

v=20, x €0820.
Then it follows from Theorem 2.1(i) that Problem (3.3) has no solution. On the other hand, if
Problem (3.1) has at least one solutiaw), then we can conclude from the sub-super solution
method that Problem (3.3) haslaast one solution. Indeed, fer> 0 small enoughgg1(x)
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andu(x) are sub- and super-solution of Problem (3.3) satisfyipg(x) < u(x). Thisis a
contradiction, and hence €hrem 3.6(ii) is proved.

4. Parabolic Equation on Bounded Domains. Let 2 C R" be a bounded domain.
We consider the following initial-boundary vadiproblem of the semi-linear parabolic equa-
tion

9
a—l:—Auzup+uq, x,))e 2 x(0,7T),

(4.1) u(x, 1) =0, (x.1) €32 x (0, T),
u(x,0) = uop(x), x € 82,

where 0< ¢ < 1 < p andug(x) > 0.
Problems similar to (4.1) was studied byafgenave, Diekstein and Escobedo in [6].
Among other things, the following results were shown in their paper.

THEOREM 4.1 ([6]). For any nonnegative function ug(x) € L*°(£2), Problem (4.1)
has a unique positive solution u(x, ) defined on a maximal time interval [0, 7,,]. Moreover,
the following properties hold:

() u(x,t) e L2 x (0, 7)) forall T < T,,.
(i) T, > To, whereTp = 1/(MP + M9), and M = ||ug(x)||r> + 1.
@iii)  Ju(x,t)] < M for all (x,r) € 2 x [0, To].
(iv) Either T,, = +oo, 0r €lse T, < 400, and ||u(t)||x~@2) — +00 ast — T,

THEOREM 4.2 ([6]). Let ug(x) < vo(x). Suppose that u(x, t) be a sub-solution and
that v(x, r) be a positive super-solution of Problem (4.1) on some interval (0, T') satis-
fying u(x,0) = uo(x) and v(x,0) = vo(x). If u(x,t) and v(x,t) are sufficiently regu-
lar (i.e., u(x,7),v(x,1) € L®(2 x (0,T)) N C(0, T1; L2(£2)) N L1, ((0, T); HX(£2)) N
W12, T);: H-1(2))), and u(x, 1) < v(x,t) for all (x,1) € 32 x (0, T), thenu(x, 1) <
v(x,t) forall (x,1) € 2 x [0, T).

With the help of Theorem 4.1, Theorem 4.2 and results proved in Section 2, we now
prove

THEOREM 4.3. Let 11(£2) be the first eigenvalue of the eigenvalue Problem (1.3),
Co(n) be the same constant as that in Theorem 2.1(ii) and ¢ = (1 — ¢)/(p — 1)V @=D,
Then the following hold:

(i) 1fr1(2) < P~ + 71, then Problem (4.1) has no positive global solution for
any nonnegative initial data ug(x).

@iy 1f X1(82) > Co(n), then Problem (4.1) has a positive global solution for ug(x)
small enough, while has no positive global solution for ug(x) large enough.

PrRoOOF (i) Multiplying the differential equation in Problem (4.1) lpy (x) and then
integrating ons2 with respect toc, we obtain

d
4.2 —/ u(pldx+A1(!2)/ u(pldx=/ updx+/ ulprdx .
dr Jo 17, Q 17,
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Using Lemma 2.6, we then have

)\‘1(9) (P*Q)/(lffﬁ
4.3 A1(82 dx < 991d - Ppidx .
(4.3) 1( )/Qufﬂl X_/;ZM @1 x+<c1’—1+c‘i—1) /;214 p1dx

Employing (4.2), (4.3) and Jensen’s inequality, we get

d M(£2) P
By the assumption that; (£2) < ¢?~1 4 ¢7~1, we see that
(r—q)/(1—q)
_ r1(£2)
Sety(r) = [, upidx. Then, from (4.4) and (4.5), we have
dy(1)
— > MyP(@®).
7 =My (1)

Integrating this inequality, we obtain

1 Y(p-D
(4.6) y(®) = [ i ] ; yo=/ uoprdx .
yo 7= (p—DMt Q

Let T,f} = yé”’/((p — DHM). It follows from (4.6) that there exists a maximal time
T, < TS such that

lim y(t) = +o00.

t—=>1nm
Consequently, we obtain

lim maxu(x,t) = +oc0.
t—Ty, xe2

This completes the proof of Theorem 4.3(j).

(i) It is evident that Problem (4.1) has no positive global solution ifpx) large
enough. Hence, we have only to prove that Problem (4.1) has a global solution under the
condition thatA1(£2) > Co(n) andug(x) is small enough. To this end, we denoteddy, ¢)

a local solution of Problem (4.1). Singg(£2) > Cp(n), we know from Theorem 2.1(ii) that
the problem

—Av=vP+1v?, xef2,
v>0, x €,
v=20, x €082

has at least one solutian(x). It is obvious thatv(x) is a super-solution of Problem (4.1),
provided thatg(x) < v(x). By Theorem 4.2, we have

O<u(x,t) <v(x) forall (x,1) e £ x (0,4+00).

Consequentlyy (x, t) exists globally. This completes the proof of Theorem 4.3(ii).
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5. Cauchy Problem for Parabolic Equation. In this section, we will consider the
Cauchy problem

B]
(5.1) :8—M—Au=u”+u", (x,1) e R" x (0,T),

t
u(x,0) =ug(x) >0, xeR".

Here we only supposg, ¢ > 0.
It is well-known that the following Cauchy problem

(5.2) {8—M—Au=u”, (x,1) € R" x (0,T),

ot
u(x,0 =ug(x) >0, xeR"

has been extensively studied since 1966, from the viewpoint of critical exponents of Fujita’s
type. Most of results on Problem (5.2) are collected in two excellent survey papers [10] and
[11]. Roughly speaking, there are two critical exponemts= 1 andp., = 1+ 2/n such

that the following holds.

THEOREM 5.1. (i) If 0 < p < p,,, then any solution of Problem (5.2) exists glob-
ally.

(i) If pey < p < pe,, then any nontrivial solution of Problem (5.2) blows up in finite
time.

(i) If p > pe,, then Problem (5.2) hasa global solution for small initial data, whereas
has no nontrivial global solution for largeinitial data.

Theorem 5.1(i) is proved by Escobedo and Herrero [12]; (ii) and (iii) exceps ferp,,
were proved by Fujita [13]; the result with respecpte= p., was obtained by several authors
in [14-17].

Based on Theorem 5.1, we introduce the following definition.

DEFINITION 5.2. The exponenp is said to belong to the global existence case if
0< p < pe OFrp > pe,, and to belong to the blow up casepif, < p < pe,.

Now, we turn to Problem (5.1). To our knowledge, there is no result for Problem (5.1)
about the exponent of Fujita’s type. Here, we try to give such a result. To this end, we denote

a=min{p,q}, B=maxp,q}.
Using the above notation, we now prove

THEOREM 5.3. (i) If1 < « < 1+ 2/n, then any nontrivial solution of Problem
(5.1) blows up in finite time.

(i) Ifa > 14 2/n,thenProblem (5.1) hasa global solution for small initial data and
has no global solution for largeinitial data.

PrRoOOFR () Ifl <a<1+4+2/n,theneitherl< p<1+4+2/n,0orl<qg <1+2/n.
It follows from the comparison principle and Theorem 5.1(ii) that any nontrivial solution of
Problem (5.1) blows up in finite time.
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(i) If « > 1+ 2/n, Problem (5.1) has no global solution for large initial data by the
comparison principle together with Theorem 5.1(iii). In order to prove the global existence,
we look for a global super-solution of the form

Ux, 1) = A(L4 1)~ e FP/40+0)

whereA andy are positive numbers.
Itis easy to check thdl (x, ) is a super-solution of Problem (5.1) only if

—y+ n > AP L1+ ,)1+nypef(pfl)\x\2/{4(l+t)}
(5.3) 2
+ ATY(L 4 ) THY Ve DIP/(AD)

Without loss of generality, we may suppose that
g =a=min{p,q} > 1.
If we choosey = 1/(¢q — 1), then (5.3) becomes

L ArI g AR a0 (DI P/ AG)
(5.4) g—1 27
+ A9 1= (@=DIxP/{a+n)

Sincep > g > 1, (5.4) holds only if

1
(5.5) = s peara gy,
qg—1 2
By the assumption that = « > 1 4 2/n, we have
1 n
———+=->0.
qg—1 + 2 ~

This implies that (5.5) is in fact valid fod small enough. Consequently, Problem (5.1) has a
global solution for small initial data. The proof of Theorem 5.3 is completed.

A natural question which arises from Theorem 5.3 is: What would happerta G< 17?
The case when, 8 € (0, 1] is simple. In fact, by employing the same method as that
used by Escobdo and Herrero in [12], one can easily prove

THEOREM 5.4. Ifa, 8 € (0, 1], then any solution of Problem (5.1) exists globally.

Theorems 5.3 and 5.4 seem to tell us that if bpthndg belong to the global existence
case, Problem (5.1) should have a global solutideast for small initial data. However, this
is not always the case. Fare (0, 1] andg > 1+ 2/n, both p andg belong to the global
existence case. Accordingly, it is reasonable to conjecture that Problem (5.1) should have a
global solution at least for small initial data due to Theorems 5.3 and 5.4. However, this is not
true. Indeed, we have the following blowing-up result.

THEOREM 5.5. Ifa € (0,1]and 8 > 1, thenany nontrivial solution of Problem (5.1)
blows up in finite time.
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If 0 < @ < 1, then the nonlinearity” + u? is singular at 0 in the sense that

it is not Lipschitz continuous. Hence the local existence result of Problem (5.1) is also to be
proved. Accordingly, we preeed the proof in two steps.
Sep 1. Forany0< ug(x) € L®(R")NH(R"), Problem (5.1) has a positive solution
defined on a maximal time intervgd, T,,]. Moreover,T,, satisfies

T

>7, M:u oo (RN 1
Z M T M loll oo gy +

Let B,(0) = {x € R" | |x| < r} be an open ballyp, be the characteristic function of
B, (0),i.e.,

_J1, xe€B(0),
XB, = {07

x & B-(0).
We consider the initial-boundary value problem
duy p q
a7 —Aup =ur +uy, (x,1) € B-(0) x (0, T),
(5.6) w(x.1) =0, (x.1) € 3B, (0) x (0, T),
Mr(x’ O) = MO(X)XBr ?

x € B, (0).

properties hold:

It follows from Theorem 4.1 together with Theorem 4.2 that Problem (5.6) has a unique
positive solutionu, (x, t) defined on a maximal interva0, 7,)). In addition, the following

(@ wur(x,t) €e L2°(B,(0) x (0,T)) forall T <T,,.
(b) T, >To=1/(MP + M%) forall r > 0.

(©) uy(x,t) > us(x,t) foranyr > s, and(x, t) € By(0) x (0, Tp).
(d) O<uy(x,t) <M forall (x,t) € B-(0) x [0, To].

By the properties (c), (d) and the regularity theory of parabolic equations, we conclude

that, up to a subsequeneg/x, r) converges uniformly to a functian(x, r) on any bounded
domaing2 C R" asr — +oo. In addition,u(x, t) satisfies

d

a—L;—Auzu”—i—uq, (x,1) € R" x (0, Tp)
u(x,t) >0, (x,1) € R" x (0, Tp) ,
u(x,0) = uo(x),

X €R".
Henceu(x, 1) is a local solution of Problem (5.1). The conclusion stated in Step 1 is proved.
Sep 2. Ifa € (0,1] andB > 1, then any nontrivial solution of Problem (5.1) blows
up in finite time.
Choose2p C R" to be a bounded domain satisfying
(H1)

AM(20) < (L—q)/(p — )P~ V=D 4 (1 - ¢q)/(p — 1)~ V/P=D and
(H2)

there exists at least one poif € 2o such thatg(x) # 0.
Let xq, be the characteristic function @gg. We prove the conclusion of Step 2 by
contradiction. To this end, assume that Problem (5.1) has a global solution). It is
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obvious thau(x, t) is a super-solution of the initial-boundary value problem

J
—U—szv”+vq, (x,1) € 20 x (0, T),

ot
®.7) v(x, 1) =0, (x,1) € 9820 x (0, T),
v(x,0) =uo(x)xe, X €S20.

It follows from Theorems 4.1 and 4.2 that Problem (5.7) has a global solution. On the other
hand, it follows from(H1) and Theorem 4.3(i) that Problem (5.7) has no global solution,
which is a contradiction.

6. Parabolic Equation on Unbounded Domains. Let £2 c R" be a smooth un-
bounded domain in the sense of Definition 3.1. We consider the initial-boundary value prob-
lem

9
a—l:—Auzup+uq, (x.1) € 2 x (0. T),

(6.1) u(x, 1) =0, (x.1) €92 x (0, T),
u(x,0 =uo(x) >0, xe$,

where0<g¢g <1< p.
Using the notation introduced in Section 3, the main result of this section can be stated
as

THEOREM 6.1. (i) If p(£2) = 400, Or p(2) < +oc and 11(2) < ¢P~1 4 471,
then any solution of Problem (6.1) blows up in finite time, and here ¢ = ((1 — ¢)/(p —
) alan’l

@iy Ifp(2) < +oocandr1(£2) > Co(n), then Problem (6.1) has a global solution for
small initial data uo(x) and has no global solution for largeinitial data ug(x).

Since the proof of Theorem 6.1(i) is similar to that of Theorem 5.4, and the proof of
Theorem 6.1(ii) is similar to that of Theorem 3.1(i), we omit them.
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