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POSITIVE SOLUTIONS OF ELLIPTIC AND PARABOLIC EQUATIONS
WITH CONVEX-CONCAVE NONLINEARITIES

QIUYI DAI AND YONGGENGGU
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Abstract. We consider, respectively, the Dirichlet problem and the initial-boundary
value problem of elliptic and parabolic equations with two power nonlinearities. We find that
these problems are closely related to the so-called quenching problem. We obtain the existence
and nonexistence of positive solutions to these problems on bounded and unbounded domains,
by using the results of quenching problem and sub-super solution method.

1. Introduction. LetΩ be an arbitrary domain in Euclideann-spaceRn. We consider
the Dirichlet problem of the semi-linear elliptic equation{−�u = up + uq , x ∈ Ω ,

u = 0 , x ∈ ∂Ω ,
(1.1)

and the initial-boundary value problem of its parabolic version


∂u

∂t
− �u = up + uq , (x, t) ∈ Ω × (0, T ) ,

u = 0 , (x, t) ∈ ∂Ω × (0, T ) ,

u(x, 0) = u0(x) , x ∈ Ω .

(1.2)

In most cases, we assume that 0≤ q < 1 < p. WhenΩ is a bounded domain, problems
similar to (1.1) were studied by many authors. If 1≤ q < p ≤ (n + 2)/(n − 2), we refer to
[18–20] and the references cited therein. If 0≤ q < 1 < p, we refer to Ambrosetti, Brezis
and Cerami [1], Boccard, Escobedo and Peral [2], Jin [3], Bartsch and Willem [4], Cabre
and Majer [5] and so on. Problems similar to (1.2) were studied by Cazenave, Dickstein and
Escobedo [6]. Compared to these circumstances, there are few results for Problems (1.1)
and (1.2) on unbounded domains. This motivates us to study Problems (1.1) and (1.2) on
unbounded domains in the present paper. Our main focus is the existence and nonexistence
of positive solutions to Problem (1.1), as well as the existence and nonexistence of global
solutions to Problem (1.2). However, we find that to accomplish this task, some new results
for Problems (1.1) and (1.2) on bounded domains are needed. Accordingly, we have to first
revisit Problems (1.1) and (1.2) on bounded domains.

The paper is organized as follows. In Section 2, we will study Problem (1.1) on bounded
domains in the case 0≤ q < 1 < p and show that there exist two positive numbersa∗ and
a∗ such that Problem (1.1) has at least one positive solution forλ1(Ω) ≥ a∗, whereas has
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no positive solution forλ1(Ω) < a∗. Here,λ1(Ω) is the first eigenvalue of the eigenvalue
problem {−�ϕ = λϕ , x ∈ Ω ,

ϕ = 0 , x ∈ ∂Ω .
(1.3)

We emphasis here that our results differ from these available so far; for details we refer to
Conclusion 2.3 and Example 2.4 in Section 2. In Section 3, we will study Problem (1.1) on
unbounded domains and prove that if the in-radius of the domainΩ is infinite, then Problem
(1.1) has no positive solution; while, if the in-radius of the domainΩ is finite, then Problem
(1.1) has at least one positive solution under some suitable conditions. It is worth pointing out
that these conditions may be satisfied by some Esteban-Lions domains. Hence, the presence
of the sub-linear termuq tremendously changes the structure of the solution set of Problem
(1.1) (see Example 3.8). In Section 4, we will study Problem (1.2) on bounded domains and
prove that it has a global solution for some suitable initial valueu0(x) provided thatλ1(Ω) is
large enough, while it has no global solution for any nonnegative initial valueu0(x) if λ1(Ω)

is small enough. This result is different to some extent from the result given in [6]. In Section
5, we will study Problem (1.2) withΩ = Rn, i.e., the Cauchy problem. The main contribution
of this section is a computation of the critical exponent of Fujita’s type. In Section 6, we state
a result for Problem (1.2) on general unbounded domains.

2. Elliptic Equation on Bounded Domains. Let Ω ⊆ Rn be a bounded domain. In
this section, we investigate the following Dirichlet problem


−�u = up + uq , x ∈ Ω ,

u > 0 , x ∈ Ω ,

u = 0 , x ∈ ∂Ω .

(2.1)

Since the case of 1≤ p, q ≤ (n + 2)/(n − 2) is well studied in recent years, we are mainly
interested in the case 0≤ q < 1 < p. Letλ1(Ω) denote the first eigenvalue of the eigenvalue
Problem (1.3). The main result of this section can be stated as

THEOREM 2.1. (i) If λ1(Ω) < [(1 − q)/(p − 1)](p−1)/(p−q) + [(1 − q)/(p −
1)](q−1)/(p−q), then Problem (2.1) has no solution.

(ii) If λ1(Ω) ≥ C0(n), then Problem (2.1) has at least one solution, where C0(n) =
16(n/πe)n/4(ωn−1/n)1/2+8(2/π)n/2ωn−1Γ (n/2), ωn−1 is the area of unit sphere in Rn and
Γ (x) is the Gamma function.

Before proving Theorem 2.1, some remarks are in order.

REMARK 2.2. The nonlinear termg(u) = up + uq in the differential equation of
Problem (2.1) satisfies the conditions imposed in [3]. Hence, a typical result obtained in [3]
in the present context is

CONCLUSION 2.3 ([3]). There exists a positive number Λ(n, p, q) depending only on
n, p and q such that Problem (2.1) has at least one solution, provided that |Ω | < Λ(n, p, q).
Here |Ω | denotes Lebesgue’s measure of Ω .
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It is worth pointing out that there is a significant difference between the Conclusion 2.3
and our result Theorem 2.1(ii). This may be illustrated by the following example.

EXAMPLE 2.4. LetBn−1
a (0) denote the ball inRn−1 with radiusa and centero. Let

µ1(a) be the first eigenvalue of the eigenvalue problem{
�ϕ + µϕ = 0 , x ∈ Bn−1

a (0) ,

ϕ = 0 , x ∈ ∂Bn−1
a (0) .

(2.2)

We choosea0 so small thatµ1(a0) ≥ C0(n) and setΩ = Bn−1
a0

× (0, b) in Problem (2.1).
It is obvious that|Ω | > Λ(n, p, q) for b large enough, since|Ω | = |Ba0| × b → +∞ as
b → +∞. This implies that Conclusion 2.3 cannot apply to verify this example for largeb.
However, by a separation variable method, we can easily see that

λ1(Ω) = µ(a0) + π2

b2
> C0(n) for all b > 0 .

Hence, we may apply Theorem 2.1(ii) to obtain one solution of Problem (2.1) for anyb > 0.

REMARK 2.5. In the case ofλ1(Ω) ≥ C0(n) and 1 < p ≤ (n + 2)/(n − 2), one
can prove that Problem (2.1) has at least two solutions by an argument similar to that used in
Section 4 of [1]. The sub-linear termuq plays an important role in finding the second solution
of Problem (2.1).

To prove Theorem 2.1, some lemmas are needed. First, we prove the following

LEMMA 2.6. Let λ be a positive number, and 0 ≤ q < 1 < p. Then we have

λz ≤ zq +
(

λc

cp + cq

)(p−q)/(1−q)

zp for all z ≥ 0 ,

where c = [(1 − q)/(p − 1)]1/(p−q).

PROOF. Since the conclusion of Lemma 2.6 is obviously valid forz = 0, we have only
to prove Lemma 2.6 forz > 0. From now on, let us assume thatz > 0 and set

F(z) = (zp + ηzq)/(λz) ,

whereη is a positive real number to be determined later.
Since

F ′(z) = (p − 1)zp−q − η(1 − q)zq

λz2
,

we can easily find that

min
z>0

F(z) = cp + cq

λc
, c =

(
1 − q

p − 1

)1/(p−q)

.

Moreover, this minimum is attained atz = cη1/(p−q).
Consequently,

zp + ηzq

λz
≥ cp + cq

λc
η(p−1)(p−q) for all z > 0 ,
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that is,

λz ≤ λcη(1−q)/(p−q)

cp + cq
zq + λc

cp + cq

(
1

η

)(p−1)/(p−q)

zp .

Choosingη suitably so that

λcη(1−q)/(p−q)

cp + cq
= 1 ,

we get

λz ≤ zq +
[

λc

cp + cq

](p−q)/(1−q)

zp for all z > 0 .

This completes the proof of Lemma 2.6.

Next, we consider the initial-boundary value problem


∂v

∂t
− �v = 1

1 − v
, (x, t) ∈ Ω × (0, T ) ,

v = 0 , (x, t) ∈ ∂Ω × (0, T ) ,

v(x, 0) = 0 , x ∈ Ω ,

(2.3)

and its elliptic version 
−�w = 1

1 − w
, x ∈ Ω ,

w = 0 , x ∈ ∂Ω .
(2.4)

Problem (2.3) has its own interest. It is the so-called quenching problem and has been
studied by many authors since 1976 (see [25]). For the most recent progresses, we refer to
Souplet [7], Dai and Gu [21], Dai and Zeng [22] and Dai and Gu [23]. Since previous results
for Problems (2.3) and (2.4) do not satisfy the present need, we shall give some results of
Problems (2.3) and (2.4) here. The crucial result needed in the proof of Theorem 2.1 is

LEMMA 2.7. Let C0(n) be the same constant as that in Theorem 2.1(ii). If λ1(Ω) ≥
C0(n), then Problem (2.4) has at least one classical solution w(x). Moreover, w(x) satisfies
0 < w(x) ≤ 1/2 for all x ∈ Ω .

To prove Lemma 2.7, we will need the following lemma.

LEMMA 2.8. Let (et�)t≥0 be the heat semigroup on Ω with the Dirichlet boundary
condition, and |et�|∞ = ||et�||L (L∞(Ω)) denote the norm of et� as an operator from L∞(Ω)

into itself. Let λ1(Ω) be the first eigenvalue of the eigenvalue Problem (1.3). Then the estimate

|et�|∞ ≤ 1

16
C0(n)e−λ1(Ω)t/4

is valid. Here C0(n) is the same constant as that in Lemma 2.7.

REMARK 2.9. Lemma 2.8 is essentially proved in Souplet [7] except an explicit for-
mula ofC0(n). To obtain an explicit expression of the constantC0(n) and for the completeness
of this paper, we give a proof of Lemma 2.8 here.
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PROOF OFLEMMA 2.8. LetI be an arbitrary function defined onΩ whose sup-norm
equals 1. For fixedt > 0 andx ∈ Ω , let B(x, ρ) = {y ∈ Rn; |x − y| < ρ} andω =
Ω ∩ B(x, ρ). If we denote byIω andIΩ\ω the restrictions ofI onω andΩ \ ω respectively,
thenet�I (x) can be written as

et�I (x) = et�Iω(x) + et�IΩ\ω(x) .

First, by the semigroup property and theL2-L∞ estimate, we have

|et�Iω|∞ ≤ (2πt)−n/4||et/2�Iω||L2(Ω)

≤ (2πt)−n/4||Iω||L2(Ω)e
−λ1(Ω)t/2

≤ (2π)−n/4(ωn−1/n)1/2(ρ2/t)n/4e−λ1(Ω)t/2 .

On the other hand, by comparing with the solution of the heat equation in the whole space,
we have

et�IΩ\ω(x) ≤ (4πt)−n/2
∫

|x−y|>ρ

e−|x−y|2/(4t )dy

= π−n/2
∫

|z|>ρ/
√

4t

e−|z|2dz = π−n/2ωn−1

∫ ∞

ρ/
√

4t

rn−1e−r2
dr

≤ 1

2
(2/π)n/2ωn−1Γ (n/2)e−ρ2/(8t ) .

By choosingρ = t
√

2λ1(Ω), it follows that

et�I (x) ≤ C1(n)(λ1(Ω)t)n/4e−λ1(Ω)t/2 + C2(n)e−λ1(Ω)t/4 ,

where

C1(n) = π−n/4(ωn−1/n)1/2 , C2(n) = 1

2
(2/n)n/2ωn−1Γ (n/2) .

Since

(λ1(Ω)t)n/4e−λ1(Ω)t/4 ≤ nn/4e−n/4 ,

we have

et�I (x) ≤ [C1(n)(n/e)n/4 + C2(n)]e−λ1(Ω)t/4

= 1

16
C0(n)e−λ1(Ω)t/4 .

Sincet andx are arbitrary, we finally get

|et�I |∞ ≤ 1

16
C0(n)e−λ1(Ω)t/4 .

This completes the proof of Lemma 2.8.

With Lemma 2.8 established, we can prove

LEMMA 2.10. If λ1(Ω) ≥ C0(n), then Problem (2.3) has a unique global solution
v(x, t) such that 0 < v(x, t) ≤ 1/2 for (x, t) ∈ Ω × (0,+∞).
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PROOF. It is easy to see that the mild solution of Problem (2.3) is

v(t) =
∫ t

0
e(t−s)� ds

1 − v(s)
.

To obtain a global solution of Problem (2.3), we consider the following iterative process

v0(t) = 0 ,

vk+1(t) =
∫ t

0
e(t−s)� ds

1 − vk(s)
,

and prove that the sequence{vk} converges to a global solution of Problem (2.3) ask → +∞,
provided thatλ1(Ω) ≥ C0(n). Obviously, this can be done by proving that

(i) vk+1 ≥ vk ≥ 0 for k ≥ 0 ,

(ii) 0 ≤ vk ≤ 1

2
for k ≥ 0 .

It is easy to see that (i) follows immediately from the comparison principle and the induc-
tion method. Hence, we have only to prove (ii). Now, we prove (ii) by the induction method.
Sincev0(t) = 0 < 1/2, it suffice to prove that ifvk(t) ≤ 1/2, thenvk+1(t) ≤ 1/2. Noting
that

vk+1(t) =
∫ t

0
e(t−s)� ds

1 − vk(s)
,

we have

vk+1(t) ≤ 2
∫ t

0
|e(t−s)�|∞ds .

By Lemma 2.8, we also have

vk+1(t) ≤ C0(n)

8

∫ t

0
e−λ1(Ω)(t−s)/4ds

= C0(n)

2λ1(Ω)
(1 − e−λ1(Ω)t/4) ≤ C0(n)

2λ1(Ω)
.

Taking the assumptionλ1(Ω) ≥ C0(n) into account, we finally obtain

vk+1(t) ≤ 1/2 .

This completes the proof of Lemma 2.10.

PROOF OFLEMMA 2.7. Letv(x, t) be the solution of Problem (2.3) obtained in Lemma
2.10. First, we may conclude thatv(x, t) is monotonically increasing with respect tot , and
that there exists a integrable functionw(x) such thatw(x) = limt→+∞ v(x, t) andw(x) = 0
for x ∈ ∂Ω .

Indeed, for anyh > 0, the auxiliary function

H(x, t) = v(x, t + h) − v(x, t)
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satisfies 


∂H

∂t
− �H = a(x, t)H , (x, t) ∈ Ω × (0,+∞) ,

H(x, t) = 0 , (x, t) ∈ ∂Ω × (0,+∞) ,

H(x, 0) ≥ 0 , x ∈ Ω .

Hence, the maximum principle of parabolic equations yields that

H(x, t) ≥ 0 .

This implies thatv(x, t) is monotonically increasing with respect tot , sinceh is arbitrary.
Moreover, noting that 0≤ v(x, t) ≤ 1/2, we know thatv(x, t) converges point-wisely on
Ω as t → +∞. Let w(x) = limt→+∞ v(x, t). It follows that w(x) is integrable onΩ .
Furthermore, we also havew(x)|∂Ω = 0, sincev(x, t) ≡ 0 for any(x, t) ∈ ∂Ω × (0,+∞).

Next, we conclude thatw(x) is a solution of Problem (2.4) and thus complete the proof
of Lemma 2.7.

Indeed, from the above discussion, we know thatw(x) is integrable and satisfies

0 ≤ w(x) ≤ 1/2 , w(x)|∂Ω = 0 .

So, we have to prove thatw(x) satisfies

−�w(x) = 1

1 − w(x)
, x ∈ Ω .

To this end, letG = G(x, y) be Green’s function of the Laplace operator onΩ with the zero
Dirichlet boundary condition. Multiplying the differential equation in Problem (2.3) byG and
then integrating onΩ , we obtain

d

dt

∫
Ω

Gv(y, t)dy + v(x, t) =
∫

Ω

G

1 − v(y, t)
dy .

Integrating the above equation on[t, t + 1] with respect tot , we get∫
Ω

G[v(y, t + 1) − v(y, t)]dy +
∫ t+1

t

v(x, τ )dτ =
∫ t+1

t

∫
Ω

G

1 − v(y, τ )
dydτ .

By the mean value theorem, we know that there existξ1, ξ2 ∈ [t, t + 1] such that∫
Ω

G[v(y, t + 1) − v(y, t)]dy + v(x, ξ1) =
∫

Ω

G

1 − v(y, ξ2)
dy .

Letting t → +∞ on the both sides of the above equality, we obtain

w(x) =
∫

Ω

G

1 − w(y)
dy ,

which implies that

−�w(x) = 1

1 − w(x)
, x ∈ Ω .

Summarizing the above discussion, we complete the proof of Lemma 2.7.
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PROOF OFTHEOREM 2.1. Letλ1(Ω) be the first eigenvalue of the eigenvalue Prob-
lem (1.3), andϕ1(x) the corresponding eigenfunction which is chosen so thatϕ1(x) > 0 for
x ∈ Ω .

First, we prove (i) of Theorem 2.1. To this end, multiplying the differential equation in
Problem (2.1) byϕ1(x) and then integrating onΩ , we obtain

λ1(Ω)

∫
Ω

uϕ1dx =
∫

Ω

upϕ1dx +
∫

Ω

uqϕ1dx .

Employing the conclusion of Lemma 2.6, we deduce that[
1 −

(
λ1(Ω)c

cp + cq

)(p−q)/(1−q)] ∫
Ω

upϕ1dx ≤ 0 and c =
(

1 − q

p − 1

)1/(p−q)

.(2.5)

Suppose thatu(x) be a solution of Problem (2.1). We then have∫
Ω

upϕ1dx > 0 .(2.6)

It follows from (2.5) and (2.6) that

λ1(Ω) ≥ cp−1 + cq−1 .

This implies that Problem (2.1) has no solution for

λ1(Ω) <

(
1 − q

p − 1

)(p−1)/(p−q)

+
(

1 − q

p − 1

)(q−1)/(p−q)

.

The proof of Theorem 2.1(i) is completed.
Next, we are going to prove (ii) of Theorem 2.1. Since 0≤ q < 1, it is easy to see that

−�(εϕ1(x)) = ελ1(Ω)ϕ1(x) ≤ εpϕ
p

1 (x) + εqϕ
q

1(x)

for all ε > 0 small enough. Hence,εϕ1(x) is a sub-solution of Problem (2.1), provided thatε

is sufficiently small. On the other hand, by the assumptionλ1(Ω) ≥ C0(n) and Lemma 2.7,
we know that there exists a functionw(x) satisfying 0≤ w(x) ≤ 1/2, w(x)|∂Ω = 0 and

−�w(x) = 1

1 − w(x)
= 1 + w(x) + w2(x) + · · · ≥ wp(x) + wq(x) .

This means thatw(x) is a super-solution of Problem (2.1). Moreover, we can chooseε > 0
so small that

εϕ1(x) ≤ w(x) .

Now, by the sub-super-solution method (see [24]), we know that Problem (2.1) has at least
one solutionu(x), provided thatλ1(Ω) ≥ C0(n) andεϕ1(x) ≤ u(x) ≤ w(x). This completes
the proof of Theorem 2.1(ii).

REMARK 2.11. The conclusion (ii) of Theorem 2.1 can be generalized to a little more
complicated problem such as


−�u = f (u) , x ∈ Ω ,

u > 0 , x ∈ Ω ,

u = 0 , x ∈ ∂Ω ,

(2.7)
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wheref (s) is a continuous function defined on[0,+∞) satisfying
(F1) lims→0+ f (s)/s > λ1(Ω), and
(F2) there exist two positive constantsM1 andM2 such that

f (s) ≤ M1s
p + M2s

q for s ≥ 0 , 0 ≤ q < 1 < p .

Indeed,(F1) implies thatεϕ1(x) is a sub-solution of Problem (2.7) forε sufficiently
small. Hence, to obtain a solution of Problem (2.7), it suffices to find a super-solutionw(x)

of Problem (2.7) with propertyεϕ1(x) ≤ w(x). To this end, we consider the problem


−�w = M1w
p + M2w

q , x ∈ Ω ,

w > 0 , x ∈ Ω ,

w = 0 , x ∈ ∂Ω .

(2.8)

It follows from (F2) that any solution of Problem (2.8) is a super-solution of Problem (2.7).
To solve Problem (2.8), we transform

w(x) =
(

M2

M1

)1/(p−q)

h(x) , y = M
(p−1)/{2(p−q)}
2 M

(1−q)/{2(p−q)}
1 x ,

and set

v(x) = h(M
−(p−1)/{2(p−q)}
2 M1

−(1−q)/{2(p−q)}y) = h(x) ,

Ω̃ = {y = M
(p−1)/{2(p−q)}
2 M

(1−q)/{2(p−q)}
1 x | x ∈ Ω} .

Then it is easy to check that Problem (2.8) is transformed into


−�v = vp + vq , y ∈ Ω̃ ,

v(y) > 0 , y ∈ Ω̃ ,

v(y) = 0 , y ∈ ∂Ω̃ .

(2.9)

By Theorem 2.1(ii), we know that ifλ1(Ω̃) ≥ C0(n), then Problem (2.9) has at least one
solutionv(x). Consequently, Problem (2.8) has at least one solutionw(x) under the same
condition. Sinceλ1(Ω̃) = M

−(p−1)/(p−q)

2 M
−(1−q)/(p−q)

1 λ1(Ω), we conclude that Problem

(2.8) has at least one solutionw(x) providedλ1(Ω) ≥ C0(n)M
(p−1)/(p−q)

2 M
(1−q)/(p−q)

1 .
Moreover, by choosingε > 0 possibly smaller, we haveεϕ1(x) ≤ w(x). Thus, we have
proved

THEOREM 2.12. Let (F1) and (F2) hold, and λ1(Ω) ≥ C0(n)M
(p−1)/(p−q)

2 ×
M

(1−q)/(p−q)
1 . Then Problem (2.7) has at least one solution.

REMARK 2.13. In the case off (s) = sp + λsq , Problem (2.7) was studied by Am-
brosetti,Brezis and Cerami in [1], who showed the following result.

CONCLUSION 2.14. There exists a positive number Λ such that Problem (2.7) with
f (s) = sp + λsq has at least one solution for 0 < λ ≤ Λ, but has no solution for λ > Λ.

Using Theorem 2.12 and the method employed to prove Theorem 2.1(i) in Section 2, we
can estimateΛ as follows.
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COROLLARY 2.15. For the number Λ in Conclusion 2.14, the following estimate is
valid (

λ1(Ω)

C0(n)

)(p−q)/(p−1)

≤ Λ ≤
(

λ1(Ω)

cp−1 + cq−1

)(p−q)/(p−1)

,

where c = [(1 − q)/(p − 1)]1/(p−q) and 0 ≤ q < 1 < p.

3. Elliptic Equation on Unbounded Domains. Let Ω ⊆ Rn be an arbitrary un-
bounded domain. We now introduce the following

DEFINITION 3.1. Ω is calledsmooth if there exists a sequence of bounded domains
{Ωi} with C2 boundary such that

(i) Ωi+1 ⊃ Ωi,

(ii) Ω = ⋃∞
i=1 Ωi.

Let Bk
a (y) = {x ∈ Rk | |x − y| ≤ a} denote the ball inRk with radiusa and centery.

It is not difficult to see that an infinite cylindrical domainΠa = Bn−1
a (0) × (−∞,+∞), a

semi-infinite cylindrical domainΠ+
a = Bn

a (0) ∪ (Bn−1
a (0) × [0,+∞)) and an infinite strip

Rn−1 × (a, b) are smooth domains.

DEFINITION 3.2. LetΩ be an unbounded domain. Letn(x) denote the outward unit
normal to∂Ω at a pointx ∈ ∂Ω . Ω is called anEsteban-Lions domain if there exists an unit
vectorX ∈ Rn such thatn(x) · X ≥ 0 andn(x) · X �≡ 0 on∂Ω .

Obviously, the half spaceRn+ = {x ∈ Rn | x = (x1, . . . , xn), xn ≥ 0} and the semi-
infinite cylindrical domainΠ+

a are Esteban-Lions domains.

DEFINITION 3.3. LetΩ be an unbounded domain. Then thein-radius ρ(Ω) of Ω is
defined by

ρ(Ω) = sup{a | there is a ballBa(y) such thatBa(y) ⊂ Ω} .

REMARK 3.4. LetΩ be a bounded domain inRn, and setΩc = Rn \ Ω . Then it is
easy to see thatρ(Ωc) = +∞. If Ωn−1 is a bounded domain inRn−1 andΩ = Ωn−1 ×
(a,+∞), thenρ(Ω) < +∞.

An important result in [9] implies that there is a strong relation between the finiteness of
ρ(Ω) and the validity of the Poincare inequality. More precisely, we have

CONCLUSION 3.5. There exists a constant C(Ω) such that

||u||L2(Ω) ≤ C(Ω)||∇u||L2(Ω) for all u ∈ H 1
0 (Ω) ,

if and only if ρ(Ω) < +∞.

Based on Conclusion 3.5, ifρ(Ω) < +∞, then we can define

λ1(Ω) = inf
u∈H1

0 (Ω)

u �≡0

∫
Ω

|∇u|2dx∫
Ω

u2dx

.
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It is well-known that ifΩ is a bounded domain, thenλ1(Ω) can always be attained by a
positive function inH 1

0 (Ω) and is just the first eigenvalue of the Laplace operator onΩ with
zero Dirichlet data. However, for Esteban-Lions domainsλ1(Ω) cannot be achieved by any
function inH 1

0 (Ω) due to a result of Esteban and Lions [8].
From now on, unless specified, we assume thatΩ is a smooth unbounded domain and

consider the problem 


−�u = up + uq , x ∈ Ω ,

u > 0 , x ∈ Ω ,

u = 0 , x ∈ ∂Ω ,

(3.1)

where 0≤ q < 1 < p.
The main result we prove in this section is

THEOREM 3.6. Let C0(n) be the same constant as that in Theorem 2.1(ii), c = [(1 −
q)/(p − 1)]1/(p−q). Then the following hold.

(i) Problem (3.1) has at least one solution on domains such that ρ(Ω) < +∞ and
λ1(Ω) ≥ C0(n).

(ii) Problem (3.1) has no solution on domains such that ρ(Ω) = +∞, or ρ(Ω) < +∞
and λ1(Ω) < cp−1 + cq−1.

To understand an important role played by the sub-linear termuq in Problem (3.1), we
compare Problem (3.1) with the following problem


−�u = up , x ∈ Ω ,

u > 0 , x ∈ Ω ,

u = 0 , x ∈ ∂Ω ,

(3.2)

and examine the following examples.

EXAMPLE 3.7. It is well-known that ifΩ = Rn andp > (n + 2)/(n − 2), then
Problem (3.2) has infinitely many solutions. However, the presence of the sub-linear termuq

yields an nonexistence result for Problem (3.1), sinceρ(Rn) = +∞. Hence, the appearance
of the sub-linear termuq destroys the structure of the set of solutions for Problem (3.2).

EXAMPLE 3.8. It is known from [8] that ifΩ is an Esteban-Lions domain, then Prob-
lem (3.2) has no solution. However, the conditions imposed in Theorem 3.1(i) can be satisfied
by the Esteban-Lions domainΠ+

a for sufficiently smalla. So, the presence of the sub-linear
termuq yields an existence result for Problem (3.1) on this kind of domains, and also sub-
stantially changes the structure of the set of solutions for Problem (3.2).

Now, we are going to state and prove some lemmas needed in the proof of Theorem 3.6.

LEMMA 3.9. Assume that Ω be a bounded domain and that λ1(Ω) ≥ C0(n). Then
Problem (3.1) has a minimal solution um(x) in the sense that any solution u(x) of Problem
(3.1) satisfies um(x) ≤ u(x) for all x ∈ Ω . Moreover, 0 ≤ um(x) ≤ 1/2.

The proof of this lemma is similar to that of lemma 3.4 in [1], so we omit it here.
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LEMMA 3.10. Suppose that Ωi, i = 1, 2, be two bounded domains satisfying Ω1 ⊂
Ω2, and um

1 (x) and um
2 (x) be the minimal solution of Problem (3.1) with respect to Ω1 and

Ω2, respectively. Then um
2 (x) > um

1 (x) for any x ∈ Ω1.

PROOF. Evidently,um
2 (x) is a super-solution of Problem (3.1) with respect toΩ1. At

the same time,εϕ1(x) is a sub-solution of Problem (3.1) with respect toΩ1. Furthermore, by
choosingε possibly smaller, we see thatεϕ1(x) ≤ um

2 (x) for x ∈ Ω1. Thus, by the sub-super
solution method, we know that Problem (3.1) with respect toΩ1 has a solutionu(x) satisfying
εϕ1(x) ≤ u(x) ≤ um

2 (x). It follows from Lemma 3.9 and the strong maximum principle that

um
1 (x) ≤ u(x) < um

2 (x) for x ∈ Ω1 .

This is just the desired conclusion.

PROOF OFTHEOREM 3.6. (i) SinceΩ is a smooth unbounded domain, we know
by the definition 3.1 that there exists a sequence ofC2 bounded domains{Ωi}∞i=1 such that
Ωi ⊂ Ωi+1 for i = 1, 2, . . . , and

⋃∞
i=1 Ωi = Ω . Furthermore, by the assumption that

λ1(Ω) ≥ C0(n) and the monotonicity ofλ1(Ωi) with respect toΩi , we haveλ1(Ωi) ≥ C0(n).
It then follows from Lemma 3.9 and Lemma 3.10 that the problem


−�u = up + uq , x ∈ Ωi ,

u > 0 , x ∈ Ωi ,

u = 0 , x ∈ ∂Ωi

has a minimal solutionum
i (x) such that

(P1) um
i (x) ≤ um

i+1(x) , for any x ∈ Ωi ,

(P2) 0 < um
i (x) ≤ 1/2 , for any x ∈ Ωi .

By (P2) and the regularity theory of elliptic equations, we know from the diagonal conver-
gence method that, up to a sub-sequence,{um

i (x)} converges uniformly in any bounded sub-
domain ofΩ to a functionu(x) which satisfies{−�u = up + uq , x ∈ Ω ,

u = 0 , x ∈ ∂Ω .

Moreover, it follows from(P1) thatu(x) > 0 for x ∈ Ω . Hence,u(x) is a solution of Problem
(3.1). The proof of Theorem 3.6(i) is completed.

(ii) By the assumption thatρ(Ω) = +∞, orρ(Ω) < +∞ andλ1(Ω) < cp−1 + cq−1,
we know that there exists a bounded domainΩ0 ⊂ Ω such that

λ1(Ω) ≤ λ1(Ω0) < cp−1 + cq−1 .

We now consider the Dirichlet problem


−�v = vp + vq , x ∈ Ω0 ,

v > 0 , x ∈ Ω0 ,

v = 0 , x ∈ ∂Ω0 .

(3.3)

Then it follows from Theorem 2.1(i) that Problem (3.3) has no solution. On the other hand, if
Problem (3.1) has at least one solutionu(x), then we can conclude from the sub-super solution
method that Problem (3.3) has atleast one solution. Indeed, forε > 0 small enough,εϕ1(x)
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andu(x) are sub- and super-solution of Problem (3.3) satisfyingεϕ1(x) ≤ u(x). This is a
contradiction, and hence Theorem 3.6(ii) is proved.

4. Parabolic Equation on Bounded Domains. Let Ω ⊂ Rn be a bounded domain.
We consider the following initial-boundary value problem of the semi-linear parabolic equa-
tion 


∂u

∂t
− �u = up + uq , (x, t) ∈ Ω × (0, T ) ,

u(x, t) = 0 , (x, t) ∈ ∂Ω × (0, T ) ,

u(x, 0) = u0(x) , x ∈ Ω ,

(4.1)

where 0< q < 1 < p andu0(x) ≥ 0.
Problems similar to (4.1) was studied by Cazenave, Diekstein and Escobedo in [6].

Among other things, the following results were shown in their paper.

THEOREM 4.1 ([6]). For any nonnegative function u0(x) ∈ L∞(Ω), Problem (4.1)

has a unique positive solution u(x, t) defined on a maximal time interval [0, Tm]. Moreover,
the following properties hold:

(i) u(x, t) ∈ L∞(Ω × (0, T )) for all T < Tm.

(ii) Tm ≥ T0, where T0 = 1/(Mp + Mq), and M = ||u0(x)||L∞ + 1.

(iii) |u(x, t)| ≤ M for all (x, t) ∈ Ω × [0, T0].
(iv) Either Tm = +∞, or else Tm < +∞, and ||u(t)||L∞(Ω) → +∞ as t → Tm.

THEOREM 4.2 ([6]). Let u0(x) ≤ v0(x). Suppose that u(x, t) be a sub-solution and
that v(x, t) be a positive super-solution of Problem (4.1) on some interval (0, T ) satis-
fying u(x, 0) = u0(x) and v(x, 0) = v0(x). If u(x, t) and v(x, t) are sufficiently regu-
lar (i.e., u(x, t), v(x, t) ∈ L∞(Ω × (0, T )) ∩ C([0, T ]; L2(Ω)) ∩ Lloc((0, T ); H 1(Ω)) ∩
W1,2((0, T ); H−1(Ω))), and u(x, t) ≤ v(x, t) for all (x, t) ∈ ∂Ω × (0, T ), then u(x, t) ≤
v(x, t) for all (x, t) ∈ Ω × [0, T ).

With the help of Theorem 4.1, Theorem 4.2 and results proved in Section 2, we now
prove

THEOREM 4.3. Let λ1(Ω) be the first eigenvalue of the eigenvalue Problem (1.3),
C0(n) be the same constant as that in Theorem 2.1(ii) and c = ((1 − q)/(p − 1))1/(p−q).
Then the following hold:

(i) If λ1(Ω) < cp−1 + cq−1, then Problem (4.1) has no positive global solution for
any nonnegative initial data u0(x).

(ii) If λ1(Ω) ≥ C0(n), then Problem (4.1) has a positive global solution for u0(x)

small enough, while has no positive global solution for u0(x) large enough.

PROOF. (i) Multiplying the differential equation in Problem (4.1) byϕ1(x) and then
integrating onΩ with respect tox, we obtain

d

dt

∫
Ω

uϕ1dx + λ1(Ω)

∫
Ω

uϕ1dx =
∫

Ω

updx +
∫

Ω

uqϕ1dx .(4.2)
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Using Lemma 2.6, we then have

λ1(Ω)

∫
Ω

uϕ1dx ≤
∫

Ω

uqϕ1dx +
(

λ1(Ω)

cp−1 + cq−1

)(p−q)/(1−q) ∫
Ω

upϕ1dx .(4.3)

Employing (4.2), (4.3) and Jensen’s inequality, we get

d

dt

∫
Ω

uϕ1dx ≥
[
1 − λ1(Ω)

cp−1 + cq−1

]( ∫
Ω

uϕ1dx

)p

.(4.4)

By the assumption thatλ1(Ω) < cp−1 + cq−1, we see that

M = 1 −
(

λ1(Ω)

cp−1 + cq−1

)(p−q)/(1−q)

> 0 .(4.5)

Sety(t) = ∫
Ω

uϕ1dx. Then, from (4.4) and (4.5), we have

dy(t)

dt
≥ Myp(t) .

Integrating this inequality, we obtain

y(t) ≥
[

1

y
1−p

0 − (p − 1)Mt

]1/(p−1)

, y0 =
∫

Ω

u0ϕ1dx .(4.6)

Let T 0
M = y

1−p

0 /((p − 1)M). It follows from (4.6) that there exists a maximal time
Tm ≤ T 0

M such that

lim
t→Tm

y(t) = +∞ .

Consequently, we obtain

lim
t→Tm

max
x∈Ω

u(x, t) = +∞ .

This completes the proof of Theorem 4.3(i).
(ii) It is evident that Problem (4.1) has no positive global solution foru0(x) large

enough. Hence, we have only to prove that Problem (4.1) has a global solution under the
condition thatλ1(Ω) ≥ C0(n) andu0(x) is small enough. To this end, we denote byu(x, t)

a local solution of Problem (4.1). Sinceλ1(Ω) ≥ C0(n), we know from Theorem 2.1(ii) that
the problem 


−�v = vp + vq , x ∈ Ω ,

v > 0 , x ∈ Ω ,

v = 0 , x ∈ ∂Ω

has at least one solutionv(x). It is obvious thatv(x) is a super-solution of Problem (4.1),
provided thatu0(x) ≤ v(x). By Theorem 4.2, we have

0 ≤ u(x, t) ≤ v(x) for all (x, t) ∈ Ω × (0,+∞) .

Consequently,u(x, t) exists globally. This completes the proof of Theorem 4.3(ii).



POSITIVE SOLUTIONS OF ELLIPTIC AND PARABOLIC EQUATIONS 441

5. Cauchy Problem for Parabolic Equation. In this section, we will consider the
Cauchy problem {

∂u

∂t
− �u = up + uq , (x, t) ∈ Rn × (0, T ) ,

u(x, 0) = u0(x) ≥ 0 , x ∈ Rn .
(5.1)

Here we only supposep, q > 0.
It is well-known that the following Cauchy problem{

∂u

∂t
− �u = up , (x, t) ∈ Rn × (0, T ) ,

u(x, 0) = u0(x) ≥ 0 , x ∈ Rn
(5.2)

has been extensively studied since 1966, from the viewpoint of critical exponents of Fujita’s
type. Most of results on Problem (5.2) are collected in two excellent survey papers [10] and
[11]. Roughly speaking, there are two critical exponentspc1 = 1 andpc2 = 1 + 2/n such
that the following holds.

THEOREM 5.1. (i) If 0 < p ≤ pc1, then any solution of Problem (5.2) exists glob-
ally.

(ii) If pc1 < p ≤ pc2, then any nontrivial solution of Problem (5.2) blows up in finite
time.

(iii) If p > pc2, then Problem (5.2) has a global solution for small initial data, whereas
has no nontrivial global solution for large initial data.

Theorem 5.1(i) is proved by Escobedo and Herrero [12]; (ii) and (iii) except forp = pc2

were proved by Fujita [13]; the result with respect top = pc2 was obtained by several authors
in [14–17].

Based on Theorem 5.1, we introduce the following definition.

DEFINITION 5.2. The exponentp is said to belong to the global existence case if
0 < p ≤ pc1 or p > pc2, and to belong to the blow up case ifpc1 < p ≤ pc2.

Now, we turn to Problem (5.1). To our knowledge, there is no result for Problem (5.1)
about the exponent of Fujita’s type. Here, we try to give such a result. To this end, we denote

α = min{p, q} , β = max{p, q} .

Using the above notation, we now prove

THEOREM 5.3. (i) If 1 < α ≤ 1 + 2/n, then any nontrivial solution of Problem
(5.1) blows up in finite time.

(ii) If α > 1+ 2/n, then Problem (5.1) has a global solution for small initial data and
has no global solution for large initial data.

PROOF. (i) If 1 < α ≤ 1 + 2/n, then either 1< p ≤ 1 + 2/n, or 1< q ≤ 1 + 2/n.
It follows from the comparison principle and Theorem 5.1(ii) that any nontrivial solution of
Problem (5.1) blows up in finite time.
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(ii) If α > 1 + 2/n, Problem (5.1) has no global solution for large initial data by the
comparison principle together with Theorem 5.1(iii). In order to prove the global existence,
we look for a global super-solution of the form

U(x, t) = A(1 + t)−γ e−|x|2/{4(1+t )} ,

whereA andγ are positive numbers.
It is easy to check thatU(x, t) is a super-solution of Problem (5.1) only if

−γ + n

2
≥ Ap−1(1 + t)1+γ−γpe−(p−1)|x|2/{4(1+t )}

+ Aq−1(1 + t)1+γ−γ qe−(q−1)|x|2/{4(1+t )} .

(5.3)

Without loss of generality, we may suppose that

q = α = min{p, q} > 1 .

If we chooseγ = 1/(q − 1), then (5.3) becomes

− 1

q − 1
+ n

2
≥ Ap−1(1 + t)1+(1−p)/(q−1)e−(p−1)|x|2/{4(1+t )}

+ Aq−1e−(q−1)|x|2/{4(1+t )} .
(5.4)

Sincep ≥ q > 1, (5.4) holds only if

− 1

q − 1
+ n

2
≥ Aq−1(Ap−q + 1) .(5.5)

By the assumption thatq = α > 1 + 2/n, we have

− 1

q − 1
+ n

2
> 0 .

This implies that (5.5) is in fact valid forA small enough. Consequently, Problem (5.1) has a
global solution for small initial data. The proof of Theorem 5.3 is completed.

A natural question which arises from Theorem 5.3 is: What would happen to 0< α ≤ 1?
The case whenα, β ∈ (0, 1] is simple. In fact, by employing the same method as that

used by Escobdo and Herrero in [12], one can easily prove

THEOREM 5.4. If α, β ∈ (0, 1], then any solution of Problem (5.1) exists globally.

Theorems 5.3 and 5.4 seem to tell us that if bothp andq belong to the global existence
case, Problem (5.1) should have a global solution at least for small initial data. However, this
is not always the case. Forα ∈ (0, 1] andβ > 1 + 2/n, bothp andq belong to the global
existence case. Accordingly, it is reasonable to conjecture that Problem (5.1) should have a
global solution at least for small initial data due to Theorems 5.3 and 5.4. However, this is not
true. Indeed, we have the following blowing-up result.

THEOREM 5.5. If α ∈ (0, 1] and β > 1, then any nontrivial solution of Problem (5.1)
blows up in finite time.
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PROOF. If 0 < α < 1, then the nonlinearityup + uq is singular at 0 in the sense that
it is not Lipschitz continuous. Hence the local existence result of Problem (5.1) is also to be
proved. Accordingly, we proceed the proof in two steps.

Step 1. For any 0≤ u0(x) ∈ L∞(Rn)∩H 1(Rn), Problem (5.1) has a positive solution
defined on a maximal time interval[0, Tm]. Moreover,Tm satisfies

Tm ≥ 1

Mp + Mq
, M = ‖u0‖L∞(Rn) + 1 .

Let Br(0) = {x ∈ Rn | |x| < r} be an open ball,χBr be the characteristic function of
Br(0), i.e.,

χBr =
{

1 , x ∈ Br(0) ,

0 , x �∈ Br(0) .

We consider the initial-boundary value problem


∂ur

∂t
− �ur = u

p
r + u

q
r , (x, t) ∈ Br(0) × (0, T ) ,

ur(x, t) = 0 , (x, t) ∈ ∂Br(0) × (0, T ) ,

ur(x, 0) = u0(x)χBr , x ∈ Br(0) .

(5.6)

It follows from Theorem 4.1 together with Theorem 4.2 that Problem (5.6) has a unique
positive solutionur(x, t) defined on a maximal interval[0, T r

m). In addition, the following
properties hold:

(a) ur(x, t) ∈ L∞(Br(0) × (0, T )) for all T < T r
m.

(b) T r
m ≥ T0 = 1/(Mp + Mq) for all r > 0.

(c) ur(x, t) ≥ us(x, t) for anyr ≥ s, and(x, t) ∈ Bs(0) × (0, T0).
(d) 0 < ur(x, t) ≤ M for all (x, t) ∈ Br(0) × [0, T0].
By the properties (c), (d) and the regularity theory of parabolic equations, we conclude

that, up to a subsequence,ur(x, t) converges uniformly to a functionu(x, t) on any bounded
domainΩ ⊂ Rn asr → +∞. In addition,u(x, t) satisfies


∂u

∂t
− �u = up + uq , (x, t) ∈ Rn × (0, T0) ,

u(x, t) > 0 , (x, t) ∈ Rn × (0, T0) ,

u(x, 0) = u0(x) , x ∈ Rn .

Henceu(x, t) is a local solution of Problem (5.1). The conclusion stated in Step 1 is proved.
Step 2. If α ∈ (0, 1] andβ > 1, then any nontrivial solution of Problem (5.1) blows

up in finite time.
ChooseΩ0 ⊂ Rn to be a bounded domain satisfying
(H1) λ1(Ω0) < ((1 − q)/(p − 1))(p−1)/(p−q) + ((1 − q)/(p − 1))(q−1)/(p−q), and
(H2) there exists at least one pointx0 ∈ Ω0 such thatu0(x) �= 0.
Let χΩ0 be the characteristic function ofΩ0. We prove the conclusion of Step 2 by

contradiction. To this end, assume that Problem (5.1) has a global solutionu(x, t). It is
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obvious thatu(x, t) is a super-solution of the initial-boundary value problem


∂v

∂t
− �v = vp + vq , (x, t) ∈ Ω0 × (0, T ) ,

v(x, t) = 0 , (x, t) ∈ ∂Ω0 × (0, T ) ,

v(x, 0) = u0(x)χΩ0 x ∈ Ω0 .

(5.7)

It follows from Theorems 4.1 and 4.2 that Problem (5.7) has a global solution. On the other
hand, it follows from(H1) and Theorem 4.3(i) that Problem (5.7) has no global solution,
which is a contradiction.

6. Parabolic Equation on Unbounded Domains. Let Ω ⊂ Rn be a smooth un-
bounded domain in the sense of Definition 3.1. We consider the initial-boundary value prob-
lem 


∂u

∂t
− �u = up + uq , (x, t) ∈ Ω × (0, T ) ,

u(x, t) = 0 , (x, t) ∈ ∂Ω × (0, T ) ,

u(x, 0) = u0(x) ≥ 0 , x ∈ Ω ,

(6.1)

where 0≤ q < 1 < p.
Using the notation introduced in Section 3, the main result of this section can be stated

as

THEOREM 6.1. (i) If ρ(Ω) = +∞, or ρ(Ω) < +∞ and λ1(Ω) < cp−1 + cq−1,
then any solution of Problem (6.1) blows up in finite time, and here c = ((1 − q)/(p −
1))1/(p−q).

(ii) If ρ(Ω) < +∞ and λ1(Ω) ≥ C0(n), then Problem (6.1) has a global solution for
small initial data u0(x) and has no global solution for large initial data u0(x).

Since the proof of Theorem 6.1(i) is similar to that of Theorem 5.4, and the proof of
Theorem 6.1(ii) is similar to that of Theorem 3.1(i), we omit them.
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