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Abstract. We show that the parabolicity of a manifold is equivalent to the validity of
the ‘divergence theorem’ for some classse$ubharmonic functions. From this property we
can show a certain Liouville property of harmonic maps on parabolic manifolds. Elementary
stochastic calculus is used as a main tool.

0. Introduction. This note was inspired by the following two results concerning the
Liouville property of harmonic maps and subharmonic functions of finite energy.

THEOREM 1 (Cheng-Tam-Wan [5]). Let f : M — N be a harmonic map of finite
energy from a complete Riemannian manifold M to a Cartan-Hadamard manifold N (i.e. N
is a simply connected, complete Riemannian manifold of nonpositive sectional curvature). If
M does not admit nonconstant bounded harmonic functions, then f is constant.

They actually showed that under the assumption on the source manifold, the image of
the harmonic map should be bounded. The above result is obtained by combining this with a
result due to Kendall [21] to the effect thatif does not admit nonconstant bounded harmonic
functions andf is bounded, therf is constant.

The second is a divergence theorem due to Takegoshi.

THEOREM 2 (Takegoshi [25]). Let M be a complete Riemannian manifold and « a
C?-function on M. Suppose that « satisfies

2 " 1 _ 1

[Vu| =0(/ 7>, and (Au)” € L~(M),
1 dV(t)/dt

where V (1) is the Riemannian volume of a geodesic ball of radius . Then (Au)t € LY(M)

and

/ Audv =0.
M
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He improved the result due to Cheng et al. in the case where

[ =
1 dV()/dt

It is known that this condition on the volume growth implies the parabolicity of the manifolds
(cf. [10, 25]). We say that a Riemannian manifadilis parabolic or recurrent i#7 does not

admit any nonconstant bounded subharmonic function. This is equivalent to saying that no
positive Green function exists avf, namely,

o0
g(x,y)=/ p(t,x,y)dt =00, x,yeM,
0

wherep(t, x, y) is the heat kernel fo¢1/2) A where Ay, is the Laplacian oM with re-
spect to the Riemannian metric. This implies that the Brownian motiodas recurrent.
If the Brownian motion onM is transient (i.e., nonparabolic), there is a general result about
subharmonic functions of finite Dirichlet integral. Then Chang-Tam-Wan'’s result is easier in
this case. (In the last section we give a prooftdit result in transient case. The method used
there is applicable in the more general cases.) Hence, in this paper we devote ourselves mainly
to the parabolic case. To improve the above results, we use a probabilistic method including
the ergodic theorems for recurrent Markov processes. This probabilistic method enables us to
extend the above result to the casd.efiarmonic maps.

We first show a variant of Takegoshi’s result in the general setting. The usual divergence
theorem implies that for any € C3°(M)

/ A¢pdv =0.
M

Thus, Takegoshi’s result implies that some parabolicity allows a divergence theorem to hold
for functions that do not necessarily have compact support. We show that the validity of such
a divergence theorem for some classsefubharmonic functions gives a characterization of
the parabolicity of a manifold.

In the Riemannian case our results can be translated into the following. We cofsider
in the sense of distribution. Then it can be regarded as a signed me@asujé. and(Au)~
denote the positive and negative parts\of, respectively, so that they are measures.

THEOREM 3. Thefollowing properties are equivalent.
(i) M isaparabolic manifold.
(i)  If u isa s-subharmonic function of finite Dirichlet integral, then

/(AM)+=/ (Au)™ (= 090).
M M

(iii)  If u isa bounded §-subharmonic function, then

/(AM)+=/ (Au)~ (= 090).
M M

This characterization in a general setting is given in Theorem 20 below. We would like
to emphasize in this paper that this divergence theorem in principle joins stochastic calculus
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with elementary tools of analysis on mandslsuch as the coarea formula and Green’s for-
mula. Actually we give a general version dietcoarea formula in Proposition 9 and Green'’s
formula in Theorem 25 foé-subharmonic functions. We also show in Proposition 31 that
usual Green'’s formula can be derived framr divergence theorem by means of stochastic
calculus.

As for an application to harmonic maps we have the following.

THEOREM 4. Let M be a parabolic Riemannian manifoldand f : M — N a har-
monic map from M to a complete Riemannian manifold N of nonpositive sectional curvature.
Assumethat f is of finite energy or that f has bounded image.

Ifapointo € N satisfies

/ Apy(ro f) < oo,
f=C o)

then

/ Apy(rof) :/ Ap(ro fldv
F~1(C o)) M\ f~1(C(0))

holds. Here C (o) isthe cut locus at 0 and r(x) = dy (0, x) isthe Riemannian distance from
otox.

From the above result we immediately have the following.

COROLLARY 5. Let f beaharmonic map froma parabolic manifold M to a complete
Riemannian manifold N with Secly < 0. If f isof finite energy or f hasbounded image and
there existsa point o € N such that Cap( f ~1(C(0))) = 0, then f is constant.

Our method enables us to extend these results to maps lacking regularity, which are
called finely harmonic maps.

We also obtain a ‘monotone property’ for proper harmonic maps using these method
(Corollary 36). We add some Liouville type theorems on parabolic manifolds in Section 4.

We would remark in the last section a simple argument about our Theorem 20 in the
Dirichlet form setting. This was noted by Pesfsor M. Takeda. Such a generalization would
allow us to obtain results similar to those presented here in a much wider class of spaces and
operators including the cases of jump processes.

1. Preliminariesand setting.

1.1. L-diffusion and related measures. L#t be a manifold with an elliptic oper-
ator L associated with an irreducible, strongly local and regular Dirichlet spé&c&) on
L%(M, m), wherem is a Radon measure ai. L and(&, F) are related to each other in such
a way that

—/ Luvdm = Eu,v) for u,v e Dom(L).
M
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It is well-known that a diffusion processx, P, x € M) uniquely corresponds t¢€, F)

(cf. [13]). This diffusion had. as its generator, so we sometimes call this diffusionithe
diffusion. By the capacity Cap we mean the capacity defined by this Dirichlet form. We
remark that if a Borel sef is of capacity zero, thed cannot be hit byX, namely,A is a
polar set ofX.

A Radon measurg is said to be smooth, roughly speakingpifioes not charge sets of
capacity zero. Any Radon measure is decomposed into a smooth measure and a nonsmooth
measure which is supported by a set of capacity zero (cf. [3, 14]). Such a smooth measure
is called the smooth part of the original measure. In this potesually denotes the smooth
part of a measurg. We also recall Revuz’s correspondence between positive continuous ad-
ditive functionals and smooth measures. It is known that for any positive continuous additive
functional A, there uniquely exists a smooth measurguch that

t
/ d()du(x) = lim }/ Ex[/ ¢(XS)dASi|dm(x) for ¢ € Co(M).
M t=01 Jy 0

Such au is called the Revuz measure af If A; = fé h(X,)ds, then its Revuz measure is
h(x)dm(x). If u € Foc, thenu(X) has the Fukushima deemposition, namely,

(X)) —u(Xo) = M; + A,

wherei is a quasi-continuous modificationmof M is a local martingale and is a continuous

additive functional of zero energy. The quadratic variatidfy is also a positive continuous
additive functional ofX and its Revuz measure is denotedby ). 1,y can be defined

similarly. It is known that the Dirichlet fornd (i, u) can be written as

1
Eu,u) = 5/ d i gu,uy -
M

If u is a smooth function andl is a Brownian motion on a Riemannian maniféi] then

1 t
u(Xs) —u(Xo) = M; + 5/ Apyu(Xg)ds ,
0
andM; = B([Ot |Vu|2(Xs)ds), whereB is the one-dimensional standard Brownian motion.
In this caselw ..y = |Vul?(x)dv(x).
1.2. §-L-subharmonic function. We say thais anL-subharmonic function o if
u € Fioc (see [13] for the definition and the properties) and

—00 < gy <0 forany ¢ e CoNF and ¢ > 0.

We say that is an L-superharmonic function o if —u is L-subharmonic oM/ andu is
an L-harmonic function ifx is L-superharmonic and-subharmonic. Whel. = (1/2)A
is half of the Laplacian o anddm = dv is the Riemannian volume oW, we have

1 2
Ew,u) = §/M|Vu| dv,
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andX is a Brownian motion o/. In this case the above definition can be restated as follows.
u is a A y-subharmonic function (subharmonic function, for short) Mnif there exists a
closed setV with Cap(N) = 0 such that: is in Hol,|oc(M \ N) and

—oo</ (Vu,V¢)dv <0 forany ¢ >0 and ¢ € C°(M).
M

This class includes all subharmonic functions in the classical sense. An important example
of classical subharmonic functions:i$z) = log|z| for M = C, L = A. In this case: ¢
H&IOC(RZ) butu is a A-subharmonic function in our sense.

We say that: is a§-L-subharmonic function oM if u can be expressed locally as a
difference of twoL-subharmonic function&f. [17]).

LEMMA 6. Ifuisan L-subharmonic function, thereis a unique nonnegative measure
on M that correspondsto u. Thismeasure is called the Riesz measure of u (cf. [16]).

PROOF. LetI(¢) = —pwu.g) for ¢ € Con F. Take a domainD C M such that
supp¢ C D andy € Co(M) such thaty = 1 on D. The derivation property of the Revuz
measure (cf. [13]) implies that

—ud) = —Muve) < —Plloottu,v) -

The regularity of the Dirichlet space means tldatN F is dense inCo(M). Hence,I (¢)
can be extended to a positive continuous functionaCe). The Riesz-Markov theorem
implies that there exists a uniqgue measyrsuch that

1(9) =/ pdv, for ¢ € Co(M). O
M

From now onv, denotes the Riesz measureof
If u is as-L-subharmonic function o, there a signed measure corresponds. it is
called the Riesz charge, denoted by

Vy =V1— V2,

wherev1, v2 are the smallest measures such that the decomposition holds. By the choice of
thesev1, v, this decomposition is unique.

An important probabilistic characterization &fL-subharmonic functiomw is the fact
thatu(X) is a semi-martingale for ah-diffusion X (cf. [10, 13]). Namely, ifu is as-L-
subharmonic function, then(X) can be decomposed as

u(X;) —u(Xo) = M; + A,

wherez is a quasi-continuous modificationof M is a local martingale and is a continuous
additive functional of bounded variation. We remark that ary Fjoc has a quasi-continuous
modificationiz. The Revuz measure correspondingitcs

Eu:al_‘ij
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wherev, andi, are the smooth parts of andv, andv, = v1 — v7 is the Riesz measure
of u. For a generas-L-subharmonic functiom we definew, ,) as follows. Let{G,} be a
sequence of finely open sets &f such thatG,, ¢ G,+1, u = u,, m-almost everywhere on
G, for someu, € F and CapM \ |, G») = 0. Note that(M '), is a positive continuous
additive functional wher@/™» is stopped byl;, = inf{t > 0; u(X;) ¢ G,}, sinceu on G,
belongs taFigc.

Let '™ | be the Revuz measure ¥ 7+),. Setiy,u = sup, “EZ,)W We say that: is of

(u,u)
finite Dirichlet integral or finite L-)energy if . .y (M) = sup, “EZ,)W(M) < 00.
If ) is absolutely continuous with respectiq then its density/ii, .y /dm is de-
noted byI"(u, u) and is called the ‘carré du champ’ of

We proceed to the sthastic calculus fo8-L-subharmonic functions.

LEMMA 7 (Tanaka's formula cf. [24]). Let Y be a semi-martingaleon Randa € R.
(i)
1

1
YIAQIYOAG+/C;1{Y‘§a}dYS—§Lta,
(ii)

! 1
Y,Va:YoVa+/ 1{Y.‘za}dYs+§L?~
0
An increasing process L iscalled alocal timeat a of Y.

If Y =u(X), thenL? is a positive continuous additive functional. We define the smooth
measuré? on M as the Revuz measure bf with Y = u(X).
From this we have the following.

PrROPOSITION 8. If u isa §-L-subharmonic function, thenu A ¢ and u v a are §-L-
subharmonic functions for a € R. Their Riesz charges are

dvura = Lju<aydve — (1/2)l;  and  dviyve = Lyyza) dve + (1/2)1 .

Inparticular, ifu = u™ — u~, whereu™, u™ are the positive and negative parts of u, respec-
tively, then

dv,- = =1y<oydv, + (1/2)13 and dv,+ = 1y=0 dv, + (1/2)13 .
We give thes-subharmonic version of the coarea formula.

PROPOSITION 9. Let u be a §-L-subharmonic function satisfying (.. ({u < r}) <
oo for eachr € R. Thenfor ¢ € C,(R) and ¢ € C,(M) we have

/ S UONY (V) o () = / / SV () ()dy .
M RJM

PROOF We may assume that > 0,y > 0. Recall that the occupation time formula
for a semi-martingal® (cf. [24]):

t
/0 S(Y)d(Y, Y}y = /R S(ILdy for ¢ € Co(R).
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SettingY = u(X) and integrating both sides with respectits, - ¥ (x)dm(x), we have

t
/Wx)Ex[/ ¢(u<xs>>d<u<X),u<X>>s]dm<x>=/ w<x>Ex[/¢(y>Lfdy]dm<x>.
M 0 M R

Since the limit in the definition of the Revuz measure is monotone, we have the desired equal-
ity. O

From Proposition 9 we have the following.

COROLLARY 10. Let M bea complete Riemannian manifold.
() Let u bea proper C?-function and X a Brownian motion on M. The local time
measure !’ (M) on u~1(r) is given by

(M) = /1( : IVul(x)dA(x) for almost every r,

where d A is the induced volume formon u—1(r).

(i) SupposedimM > 2. Let u(x) = dpy (o, x) be the Riemannian distance function
for o € M. Then !/ (M) equals the (dimM — 1)-dimensional Hausdorff measure of 9 B(r),
wheredB(r) = {x € M ; dy (o, x) =r}.

PrRoOF. (i) Note thatd i, . = | Vul||? dv, wheredv is the Riemannian volume mea-
sure.

(ii) It is well-known that the cut locus af C (o) is a null set with respect t@v. Then
[Vu| = 1dv-almost everywhere. Henég(M) = dV (r)/dr almost every-, whereV (r) is
the Riemannian volume ad#(r) = {x € M ; dy(o,x) < r}. On the other hand, the coarea
formula for Lipschitzian functions (cf. [9]) implies thatV (r)/dr equals thgdim M — 1)-
dimensional Hausdorff measure ®B(r). O

We put the following Assumptions 1 and 2 énfor simplicity in some cases. We need
these assumptions only for Theorem 12.

AssumMmPTION 1. If D is arelatively compact domain @f, then there exists a Green
function gp (x, y) on D with Dirichlet boundary condition satisfying

gp(x,y) >0 forx,y e Dandgp(x,y)is continuous for, y € D x D \ the diagonal

ASSUMPTION 2. Any L-subharmonic function satisfies the Riesz decomposition for-
mula, namely, ifu is anL-subharmonic function ot andD is a relatively compact domain
in M, then there exists A-harmonic functiork on D bounded orD such that

u(x) = h(x) /D 90 (e, Vv (y)

holds outside a set of zero capacity.

REMARK 11. Assumptions 1 and 2 are satisfied by Brownian motions on Riemannian
manifolds and diffusion processes with uniformly elliptic generators.
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We note the following about the smooth parts of Riesz measugeloSubharmonic
functions.

THEOREM 12. Letu beas-L-subharmonicfunctionon M satisfying that 1, .y (M) <
oo of u isbounded. Then

Vy =Vy.

Namely, the Riesz charge of  has no nonsmooth part.

REMARK 13. Under the assumptign, . (M) < oo, the conclusion holds without
Assumptions 1 and 2 in the framework of Dirlehspaces. We come back to this point in the
Appendix.

PROOF OF THEOREM 12. Let D be a relatively compact domain af. It suffices
to show the result foD instead ofM. Letu = u1 — up, whereu, up are L-subharmonic
functions. It suffices to show the assertion for eaghk = 1, 2. Thus, we assume thats an
L-subharmonic function. Sat=u" —u~,u™,u~ > 0. Thenu™, u~ ares-L-subharmonic
functions. Sincé, is smooth, by Proposition 8,

dv,- —dv,- = Ly<oyd(vy — V) .
On the other hand(X) is a semi-martingale. Then
u (Xy) —u" (Xo) = M; + Ay,

whereM is a local martingale and is a process of bounded variation. Integrating both sides
with the stopping time argument, we have

Ev[u”(Xep)l —u (x) 4+ Ny(tp,u~) = Ex[Ap] =/ gp(x, y)dv,—,
D
where

Ny(tp,u) = A|Lm()())\P,C< sup u” (Xy) > A) .

O<t<tp

By Assumption 2, the Riesz decomposition:of implies that there exists ah-harmonic
functionk on D such that

u—(x) = h(x) _/DQD(x’y)qu*~
Hence

Ny(tp,u~) = /DgD(x,y)l{uso}(y)d(vm —,-)() .
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We claim that ifp(,,.) (M) < oo oru is bounded, thetV, (tp, u~) = 0. If u is bounded, then
the result is obvious. Assume thay, ., (M) < oo. If 1 is large enough, then

P< sup u (X;) > A) < P( sup M|+ Ay +u (x) > A)

O<t<tp O<t<tp

A A
< P( sup |M;| > —) +P<ATD > —>.
O<t<1p 2 2

By the Burkholder inequality, for a constant- 0

A c
Px< sup |M;| > 5) < ﬁEx[<M>ru]~

O<t<tp

The assumption implies thd,[(M).,,] < oo for almost everyc. With E,[A;,] < co we
have the desired result. It is easy to see from Proposition 8 that

Ni(tp,ut) =0. O

We apply Theorem 12 to complex functions.

COROLLARY 14. Let f bea meromorphic function on a Kéhler manifold M and D a
relatively compact domainin M. If there exists a constant ¢ > 0 such that

Idflzd
——dv < 0,
pO{lfl=c) |f]

then f isholomorphic on D and never vanisheson D.
We note a related result due to Fukushima in the theory of Dirichlet spaces.

PrRopPOSITION 15 (Fukushima [11]). The Riesz measure of a §-L-subharmonic func-
tion in Fjoc is smooth.

1.3. L-finely harmonic maps and their energy. Nfis a manifold with a connection,
we can naturally define a geodesic. We say that a funétion N is geodesically convex if
t = h(y (1)) is convex for any geodesic.

DEFINITION 16 (cf. [8]). A continuous stochastic proceBson a probability space
(82, F, F:, P) is called a martingale on a manifoM if for any geodesically convex function
v defined on each open subgetc N, v(Y) is a submartingale with respectd@, F, F;, P)
whenY liesinU.

DEFINITION 17. ABorelmeasurable mgp: M — N is called anL-finely harmonic
map if f(X) is a martingale oV for the L-diffusion X.

From now on we assume that the target manifélés a Riemannian manifold. Then we
can define the intrinsic time of a martingdleon N.
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DEFINITION 18. LetY be the stochastic developmentiofct. [8, 12]). We define the
intrinsic time[Y, Y] by

iy, Yl =Y d(¥',¥'),,

where(, -) is the usual quadratic variation for one-dimensional local martingales.

We remark that i = f(X), then[Y, Y] is a positive continuous additive functional of
X. These facts enable us to define the energy-tihely harmonic map.

DEFINITION 19. Letf : M — N be anL-finely harmonic map and& an L-diffusion
on M. We define an energy measufg of f as the Revuz measure of the intrinsic time
Lf(X), f(X)] of f(X) (if necessarily, via the stopping time argument). Namely,

1 t
/ ¢(x)dEy(x) = lim —/ Ex[/ ¢(Xs)d[f(X), f(X)]s] dm(x) for ¢ € Co(M).
M t—=01 Jy 0

If dE ¢ (x) is absolutely continuous with respectda, thene ; denotes the density.

2. A divergencetheorem for some §-L-subharmonic functions on parabolic mani-
folds. We say that a manifold/ is L-recurrent (respL-transient) ifM admits a recurrent
(resp. transient).-diffusion. Our basic observation is as follows.

THEOREM 20. The following conditions are equivalent.
(i) M isL-recurrent.
(i) For any §-L-subharmonic function u on M with £(u, u) < oo, the positive and
negative smooth parts v+ and v~ of the Riesz charge of u satisfy

(M) =0T (M) (< 00).

(i)  For any bounded §-L-subharmonic function # on M, the positive and negative
smooth parts 9+ and 7~ of the Riesz charge of u satisfy

PT(M) =0F(M) (< 00).
REMARK 21. In cases (ii) and (iii) of the above theorem
V(M) =07 (M) = V(M) = vT(M)
holds by Theorem 12.
The above assertiof) = (ii) can be strengthened as follows.

THEOREM 22. Let M bean L-recurrent manifold and u a §- L-subharmonic function
on M with e,y (M) < oo. We also assume that « is finely continuous and upper semicon-
tinuous.

Then either the positive and negative smooth parts i+ and 7~ of the Riesz charge of

satisfy
0< 9™ (M)=pT(M) (<00),
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or u isconstant.

REMARK 23. If the continuity assumption of the above theorem is removed, the con-
clusion becomes that either9 v~ (M) = v (M)(< oo) or u is constanin-almost every-
where.

We use a ratio ergodic theorem for recurrent Markov processes for the proof of
Theorem 22.

LEMMA 24 (cf.[24]). Let ¢V, €@ be positive continuous additive functionals of X
and w1, 2 the corresponding Revuz measure, respectively. Assume that X is recurrent and
u2(M) < oo. Then we have

@
.. C M
lim — _ m@ almost surely
=00 0@ pa(M)

PROOF OFTHEOREM22. By the Fukushima decomposition or It6’s formula we have
1 2
(X)) —u(Xo) = M; + AiY — A,

whereM is a local martingale and®, A® are positive continuous additive functionals cor-
responding to the smooth measufes v, respectively. Recall tha¥/, = B((M),) with a
one-dimensional Brownian motiaB and the Revuz measure Q¥) is i ). The assump-
tion implies thatw, ., (M) < oo. We note that by the assumption and the above lemma,

LAY o AP 5o
lim = (£00), lim =_ 7
t=oo (M) [hqu,uy(M) =00 4D 7 (M)

Combining this with the law of iterated logarithm of the one-dimensional Brownian motion

. B
lim sup 3]

e J21T0gTOgE

1, almost surely

we have

if v"(M) <9T(M), u(X;)— +oo ast— oo almostsurely
if b= (M) > Pt (M), u(X;) > —oo ast— oo almost surely

This contradicts the assumption thats recurrent. Hence,~ (M) = v+ (M). If v~ (M) = 0,
thenu is harmonic, and takes the form of

u(X;) —u(Xo) =M, with M, = B({(M),).
We consideU; = maxM,, 0}. Tanaka's formula (cf. [24]) implies that

t
Ut Z/ 1Ml‘>0dMs +lt 5
0

wherel/; is the local time at 0 of¥/;. [, is also a positive continuous additive functional
of X. The Revuz measure corresponding to the quadratic varia.yfé)mMpo dM;) =
[é 1y, >0d (M) is finite since that corresponding &) is finite by assumption. We again use
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the above ratio ergodic theorem, and Qet 0. It implies thatu is lower or upper bounded.
The recurrence implies thatshould be constant. a

PROOF OF(ii) = (i) IN THEOREM20. Assume thaM is not L-recurrent. In general
(cf. [13]) this assumption implies that there exiatse L}r(m) such thatGh € F, with
wGh.chy(M) < oo and—Gh is L-subharmonic wheré& is the zeroth resolvent operator, a
contradiction. In the case of a Brownian motion the situation is more familiar. The assumption
implies that there exists a Green functigoon M. For a positivep € Cg°(M), let

v(x)=/ 9(x, y)p(y)dvm(y) .
M
Thenw is a superharmonic function with finite Dirichlet integral. |

PROOF OF(iii) = (i) IN THEOREM20. If M is not L-recurrent, then there exists a
nonconstant, bounde-subharmonic function which is ndt-harmonic. This is impossible

by (iii). ]
PROOF OF (i) = (iii) IN THEOREM 20. We can show more generally the following
theorem.

THEOREM 25. Let M be an L-recurrent manifold. Suppose that a §-L-subharmonic
function « is bounded from below. If there exists » > infu such that 7+ ({u < r}) < oo, then

ru<rp=v"(u=<rh+1),
where [, is the smooth measure corresponding to the local time at {u = r} of X.

REMARK 26. The assumption that the lower boundedness i3f not essential and
only for simplicity.

This immediately follows from Tanaka’s formula and the ratio ergodic theorem of the
following type.

LEMMA 27 (cf.[24]). Let D, @ be positive continuous additive functionals of X
and w1, 2 the corresponding Revuz measure, respectively. Assume that X is recurrent and
u2(M) < oo. Then we have

im ECVT_ pa()

t—0o0 Ex[ct(Z)] /,Lz(M) ’

In connection with Takegoshi’s result we give a similar and slightly more general result
here. LetC(K, G) be the condenser capacity defined by

C(K,G) =E(ek.G,ek.G) >

whereeg ¢ is the equilibrium potential which is a unique elementfosatisfyingex, ¢ = 1
onk, ek g =00nG* andeg, ¢ harmonic onG \ K.

P.-almost surely, m-almost everywhere x € M .

PrROPOSITION 28. If there exists an exhaustion {G,,} satisfying

Hv(u,u)(Gn)C(Gl: G,) -0 asn— oo,
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then
(M) =0T (M) .

It is easy to check that in the Riemannian case

C(B(1), B(r)) < constant( /r di )_1.
- 1 V(@)

3. Applications.

3.1. Harmonic maps froni-recurrent manifolds. We apply these divergence theo-
rems to harmonic maps. Lgt: M — N be anL-finely harmonic map and/ a Riemannian
manifold. Fix an arbitrary reference pointe N. Setr(x) = d(o, x), whered is the Rie-
mannian distance olN. Thenr(x) is a smooth function oV \ (C(0) U {0}), whereC (o)
is the cut locus ob. It is well known that—Ar is a nonnegative distribution ofi(o) (cf.
Appendix in [26]). Cranston et al.[6] gave a probabilistic counterpart to this in martingale
language. Namely, they showed thaYifs a martingale oV andY does not hib, then

. 1!
r(Y;) — r(Yo) = alocal martingale- E/ Inc(o) Hess (dY,dY) — L, ,
0

where Hess is the Hessian with respect to the Levi-Civita connection afid L is an in-
creasing process which increases only whiestays onC (o). From this we can see thab f
is ad-L-subharmonic function o andr is as-A y-subharmonic function ofv.

It is well known that— Ar|c ) is singular to the Riemannian volume measure. We apply
Theorem 12 or Proposition 15 to the cases wheiga Brownian motion oV andY = f(X)
for an L-finely harmonic magy : M — N with an L-diffusion X, and obtain the following.

ProOPOSITION 29. Inthe notation as above, we have:

(i) —Arlc() isasmooth measure;

@iy if f: M — N islocally bounded or the energy of f islocally finite, then —Ar o
f1-1(c(0y) IS @smooth measure.

If Secty < 0, thenr(x) is a convex function outsid€ (o). Hence, whert = f(X),
the last two terms in the above equation due to Cranston et al. are positive continuous additive
functionals ofX. Their Revuz measure are the smooth parts of the positiveupaahd the
negative parft, of the Hahn decomposition df (r o f), respectively.

The following is a direct consequence of Theorem 22.

COROLLARY 30. Assumethat M isan L-recurrent manifold, N isa Riemannian man-
ifoldand f : M — N isan L-finely harmonic map. Let 1, u2 be asabove. If f is of finite
L-energy and there exists a point o € N such that Cap(f~1(C(0))) = 0 and

2(M) < oo,
then

0 < fia(M) = 1a(M) or f isconstant g.e.
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In particular if fi2(M) = 0, then f isconstant g.e.

PrRoOOF. We have only to note that if is of finite L-energy, themi o .ro 1) (M) < o0.
|Vr| < landdr ® dr < gy imply that

(M) = [f(X), f(X]:,

whereM is the martingale part of o f(X). It follows from this that
ditgofrofy <dEy. U

3.2. Green’s formula. Theorem 25 can bgaeled as a generalization of Green’s
formula fors-L-subharmonic functions. We can recover the usual Green’s formula for smooth
functions from Theorem 25 and stochastic calculus.

PrRopPOSITION 31. (i) If ¢ isa smooth function on a complete Riemannian manifold
M and D isarelatively compact domain with smooth boundary o D in M, then

}/ Aqu(x)dv(x):/ %dA,
2Jp ap On

where d/9n isthe outward normal derivative on o D.
(i) Let u be a proper C2-function on a complete Riemannian manifold M. Then for
almost every r € (0, 0o0), we have

/ Apu(x)dvo(x) =/ [Vull(x)dA(x) .
{usr} u=(r)

PROOF. (i) We consider a Brownian motioX on D reflecting atdD. It is known
that such a process can be constructedosinced D is smooth. SinceX is recurrent, the
previous argument is applicable. Namely, we regBrés a parabolic manifoldX has a
generatol. = (1/2) Ay with Neumann boundary condition. Moreover, it has a form in SDE
using the original Brownian motioX on M as

dX =dX —n(X)dL,

whereL is the local time ofX ond D andn is the outward normal vector @D. Hence, for a
smooth functionp,

1 t
(X,) — ¢(Xo) —/ }AMQS()?S)ds +/ % dL; = alocal martingale
0o 2 0 on

We also note that the Revuz measurd.a$ the surface measure 0. Sinceg is bounded
on D, Theorem 20(ii) implies the desired formula.

(i) Let D be a relatively compact domain with smooth boundapyin M such that
{u < r} C D. A standard argument enables us to apply the above formula formally to
¢ = u A r. Our choice ofD means thatd/on)(u A r) = 0. Tanaka’s formula and the same
argument as before lead us to the desired formula. ]
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REMARK 32. We can give a general version of Green’s formula such as (i) of the
above proposition provided that a reflectibgliffusion exists. We can construct it with some
assumptions o® and the diffusion. Since preparations are needed, we omit the detail here.

We note the case whergx) = r(x) with r(x) = dy (0, x) andN is a complete Rie-
mannian manifold. Let denote—A yr|c(,). By Theorem 25 and Corollary 10 with the argu-
ment in the proof of Proposition 31 we have the following.

COROLLARY 33. Let N be a complete Riemannian manifold, o € N an arbitrary
point and C (o) the cut locus of 0. For almost every r € (0, co) witho ¢ B.(a) anda € N,
we have

/ 1 4+ vol(3 B4 (r)) =/ Anr(x)dv(x),
C(0) N By(r) B, (r)\C(0)

where B, (r) is the geodesic ball with center « € N and radius r, and vol(d B, (r)) denotes
the (dim N — 1)-dimensional Hausdorff measure of d B, (r) with respect to the Riemannian
metric.

3.3. Propel-finely harmonic maps. We apply the results in the previous sections to
get a general estimate of the energy of proper maps to Cartan-Hadamard manifolds.

LEMMA 34. Letu bea proper §-L-subharmonic function such that d i, . islocally
finiteand

vy > k(@(x))dp,uy — alx)dm
for k > 0 on [0, co), where k(u(x)) is locally integrable for d, ) and a(x) is a locally
integrable function on M with respect to dm. Then we have

/r k(t)zf,(ufl(t))dt—/ a(x)dm(x) <" 1(r).
00 {u<r}

COROLLARY 35. Under the assumption asin the above lemma, we havefor § < r

/ k(u(x)d o, u)
{u<r)

zefa'k“)"’{ / Je (u ()l ey — / e~ KOs (p) / a(x)dm(x)dr}.
{u=<é} ) u<t

We apply this to properL-finely harmonic maps. LeiN be a Cartan-Hadamard
manifold andr(x) = d(o, x) the distance function o. If ¢ is a C2-function on[0, o),
by direct calculation we have

Hessp (r) = ¢'(r) Hess + ¢” (r)dr @ dr .
We also remark that the Hessian caripon theorem (cf. [15]) implies
Hess > p(r)(gy —dr ® dr),

wheregy is the Riemannian metric @f andp () = 1/t if the sectional curvature of < 0,
andp (1) = /« if the sectional curvature df < —« < O.
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Combining these observations with the derivation property of Revuz measure, we have
the following:

COROLLARY 36. Let f : M — N bea proper L-finely harmonic map from a man-
ifold M which supports a recurrent L-diffusion to a Cartan-Hadamard manifold N. Then
there exists a constant C > 0 depending only on ¢ > 0 such that

1 '\¢ 1
——dFE >C(- ——dFE ,
—/fl(Bo(r)) dy(o, f(x))1=¢ 1002 (5) /fl(B,,(a)) dn (o, f ()t )

for0< 6§ <r <ooande > 0,where B, (r) isthe geodesic ball with center o and radiusr in
N.

PROOF. We can set: = ¢(r o f). We takep(r) = 131, Thenk(r) = ¢/((1+ &)t) in
Corollary 35 will do. ]

3.4. Meromorphic functions. We can also apply our results to meromorphic func-
tions on parabolic Kéhler manifolds.

THEOREM 37. Let f beameromorphic function on a parabolic Kéhler manifold M.
If there exists a constant ¢ > 0 such that

ari

T2 <00,
(r1=ey 1f1

then f is constant.

PrROOF. Note thatu = log|f| is ad-subharmonic function o and the smooth part
of its Riesz measure vanishes. We can apply the same argument as in Theoram/2@go
to get the desired result. m]

It is known that there exist recurrent holomorphic diffusions (see [12, 20Q3'band
submanifolds irC" satisfying a certain volume growth condition (for instance, algebraic sub-
manifolds).« appearing in the above proof i$a.-subharmonic function if. is the generator
of a holomorphic diffusion. Kaneko [20] gave such a recurrent holomorphic diffusion by the
Dirichlet form onL2(C", dm) defined by

E(p, V) =/ dp ndY A"t for ¢, € CSO(CY),
Cﬂ

anddm = dd€|z|? A "1, wherew = dd° log(1+ |z|?). Then our general setting enables us
to obtain the following.

THEOREM 38. Let f be a meromorphic function on C" and dm as above. If there
exists a constant ¢ > 0 such that

/ dlog|f]l AdClog|fl A"t < o0,
{If1>c)

then f isconstant.
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4. Other Liouvilletheoremson L-recurrent manifolds. This section is additional.
The results are just applications of the theory of one-dimensional diffusion processes and the
comparison theorem of stochastic differential equations. Basic settings for Dirichlet forms
andL-diffusion X are the same as in the previous sections.

THEOREM 39. Let M bean L-recurrent manifold and u € Dom(L)jpc. Suppose that
I'(u, u) existsand

= inf —" () and B()= su
ol _u(x):r F(u,u)x ,37' _u(x)Br F(M,Lt)

(x)

are well defined.
If u satisfies one of the following conditions:

[ee) r 1 r
(@ / exp<—/ a(t)dt)dr <oo and / exp(—/ a(t)dt)dr = 00,
1 1 —00 1
o0 r 1 r
(b) / exp<—/ ,B(Z)dt)dr =00 and / exp<—/ ,B(I)dt) dr < oo,
1 1 —00 1

then u is constant.

PrRoOOF These conditions imply the transience of the diffusion processes (cf. [19, 24])
defined by

dn, = db, +a(n)dt, d&§ =db, + B(&)dt.

Moreover, it is easy to check that (a) impligs - oo ast — oco. The time change
argument and the comparison argument of stochastic differential equations (cf. [18]) show
that (a) impliesu(X;) — +o0 ast — oo almost surely and (b) implies(X;) — —oo as
t — oo almost surely. These contradict the recurrenc# of O

Let |z (f)| denote the length of the tension fialdf) of f.

COROLLARY 40. Let (M, gp) be a parabolic Riemannian manifold, (N, gv) a Rie-
mannian manifold and f : M — N a C?-map. Suppose that N possesses a nonnegative
C2-function ¢ with a continuous function k(x) > 0 satisfying

IVp| < C and Hessp > k(x)gy .
Set

R e oD
a(r) - 2C2 ¢0]!?);f):r <k f('x) C €f (-x)> .

/ooexp(—/ra(t)dt) dr < o0,
1 1

then f isconstant.
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PROOF. Justas in [25], we have
Am(do f)=ko f(x)ey —Clt(f)| and |Vgo f|*> < CZy. O
We introduce an additional notation. L@, gy;) and(N, gn) be Riemannian manifolds
andf : M — N aC?-map. Sefjy = gy — dr ® dr for r(x) = dy (0, x). Define
Idfl = Ndfllcrm,gu)—(TreyN.gn) -

COROLLARY 41. Let N bea Cartan-Hadamard manifoldwith Secly < —«2 (x > 0),
M a parabolic Riemannian manifoldand f : M — N aharmonic map. If

o0 r
/ exp(—/ K inf |||df|||2dt> dr < 00,
1 1 rof(n)=t

PROOF. By the Hessian comparison theorem (cf. [15]) Sest —« 2 implies that
coshkr)
sinh(kr)

then f isconstant.

Hess > « (gy —dr ®@dr). O

5. Transient case. We give a proof of Theorem 1 in a general situation. In this
section we assume the existence of the zeroth Green fungtiory) for an L-diffusion on an
L-transient manifold/.

THEOREM 42. Let M be an L-transient manifold and N a Cartan-Hadamard mani-
fold. If f : M — N isan L-harmonic map of finite energy and if M does not admit any
nonconstant bounded L-harmonic functions, then f is constant g.e.

Define

Soo = {M ; @ smooth measur(eL(M) =1and

/g(-,y)du(y)H <0<>}
M e’}

LEMMA 43. Letu beanonnegative and finely continuous L-subharmonic function of
finite L-energy on a transient manifold M and X an L-diffusion on M. Then {u(X;) ; 0 <
t < ¢} isauniformly integrable submartingale under P, for any i € Soo.

(cf. [13]). We first show the following.

PrRooOF. The well-known Royden decomposition (cf. [1, 2, 13]) or the orthogonal de-
composition of reflected Dirichlet space (cf. [4]) implies thabas anL-harmonic function
part of finite Dirichlet integral, sincé/ is transient and is of finite energy. Them has an
L-harmonic majorant. By the Burkholder inequality

E[ sup u(xoz} < E[ sup h(xt)z} < CONStE,[(h(X))x, ]

O<t<t, O<t<t,
fort, = inf{r > 0; X; ¢ G,} with an exhaustior{G,} defined as in Section 1.2. Take

n € Soo. Then [y, Ex[(h(X))g,1du(x) < || [,; 9C, y) di)llooktnny(M). This shows
E,[SURy<; ¢ u(X)?] < oo. O
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In the transient case we know the asymptotic behaviod dfarmonic maps along
L-diffusions by Darling’s martingale convergence theorem [7].

PROPOSITION 44. Let M bean L-transient manifold and f an L-harmonic map to a
Riemannian manifold N. Then f(X;) convergesin N U {oc} ast — ¢, P,-almost surely for
any u € Soo.

PrROOF. We note only that

1
Eullf(X). f (X))l =5 /M /M 9(y, x)dEf(x)du(y) < oo. U

PROOF OFTHEOREM42. Letd be the distance oN and setr(x) = d(o, x) for an
arbitrary reference poini € N. It is well-known that ifr(x) is convex, therr o f is L-
subharmonic. Moreover, as before

d“(rof,rof) =< dEf()C) .

Thenr o f(X) is a uniformly integrable martingale undéy,. By the above proposition
lim;—. f(X;) exists inN, P,-almost surely. Since the invariantfield of X is trivial,
lim;—.. f(X;) is a constant point, sayp. Thend(y,, (X)) is a uniformly integrable sub-
martingale again. Hence, the submartingale property shows théty,, f(x)) du(x) = 0
for arbitraryu € Soo. O

Appendix. In this section we present a simple statement and its proof in the Dirichlet
form setting of our equivalence (i) and (ii) in Theorem 20. This was pointed out by Professor
M. Takeda.

PROPOSITION 45. Let X be a strong Markov process associated with a Dirichlet
space (€, F). The following conditions are equivalent:

(i) X isrecurrent;

(i) for any u € Fioc With E(u, u) < oo, there exist {¢,} C F N C,(M) satisfying
¢n — lasn — oo m-almost everywhere such that

lim Eu, ¢,) =0.
n—o0
PrROOF  (ii))=(i) is essentially the same as in our case and we omit it. We assume that
X is recurrent. In this case
ij'l'ef _ Jr:'
- e

holds (see [4]). This implies th&l(u, u) < co means: € F,. On the other hand, it is known
(cf. [13]) that (i) is equivalent to the condition that there exits a sequiengeC F satisfying
liMm,— o0 ¥, = 1 m-almost everywhere and lim, o £ (¥, ¥,) = 0. Combining these facts
we see thaf (u, ¥) for € F makes sense. Then we have

&, Y)|? < E, W)EWn, Yn) — 0.
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We remark that the recurrence is equivalent to
leF, and £(1,1) =0.

Hence,
1E(u, 1) < E(u, w)E(L, 1) = 0. O

We also note a simple argument about Theorem 12 for functions of finite Dirichlet inte-
gral.

PROPOSITION 46. Let u bea §-L-subharmonic function of finite Dirichlet integral on
D. Then its Riesz chargeis a smooth signed measure.

PROOF. By the Kunita-Watanabe inequality we see thatgoz F N C,(M)

1/2 1/2
/du<u,¢> < (/ dwu,u)) </ du<¢,¢>> = constan€ (¢, ¢)V/2.
D D D

On the other hand,
_/ d,u(u,¢>) Z/ odvy
D D

by definition. Thusy, is of finite energy. Hence, by the genal theory of Dirichlet spaces
(cf. [13]), v, charges no sets of zero capacity. |
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