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Abstract. We show that the parabolicity of a manifold is equivalent to the validity of
the ‘divergence theorem’ for some class ofδ-subharmonic functions. From this property we
can show a certain Liouville property of harmonic maps on parabolic manifolds. Elementary
stochastic calculus is used as a main tool.

0. Introduction. This note was inspired by the following two results concerning the
Liouville property of harmonic maps and subharmonic functions of finite energy.

THEOREM 1 (Cheng-Tam-Wan [5]). Let f : M → N be a harmonic map of finite
energy from a complete Riemannian manifold M to a Cartan-Hadamard manifold N (i.e. N
is a simply connected, complete Riemannian manifold of nonpositive sectional curvature). If
M does not admit nonconstant bounded harmonic functions, then f is constant.

They actually showed that under the assumption on the source manifold, the image of
the harmonic map should be bounded. The above result is obtained by combining this with a
result due to Kendall [21] to the effect that ifM does not admit nonconstant bounded harmonic
functions andf is bounded, thenf is constant.

The second is a divergence theorem due to Takegoshi.

THEOREM 2 (Takegoshi [25]). Let M be a complete Riemannian manifold and u a
C2-function on M . Suppose that u satisfies

|∇u|2 = o

(∫ r

1

1

dV (t)/dt

)
, and (�u)− ∈ L1(M) ,

where V (t) is the Riemannian volume of a geodesic ball of radius t . Then (�u)+ ∈ L1(M)

and ∫
M

�udv = 0 .
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He improved the result due to Cheng et al. in the case where∫ ∞

1

1

dV (t)/dt
= ∞ .

It is known that this condition on the volume growth implies the parabolicity of the manifolds
(cf. [10, 25]). We say that a Riemannian manifoldM is parabolic or recurrent ifM does not
admit any nonconstant bounded subharmonic function. This is equivalent to saying that no
positive Green function exists onM, namely,

g(x, y) =
∫ ∞

0
p(t, x, y)dt = ∞ , x, y ∈ M ,

wherep(t, x, y) is the heat kernel for(1/2)�M where�M is the Laplacian onM with re-
spect to the Riemannian metric. This implies that the Brownian motion onM is recurrent.
If the Brownian motion onM is transient (i.e., nonparabolic), there is a general result about
subharmonic functions of finite Dirichlet integral. Then Chang-Tam-Wan’s result is easier in
this case. (In the last section we give a proof of their result in transient case. The method used
there is applicable in the more general cases.) Hence, in this paper we devote ourselves mainly
to the parabolic case. To improve the above results, we use a probabilistic method including
the ergodic theorems for recurrent Markov processes. This probabilistic method enables us to
extend the above result to the case ofL-harmonic maps.

We first show a variant of Takegoshi’s result in the general setting. The usual divergence
theorem implies that for anyφ ∈ C∞

0 (M)∫
M

�φdv = 0 .

Thus, Takegoshi’s result implies that some parabolicity allows a divergence theorem to hold
for functions that do not necessarily have compact support. We show that the validity of such
a divergence theorem for some class ofδ-subharmonic functions gives a characterization of
the parabolicity of a manifold.

In the Riemannian case our results can be translated into the following. We consider�u

in the sense of distribution. Then it can be regarded as a signed measure.(�u)+ and(�u)−
denote the positive and negative parts of�u, respectively, so that they are measures.

THEOREM 3. The following properties are equivalent.
(i) M is a parabolic manifold.
(ii) If u is a δ-subharmonic function of finite Dirichlet integral, then∫

M

(�u)+ =
∫
M

(�u)− (≤ ∞) .

(iii) If u is a bounded δ-subharmonic function, then∫
M

(�u)+ =
∫
M

(�u)− (≤ ∞) .

This characterization in a general setting is given in Theorem 20 below. We would like
to emphasize in this paper that this divergence theorem in principle joins stochastic calculus
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with elementary tools of analysis on manifolds such as the coarea formula and Green’s for-
mula. Actually we give a general version of the coarea formula in Proposition 9 and Green’s
formula in Theorem 25 forδ-subharmonic functions. We also show in Proposition 31 that
usual Green’s formula can be derived fromour divergence theorem by means of stochastic
calculus.

As for an application to harmonic maps we have the following.

THEOREM 4. Let M be a parabolic Riemannian manifold and f : M → N a har-
monic map fromM to a complete Riemannian manifoldN of nonpositive sectional curvature.
Assume that f is of finite energy or that f has bounded image.

If a point o ∈ N satisfies

∫
f−1(C(o))

�M(r ◦ f ) < ∞ ,

then ∫
f−1(C(o))

�M(r ◦ f ) =
∫
M\f−1(C(o))

�M(r ◦ f )dv

holds. Here C(o) is the cut locus at o and r(x) = dN(o, x) is the Riemannian distance from
o to x.

From the above result we immediately have the following.

COROLLARY 5. Let f be a harmonic map from a parabolic manifoldM to a complete
Riemannian manifold N with SectN ≤ 0. If f is of finite energy or f has bounded image and
there exists a point o ∈ N such that Cap(f−1(C(o))) = 0, then f is constant.

Our method enables us to extend these results to maps lacking regularity, which are
called finely harmonic maps.

We also obtain a ‘monotone property’ for proper harmonic maps using these method
(Corollary 36). We add some Liouville type theorems on parabolic manifolds in Section 4.

We would remark in the last section a simple argument about our Theorem 20 in the
Dirichlet form setting. This was noted by Professor M. Takeda. Such a generalization would
allow us to obtain results similar to those presented here in a much wider class of spaces and
operators including the cases of jump processes.

1. Preliminaries and setting.
1.1. L-diffusion and related measures. LetM be a manifold with an elliptic oper-

atorL associated with an irreducible, strongly local and regular Dirichlet space(E,F) on
L2(M,m), wherem is a Radon measure onM. L and(E,F) are related to each other in such
a way that

−
∫
M

Lu v dm = E(u, v) for u, v ∈ Dom(L) .



356 A. ATSUJI

It is well-known that a diffusion process(X, Px, x ∈ M) uniquely corresponds to(E,F)
(cf. [13]). This diffusion hasL as its generator, so we sometimes call this diffusion theL-
diffusion. By the capacity Cap we mean the capacity defined by this Dirichlet form. We
remark that if a Borel setA is of capacity zero, thenA cannot be hit byX, namely,A is a
polar set ofX.

A Radon measureµ is said to be smooth, roughly speaking, ifµ does not charge sets of
capacity zero. Any Radon measure is decomposed into a smooth measure and a nonsmooth
measure which is supported by a set of capacity zero (cf. [3, 14]). Such a smooth measure
is called the smooth part of the original measure. In this noteµ̃ usually denotes the smooth
part of a measureµ. We also recall Revuz’s correspondence between positive continuous ad-
ditive functionals and smooth measures. It is known that for any positive continuous additive
functionalA, there uniquely exists a smooth measureµ such that∫

M

φ(x)dµ(x) = lim
t→0

1

t

∫
M

Ex

[ ∫ t

0
φ(Xs)dAs

]
dm(x) for φ ∈ C0(M) .

Such aµ is called the Revuz measure ofA. If At = ∫ t
0 h(Xs)ds, then its Revuz measure is

h(x) dm(x). If u ∈ Floc, thenu(X) has the Fukushima decomposition, namely,

ũ(Xt )− ũ(X0) = Mt + At ,

whereũ is a quasi-continuous modification ofu,M is a local martingale andA is a continuous
additive functional of zero energy. The quadratic variation〈M〉 is also a positive continuous
additive functional ofX and its Revuz measure is denoted byµ〈u,u〉. µ〈u,v〉 can be defined
similarly. It is known that the Dirichlet formE(u, u) can be written as

E(u, u) = 1

2

∫
M

dµ〈u,u〉 .

If u is a smooth function andX is a Brownian motion on a Riemannian manifoldM, then

u(Xt)− u(X0) = Mt + 1

2

∫ t

0
�Mu(Xs)ds ,

andMt = B(
∫ t

0 |∇u|2(Xs)ds), whereB is the one-dimensional standard Brownian motion.
In this casedµ〈u,u〉 = |∇u|2(x)dv(x).

1.2. δ-L-subharmonic function. We say thatu is anL-subharmonic function onM if
u ∈ Ḟloc (see [13] for the definition and the properties) and

−∞ < µ〈u,φ〉 ≤ 0 for any φ ∈ C0 ∩ F and φ ≥ 0 .

We say thatu is anL-superharmonic function onM if −u is L-subharmonic onM andu is
anL-harmonic function ifu is L-superharmonic andL-subharmonic. WhenL = (1/2)�M
is half of the Laplacian onM anddm = dv is the Riemannian volume onM, we have

E(u, u) = 1

2

∫
M

|∇u|2dv ,
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andX is a Brownian motion onM. In this case the above definition can be restated as follows.
u is a�M -subharmonic function (subharmonic function, for short) onM if there exists a
closed setN with Cap(N) = 0 such thatu is inH 1

0,loc(M \N) and

−∞ <

∫
M

〈∇u,∇φ〉dv ≤ 0 for any φ ≥ 0 and φ ∈ C∞
o (M) .

This class includes all subharmonic functions in the classical sense. An important example
of classical subharmonic functions isu(z) = log |z| for M = C, L = �. In this caseu /∈
H 1

0,loc(R
2) butu is a�-subharmonic function in our sense.

We say thatu is a δ-L-subharmonic function onM if u can be expressed locally as a
difference of twoL-subharmonic functions(cf. [17]).

LEMMA 6. If u is an L-subharmonic function, there is a unique nonnegative measure
on M that corresponds to u. This measure is called the Riesz measure of u (cf. [16]).

PROOF. Let I (φ) = −µ〈u,φ〉 for φ ∈ C0 ∩ F . Take a domainD ⊂ M such that
suppφ ⊂ D andψ ∈ C0(M) such thatψ = 1 onD. The derivation property of the Revuz
measure (cf. [13]) implies that

−µ〈u,φ〉 = −µ〈u,ψφ〉 ≤ −‖φ‖∞µ〈u,ψ〉 .

The regularity of the Dirichlet space means thatC0 ∩ F is dense inC0(M). Hence,I (φ)
can be extended to a positive continuous functional onC0(M). The Riesz-Markov theorem
implies that there exists a unique measureνu such that

I (φ) =
∫
M

φdνu for φ ∈ Co(M) . �

From now onνu denotes the Riesz measure ofu.
If u is aδ-L-subharmonic function onM, there a signed measure corresponds tou. It is

called the Riesz charge, denoted by

νu = ν1 − ν2 ,

whereν1, ν2 are the smallest measures such that the decomposition holds. By the choice of
theseν1, ν2 this decomposition is unique.

An important probabilistic characterization ofδ-L-subharmonic functionu is the fact
that u(X) is a semi-martingale for anL-diffusion X (cf. [10, 13]). Namely, ifu is a δ-L-
subharmonic function, thenu(X) can be decomposed as

ũ(Xt )− ũ(X0) = Mt + At ,

whereũ is a quasi-continuous modification ofu,M is a local martingale andA is a continuous
additive functional of bounded variation. We remark that anyu ∈ Ḟloc has a quasi-continuous
modificationũ. The Revuz measure corresponding toA is

ν̃u = ν̃1 − ν̃2 ,
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whereν̃1 and ν̃2 are the smooth parts ofν1 andν2 andνu = ν1 − ν2 is the Riesz measure
of u. For a generalδ-L-subharmonic functionu we defineµ〈u,u〉 as follows. Let{Gn} be a
sequence of finely open sets ofM such thatGn ⊂ Gn+1, u = un,m-almost everywhere on
Gn for someun ∈ F and Cap(M \ ⋃

n Gn) = 0. Note that〈MTn〉t is a positive continuous
additive functional whereMTn is stopped byTn = inf{t > 0 ; u(Xt) /∈ Gn}, sinceu onGn
belongs toFloc.

Letµ(n)〈u,u〉 be the Revuz measure of〈MTn〉t . Setµ〈u,u〉 = supn µ
(n)
〈u,u〉. We say thatu is of

finite Dirichlet integral or finite (L-)energy ifµ〈u,u〉(M) = supn µ
(n)
〈u,u〉(M) < ∞.

If µ〈u,u〉 is absolutely continuous with respect tom, then its densitydµ〈u,u〉/dm is de-
noted byΓ (u, u) and is called the ‘carré du champ’ ofu.

We proceed to the stochastic calculus forδ-L-subharmonic functions.

LEMMA 7 (Tanaka’s formula cf. [24]). Let Y be a semi-martingale on R and a ∈ R.
(i)

Yt ∧ a = Y0 ∧ a +
∫ t

0
1{Ys≤a} dYs − 1

2
Lat ,

(ii)

Yt ∨ a = Y0 ∨ a +
∫ t

0
1{Ys≥a} dYs + 1

2
Lat .

An increasing process La is called a local time at a of Y .

If Y = u(X), thenLa is a positive continuous additive functional. We define the smooth
measurelau onM as the Revuz measure ofLa with Y = u(X).

From this we have the following.

PROPOSITION 8. If u is a δ-L-subharmonic function, then u ∧ a and u ∨ a are δ-L-
subharmonic functions for a ∈ R. Their Riesz charges are

dνu∧a = 1{u≤a} dνu − (1/2)lau and dνu∨a = 1{u≥a} dνu + (1/2)lau .

In particular, if u = u+ − u−, where u−, u+ are the positive and negative parts of u, respec-
tively, then

dνu− = −1{u≤0} dνu + (1/2)lau and dνu+ = 1{u≥0} dνu + (1/2)lau .

We give theδ-subharmonic version of the coarea formula.

PROPOSITION 9. Let u be a δ-L-subharmonic function satisfying µ〈u,u〉({u ≤ r}) <
∞ for each r ∈ R. Then for φ ∈ Co(R) and ψ ∈ Co(M) we have∫

M

φ(u(x))ψ(x)dµ〈u,u〉(x) =
∫

R

∫
M

φ(y)ψ(x)dl
y
u(x)dy .

PROOF. We may assume thatφ ≥ 0, ψ ≥ 0. Recall that the occupation time formula
for a semi-martingaleY (cf. [24]):∫ t

0
φ(Ys)d〈Y, Y 〉s =

∫
R
φ(y)L

y
t dy for φ ∈ Co(R) .
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SettingY = u(X) and integrating both sides with respect todPx · ψ(x)dm(x), we have
∫
M

ψ(x)Ex

[ ∫ t

0
φ(u(Xs))d〈u(X), u(X)〉s

]
dm(x) =

∫
M

ψ(x)Ex

[ ∫
R
φ(y)L

y
t dy

]
dm(x) .

Since the limit in the definition of the Revuz measure is monotone, we have the desired equal-
ity. �

From Proposition 9 we have the following.

COROLLARY 10. Let M be a complete Riemannian manifold.
(i) Let u be a proper C2-function and X a Brownian motion on M . The local time

measure lru(M) on u−1(r) is given by

lru(M) =
∫
u−1(r)

‖∇u‖(x)dA(x) for almost every r ,

where dA is the induced volume form on u−1(r).
(ii) Suppose dimM ≥ 2. Let u(x) = dM(o, x) be the Riemannian distance function

for o ∈ M . Then lru(M) equals the (dimM − 1)-dimensional Hausdorff measure of ∂B(r),
where ∂B(r) = {x ∈ M ; dM(o, x) = r}.

PROOF. (i) Note thatdµ〈u,u〉 = ‖∇u‖2 dv, wheredv is the Riemannian volume mea-
sure.

(ii) It is well-known that the cut locus ofo C(o) is a null set with respect todv. Then
‖∇u‖ = 1dv-almost everywhere. Hencelru(M) = dV (r)/dr almost everyr, whereV (r) is
the Riemannian volume ofB(r) = {x ∈ M ; dM(o, x) < r}. On the other hand, the coarea
formula for Lipschitzian functions (cf. [9]) implies thatdV (r)/dr equals the(dimM − 1)-
dimensional Hausdorff measure of∂B(r). �

We put the following Assumptions 1 and 2 onL for simplicity in some cases. We need
these assumptions only for Theorem 12.

ASSUMPTION 1. If D is a relatively compact domain ofM, then there exists a Green
functiongD(x, y) onD with Dirichlet boundary condition satisfying

gD(x, y) > 0 for x, y ∈ D andgD(x, y) is continuous forx, y ∈ D ×D \ the diagonal.

ASSUMPTION 2. AnyL-subharmonic function satisfies the Riesz decomposition for-
mula, namely, ifu is anL-subharmonic function onM andD is a relatively compact domain
in M, then there exists aL-harmonic functionh onD bounded onD̄ such that

u(x) = h(x)−
∫
D

gD(x, y)dνu(y)

holds outside a set of zero capacity.

REMARK 11. Assumptions 1 and 2 are satisfied by Brownian motions on Riemannian
manifolds and diffusion processes with uniformly elliptic generators.
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We note the following about the smooth parts of Riesz measure ofδ-L-subharmonic
functions.

THEOREM 12. Let u be a δ-L-subharmonic function onM satisfying thatµ〈u,u〉(M) <
∞ or u is bounded. Then

ν̃u = νu .

Namely, the Riesz charge of u has no nonsmooth part.

REMARK 13. Under the assumptionµ〈u,u〉(M) < ∞, the conclusion holds without
Assumptions 1 and 2 in the framework of Dirichlet spaces. We come back to this point in the
Appendix.

PROOF OF THEOREM 12. LetD be a relatively compact domain ofM. It suffices
to show the result forD instead ofM. Let u = u1 − u2, whereu1, u2 areL-subharmonic
functions. It suffices to show the assertion for eachuk, k = 1,2. Thus, we assume thatu is an
L-subharmonic function. Setu = u+ − u−, u+, u− ≥ 0. Thenu+, u− areδ-L-subharmonic
functions. Sincelu is smooth, by Proposition 8,

dν̃u− − dνu− = 1{u≤0} d(νu − ν̃u) .

On the other hand,u(X) is a semi-martingale. Then

u−(Xt)− u−(X0) = Mt + At ,

whereM is a local martingale andA is a process of bounded variation. Integrating both sides
with the stopping time argument, we have

Ex[u−(XτD )] − u−(x)+ Nx(τD, u
−) = Ex[AτD ] =

∫
D

gD(x, y)dν̃u− ,

where

Nx(τD, u) = lim
λ→∞ λPx

(
sup

0<t<τD
u−(Xt ) > λ

)
.

By Assumption 2, the Riesz decomposition ofu− implies that there exists anL-harmonic
functionh onD such that

u−(x) = h(x)−
∫
D

gD(x, y)dνu− .

Hence

Nx(τD, u
−) =

∫
D

gD(x, y)1{u≤0}(y)d(νu− − ν̃u−)(y) .



PARABOLICITY, FORδ-SUBHARMONIC FUNCTIONS 361

We claim that ifµ〈u,u〉(M) < ∞ oru is bounded, thenNx(τD, u−) = 0. If u is bounded, then
the result is obvious. Assume thatµ〈u,u〉(M) < ∞. If λ is large enough, then

P

(
sup

0<t<τD
u−(Xt) > λ

)
≤ P

(
sup

0<t<τD
|Mt | + AτD + u−(x) > λ

)

≤ P

(
sup

0<t<τD
|Mt | > λ

2

)
+ P

(
AτD >

λ

2

)
.

By the Burkholder inequality, for a constantc > 0

Px

(
sup

0<t<τD
|Mt | > λ

2

)
≤ c

λ2Ex [〈M〉τD ] .

The assumption implies thatEx[〈M〉τD ] < ∞ for almost everyx. With Ex[AτD ] < ∞ we
have the desired result. It is easy to see from Proposition 8 that

Nx(τD, u
+) = 0 . �

We apply Theorem 12 to complex functions.

COROLLARY 14. Let f be a meromorphic function on a Kähler manifoldM andD a
relatively compact domain in M . If there exists a constant c > 0 such that

∫
D ∩ {|f |>c}

|df |2
|f |2 dv < ∞ ,

then f is holomorphic on D and never vanishes on D.

We note a related result due to Fukushima in the theory of Dirichlet spaces.

PROPOSITION 15 (Fukushima [11]). The Riesz measure of a δ-L-subharmonic func-
tion in Floc is smooth.

1.3. L-finely harmonic maps and their energy. IfN is a manifold with a connection,
we can naturally define a geodesic. We say that a functionh onN is geodesically convex if
t �→ h(γ (t)) is convex for any geodesicγ .

DEFINITION 16 (cf. [8]). A continuous stochastic processY on a probability space
(Ω,F ,Ft , P ) is called a martingale on a manifoldN if for any geodesically convex function
v defined on each open subsetU ⊂ N , v(Y ) is a submartingale with respect to(Ω,F ,Ft , P )
whenY lies inU .

DEFINITION 17. A Borel measurable mapf : M → N is called anL-finely harmonic
map iff (X) is a martingale onN for theL-diffusionX.

From now on we assume that the target manifoldN is a Riemannian manifold. Then we
can define the intrinsic time of a martingaleY onN .
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DEFINITION 18. LetỸ be the stochastic development ofY (cf. [8, 12]). We define the
intrinsic time[Y, Y ] by

d[Y, Y ]t =
∑
i

d〈Ỹ i , Ỹ i〉t ,

where〈·, ·〉 is the usual quadratic variation for one-dimensional local martingales.

We remark that ifY = f (X), then[Y, Y ] is a positive continuous additive functional of
X. These facts enable us to define the energy ofL-finely harmonic map.

DEFINITION 19. Letf : M → N be anL-finely harmonic map andX anL-diffusion
onM. We define an energy measureEf of f as the Revuz measure of the intrinsic time
[f (X), f (X)] of f (X) (if necessarily, via the stopping time argument). Namely,∫

M

φ(x) dEf (x) = lim
t→0

1

t

∫
M

Ex

[ ∫ t

0
φ(Xs) d[f (X), f (X)]s

]
dm(x) for φ ∈ C0(M) .

If dEf (x) is absolutely continuous with respect todm, thenef denotes the density.

2. A divergence theorem for some δ-L-subharmonic functions on parabolic mani-
folds. We say that a manifoldM isL-recurrent (resp.L-transient) ifM admits a recurrent
(resp. transient)L-diffusion. Our basic observation is as follows.

THEOREM 20. The following conditions are equivalent.
(i) M is L-recurrent.
(ii) For any δ-L-subharmonic function u on M with E(u, u) < ∞, the positive and

negative smooth parts ν̃+ and ν̃− of the Riesz charge of u satisfy

ν̃−(M) = ν̃+(M) (≤ ∞) .

(iii) For any bounded δ-L-subharmonic function u on M, the positive and negative
smooth parts ν̃+ and ν̃− of the Riesz charge of u satisfy

ν̃−(M) = ν̃+(M) (≤ ∞) .

REMARK 21. In cases (ii) and (iii) of the above theorem

ν−(M) = ν̃−(M) = ν̃+(M) = ν+(M)

holds by Theorem 12.

The above assertion(i) ⇒ (ii) can be strengthened as follows.

THEOREM 22. Let M be an L-recurrent manifold and u a δ-L-subharmonic function
on M with µ〈u,u〉(M) < ∞. We also assume that u is finely continuous and upper semicon-
tinuous.

Then either the positive and negative smooth parts ν̃+ and ν̃− of the Riesz charge of u
satisfy

0< ν̃−(M) = ν̃+(M) (≤ ∞) ,
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or u is constant.

REMARK 23. If the continuity assumption of the above theorem is removed, the con-
clusion becomes that either 0< ν̃−(M) = ν̃+(M)(≤ ∞) or u is constantm-almost every-
where.

We use a ratio ergodic theorem for recurrent Markov processes for the proof of
Theorem 22.

LEMMA 24 (cf. [24]). Let C(1), C(2) be positive continuous additive functionals of X
and µ1, µ2 the corresponding Revuz measure, respectively. Assume that X is recurrent and
µ2(M) < ∞. Then we have

lim
t→∞

C
(1)
t

C
(2)
t

= µ1(M)

µ2(M)
almost surely.

PROOF OFTHEOREM 22. By the Fukushima decomposition or Itô’s formula we have

u(Xt )− u(X0) = Mt + A
(1)
t − A

(2)
t ,

whereM is a local martingale andA(1), A(2) are positive continuous additive functionals cor-
responding to the smooth measuresν̃+, ν̃−, respectively. Recall thatMt = B(〈M〉t ) with a
one-dimensional Brownian motionB and the Revuz measure of〈M〉 is µ〈u,u〉. The assump-
tion implies thatµ〈u,u〉(M) < ∞. We note that by the assumption and the above lemma,

lim
t→∞

A
(1)
t

〈M〉t = ν̃+(M)
µ〈u,u〉(M)

(≤ ∞) , lim
t→∞

A
(2)
t

A
(1)
t

= ν̃−(M)
ν̃+(M)

.

Combining this with the law of iterated logarithm of the one-dimensional Brownian motion

lim sup
t→∞

|Bt |√
2t log logt

= 1, almost surely,

we have

if ν̃−(M) < ν̃+(M) , u(Xt) → +∞ as t → ∞ almost surely

if ν̃−(M) > ν̃+(M) , u(Xt) → −∞ as t → ∞ almost surely.

This contradicts the assumption thatX is recurrent. Hence,̃ν−(M) = ν̃+(M). If ν̃−(M) = 0,
thenu is harmonic, andu takes the form of

u(Xt )− u(X0) = Mt with Mt = B(〈M〉t ) .
We considerUt = max{Mt,0}. Tanaka’s formula (cf. [24]) implies that

Ut =
∫ t

0
1Ms>0 dMs + lt ,

where lt is the local time at 0 ofMt . lt is also a positive continuous additive functional
of X. The Revuz measure corresponding to the quadratic variation〈∫ t0 1Ms>0 dMs〉 =∫ t

0 1Ms>0 d〈M〉s is finite since that corresponding to〈M〉 is finite by assumption. We again use
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the above ratio ergodic theorem, and getlt = 0. It implies thatu is lower or upper bounded.
The recurrence implies thatu should be constant. �

PROOF OF(ii) ⇒ (i) IN THEOREM 20. Assume thatM is notL-recurrent. In general
(cf. [13]) this assumption implies that there existsh ∈ L1+(m) such thatGh ∈ Fe with
µ〈Gh,Gh〉(M) < ∞ and−Gh is L-subharmonic whereG is the zeroth resolvent operator, a
contradiction. In the case of a Brownian motion the situation is more familiar. The assumption
implies that there exists a Green functiong onM. For a positiveφ ∈ C∞

0 (M), let

v(x) =
∫
M

g(x, y)φ(y)dvM(y) .

Thenv is a superharmonic function with finite Dirichlet integral. �

PROOF OF(iii ) ⇒ (i) IN THEOREM 20. If M is not L-recurrent, then there exists a
nonconstant, boundedL-subharmonic function which is notL-harmonic. This is impossible
by (iii). �

PROOF OF(i) ⇒ (iii ) IN THEOREM 20. We can show more generally the following
theorem.

THEOREM 25. Let M be an L-recurrent manifold. Suppose that a δ-L-subharmonic
function u is bounded from below. If there exists r > inf u such that ν̃+({u ≤ r}) < ∞, then

ν̃+({u ≤ r}) = ν̃−({u ≤ r})+ lru ,

where lru is the smooth measure corresponding to the local time at {u = r} of X.

REMARK 26. The assumption that the lower boundedness ofu is not essential and
only for simplicity.

This immediately follows from Tanaka’s formula and the ratio ergodic theorem of the
following type.

LEMMA 27 (cf. [24]). Let C(1), C(2) be positive continuous additive functionals of X
and µ1, µ2 the corresponding Revuz measure, respectively. Assume that X is recurrent and
µ2(M) < ∞. Then we have

lim
t→∞

Ex [C(1)t ]
Ex [C(2)t ]

= µ1(M)

µ2(M)
, Px -almost surely, m-almost everywhere x ∈ M .

In connection with Takegoshi’s result we give a similar and slightly more general result
here. LetC(K,G) be the condenser capacity defined by

C(K,G) = E(eK,G, eK,G) ,
whereeK,G is the equilibrium potential which is a unique element ofF satisfyingeK,G = 1
onK, eK,G = 0 onGc andeK,G harmonic onG \K.

PROPOSITION 28. If there exists an exhaustion {Gn} satisfying

µ〈u,u〉(Gn)C(G1,Gn) → 0 as n → ∞ ,
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then

ν̃−(M) = ν̃+(M) .

It is easy to check that in the Riemannian case

C(B(1), B(r)) ≤ constant

( ∫ r

1

dt

V ′(t)

)−1

.

3. Applications.

3.1. Harmonic maps fromL-recurrent manifolds. We apply these divergence theo-
rems to harmonic maps. Letf : M → N be anL-finely harmonic map andN a Riemannian
manifold. Fix an arbitrary reference pointo ∈ N . Setr(x) = d(o, x), whered is the Rie-
mannian distance onN . Thenr(x) is a smooth function onN \ (C(o) ∪ {o}), whereC(o)
is the cut locus ofo. It is well known that−�r is a nonnegative distribution onC(o) (cf.
Appendix in [26]). Cranston et al. [6] gave a probabilistic counterpart to this in martingale
language. Namely, they showed that ifY is a martingale onN andY does not hito, then

r(Yt )− r(Y0) = a local martingale+ 1

2

∫ t

0
1N\C(o)Hessr(dY, dY )− Lt ,

where Hess is the Hessian with respect to the Levi-Civita connection ofN andL is an in-
creasing process which increases only whenY stays onC(o). From this we can see thatr ◦ f
is aδ-L-subharmonic function onM andr is aδ-�N -subharmonic function onN .

It is well known that−�r|C(o) is singular to the Riemannian volume measure. We apply
Theorem 12 or Proposition 15 to the cases whereY is a Brownian motion onN andY = f (X)

for anL-finely harmonic mapf : M → N with anL-diffusionX, and obtain the following.

PROPOSITION 29. In the notation as above, we have:
(i) −�r|C(o) is a smooth measure;
(ii) if f : M → N is locally bounded or the energy of f is locally finite, then −�r ◦

f |f−1(C(o)) is a smooth measure.

If SectN ≤ 0, thenr(x) is a convex function outsideC(o). Hence, whenY = f (X),
the last two terms in the above equation due to Cranston et al. are positive continuous additive
functionals ofX. Their Revuz measure are the smooth parts of the positive partµ1 and the
negative partµ2 of the Hahn decomposition ofL (r ◦ f ), respectively.

The following is a direct consequence of Theorem 22.

COROLLARY 30. Assume thatM is an L-recurrent manifold,N is a Riemannian man-
ifold and f : M → N is an L-finely harmonic map. Let µ1, µ2 be as above. If f is of finite
L-energy and there exists a point o ∈ N such that Cap(f−1(C(o))) = 0 and

µ̃2(M) < ∞ ,

then

0< µ̃2(M) = µ̃1(M) or f is constant q.e.
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In particular if µ̃2(M) = 0, then f is constant q.e.

PROOF. We have only to note that iff is of finiteL-energy, thenµ〈r◦f,r◦f 〉(M) < ∞.
|∇r| ≤ 1 anddr ⊗ dr ≤ gN imply that

〈M〉t ≤ [f (X), f (X)]t ,
whereM is the martingale part ofr ◦ f (X). It follows from this that

dµ〈r◦f,r◦f 〉 ≤ dEf . �

3.2. Green’s formula. Theorem 25 can be regarded as a generalization of Green’s
formula forδ-L-subharmonic functions. We can recover the usual Green’s formula for smooth
functions from Theorem 25 and stochastic calculus.

PROPOSITION 31. (i) If φ is a smooth function on a complete Riemannian manifold
M and D is a relatively compact domain with smooth boundary ∂D in M, then

1

2

∫
D

�Mφ(x) dv(x) =
∫
∂D

∂φ

∂n
dA ,

where ∂/∂n is the outward normal derivative on ∂D.
(ii) Let u be a proper C2-function on a complete Riemannian manifold M . Then for

almost every r ∈ (0,∞), we have∫
{u≤r}

�Mu(x)dv(x) =
∫
u−1(r)

‖∇u‖(x)dA(x) .

PROOF. (i) We consider a Brownian motioñX on D̄ reflecting at∂D. It is known
that such a process can be constructed onD̄ since∂D is smooth. SincẽX is recurrent, the
previous argument is applicable. Namely, we regardD̄ as a parabolic manifold.̃X has a
generatorL = (1/2)�M with Neumann boundary condition. Moreover, it has a form in SDE
using the original Brownian motionX onM as

dX̃ = dX − n(X̃)dL ,

whereL is the local time ofX on∂D andn is the outward normal vector to∂D. Hence, for a
smooth functionφ,

φ(X̃t )− φ(X̃0)−
∫ t

0

1

2
�Mφ(X̃s)ds +

∫ t

0

∂φ

∂n
dLt = a local martingale.

We also note that the Revuz measure ofL is the surface measure on∂D. Sinceφ is bounded
on D̄, Theorem 20(ii) implies the desired formula.

(ii) Let D be a relatively compact domain with smooth boundary∂D in M such that
{u ≤ r} ⊂ D. A standard argument enables us to apply the above formula formally to
φ = u ∧ r. Our choice ofD means that(∂/∂n)(u ∧ r) = 0. Tanaka’s formula and the same
argument as before lead us to the desired formula. �
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REMARK 32. We can give a general version of Green’s formula such as (i) of the
above proposition provided that a reflectingL-diffusion exists. We can construct it with some
assumptions onD and the diffusion. Since preparations are needed, we omit the detail here.

We note the case whereu(x) = r(x) with r(x) = dN(o, x) andN is a complete Rie-
mannian manifold. Letl denote−�Nr|C(o). By Theorem 25 and Corollary 10 with the argu-
ment in the proof of Proposition 31 we have the following.

COROLLARY 33. Let N be a complete Riemannian manifold, o ∈ N an arbitrary
point and C(o) the cut locus of o. For almost every r ∈ (0,∞) with o /∈ Br(a) and a ∈ N ,
we have ∫

C(o)∩Ba(r)
l + vol(∂Ba(r)) =

∫
Ba(r)\C(o)

�Nr(x)dv(x) ,

where Ba(r) is the geodesic ball with center a ∈ N and radius r, and vol(∂Ba(r)) denotes
the (dimN − 1)-dimensional Hausdorff measure of ∂Ba(r) with respect to the Riemannian
metric.

3.3. ProperL-finely harmonic maps. We apply the results in the previous sections to
get a general estimate of the energy of proper maps to Cartan-Hadamard manifolds.

LEMMA 34. Let u be a proper δ-L-subharmonic function such that dµ〈u,u〉 is locally
finite and

νu ≥ k(u(x))dµ〈u,u〉 − a(x)dm

for k ≥ 0 on [0,∞), where k(u(x)) is locally integrable for dµ〈u,u〉 and a(x) is a locally
integrable function on M with respect to dm. Then we have∫ r

−∞
k(t)ltu(u

−1(t))dt −
∫

{u≤r}
a(x)dm(x) ≤ lru(u

−1(r)) .

COROLLARY 35. Under the assumption as in the above lemma, we have for δ < r∫
{u≤r}

k(u(x))dµ〈u,u〉

≥ e
∫ r
δ k(t)dt

{∫
{u≤δ}

k(u(x))dµ〈u,u〉 −
∫ r

δ

e−
∫ t
δ k(s)dsk(t)

∫
u≤t

a(x)dm(x)dt

}
.

We apply this to properL-finely harmonic maps. LetN be a Cartan-Hadamard
manifold andr(x) = d(o, x) the distance function onN . If φ is aC2-function on[0,∞),
by direct calculation we have

Hessφ(r) = φ′(r)Hessr + φ′′(r)dr ⊗ dr .

We also remark that the Hessian comparison theorem (cf. [15]) implies

Hessr ≥ ρ(r)(gN − dr ⊗ dr) ,

wheregN is the Riemannian metric ofN andρ(t) = 1/t if the sectional curvature ofN ≤ 0,
andρ(t) = √

κ if the sectional curvature ofN ≤ −κ < 0.
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Combining these observations with the derivation property of Revuz measure, we have
the following:

COROLLARY 36. Let f : M → N be a proper L-finely harmonic map from a man-
ifold M which supports a recurrent L-diffusion to a Cartan-Hadamard manifold N . Then
there exists a constant C > 0 depending only on ε > 0 such that∫

f−1(Bo(r))

1

dN(o, f (x))1−ε dEf (x) ≥ C
( r
δ

)ε ∫
f−1(Bo(δ))

1

dN(o, f (x))1−ε dEf (x) ,

for 0< δ < r < ∞ and ε > 0, where Bo(r) is the geodesic ball with center o and radius r in
N .

PROOF. We can setu = φ(r ◦ f ). We takeφ(t) = t1+ε. Thenk(t) = ε/((1 + ε)t) in
Corollary 35 will do. �

3.4. Meromorphic functions. We can also apply our results to meromorphic func-
tions on parabolic Kähler manifolds.

THEOREM 37. Let f be a meromorphic function on a parabolic Kähler manifold M .
If there exists a constant c > 0 such that

∫
{|f |>c}

|df |2
|f |2 dvM < ∞ ,

then f is constant.

PROOF. Note thatu = log |f | is aδ-subharmonic function onM and the smooth part
of its Riesz measure vanishes. We can apply the same argument as in Theorem 22 tou∨ logc
to get the desired result. �

It is known that there exist recurrent holomorphic diffusions (see [12, 20]) onCn and
submanifolds inCn satisfying a certain volume growth condition (for instance, algebraic sub-
manifolds).u appearing in the above proof is aδ-L-subharmonic function ifL is the generator
of a holomorphic diffusion. Kaneko [20] gave such a recurrent holomorphic diffusion by the
Dirichlet form onL2(Cn, dm) defined by

E(φ,ψ) =
∫

Cn
dφ ∧ dcψ ∧ ωn−1 for φ,ψ ∈ C∞

0 (C
n) ,

anddm = ddc|z|2 ∧ωn−1, whereω = ddc log(1+ |z|2). Then our general setting enables us
to obtain the following.

THEOREM 38. Let f be a meromorphic function on Cn and dm as above. If there
exists a constant c > 0 such that∫

{|f |>c}
d log |f | ∧ dc log |f | ∧ ωn−1 < ∞ ,

then f is constant.
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4. Other Liouville theorems on L-recurrent manifolds. This section is additional.
The results are just applications of the theory of one-dimensional diffusion processes and the
comparison theorem of stochastic differential equations. Basic settings for Dirichlet forms
andL-diffusionX are the same as in the previous sections.

THEOREM 39. Let M be an L-recurrent manifold and u ∈ Dom(L)loc. Suppose that
Γ (u, u) exists and

α(r) = inf
u(x)=r

Lu

Γ (u, u)
(x) and β(r) = sup

u(x)=r
Lu

Γ (u, u)
(x)

are well defined.
If u satisfies one of the following conditions:

(a)
∫ ∞

1
exp

(
−

∫ r

1
α(t)dt

)
dr < ∞ and

∫ 1

−∞
exp

(
−

∫ r

1
α(t)dt

)
dr = ∞ ,

(b)
∫ ∞

1
exp

(
−

∫ r

1
β(t)dt

)
dr = ∞ and

∫ 1

−∞
exp

(
−

∫ r

1
β(t)dt

)
dr < ∞ ,

then u is constant.

PROOF. These conditions imply the transience of the diffusion processes (cf. [19, 24])
defined by

dηt = dbt + α(ηt )dt, dξt = dbt + β(ξt )dt .

Moreover, it is easy to check that (a) impliesηt → ∞ as t → ∞. The time change
argument and the comparison argument of stochastic differential equations (cf. [18]) show
that (a) impliesu(Xt ) → +∞ as t → ∞ almost surely and (b) impliesu(Xt ) → −∞ as
t → ∞ almost surely. These contradict the recurrence ofX. �

Let |τ (f )| denote the length of the tension fieldτ (f ) of f .

COROLLARY 40. Let (M, gM) be a parabolic Riemannian manifold, (N, gN) a Rie-
mannian manifold and f : M → N a C2-map. Suppose that N possesses a nonnegative
C2-function φ with a continuous function k(x) > 0 satisfying

|∇φ| ≤ C and Hessφ ≥ k(x)gN .

Set

a(r) = 1

2C2 inf
φ◦f (x)=r

(
k ◦ f (x)− C

|τ (f )|
ef

(x)

)
.

If ∫ ∞

1
exp

(
−

∫ r

1
a(t) dt

)
dr < ∞ ,

then f is constant.
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PROOF. Just as in [25], we have

�M(φ ◦ f ) ≥ k ◦ f (x)ef − C|τ (f )| and |∇φ ◦ f |2 ≤ C2ef . �

We introduce an additional notation. Let(M, gM) and(N, gN) be Riemannian manifolds
andf : M → N aC2-map. Set̃gN = gN − dr ⊗ dr for r(x) = dN(o, x). Define

|||df ||| = ‖df ‖(TxM,gM)→(Tf (x)N,g̃N ) .

COROLLARY 41. Let N be a Cartan-Hadamard manifold with SectN ≤ −κ2 (κ > 0),
M a parabolic Riemannian manifold and f : M → N a harmonic map. If∫ ∞

1
exp

(
−

∫ r

1
κ inf
r◦f (x)=t |||df |||2 dt

)
dr < ∞ ,

then f is constant.

PROOF. By the Hessian comparison theorem (cf. [15]) SectN ≤ −κ2 implies that

Hessr ≥ κ
cosh(κr)

sinh(κr)
(gN − dr ⊗ dr) . �

5. Transient case. We give a proof of Theorem 1 in a general situation. In this
section we assume the existence of the zeroth Green functiong(x, y) for anL-diffusion on an
L-transient manifoldM.

THEOREM 42. Let M be an L-transient manifold and N a Cartan-Hadamard mani-
fold. If f : M → N is an L-harmonic map of finite energy and if M does not admit any
nonconstant bounded L-harmonic functions, then f is constant q.e.

Define

S00 =
{
µ ; a smooth measure

∣∣∣∣µ(M) = 1 and

∥∥∥∥
∫
M

g(·, y)dµ(y)
∥∥∥∥∞

< ∞
}

(cf. [13]). We first show the following.

LEMMA 43. Let u be a nonnegative and finely continuous L-subharmonic function of
finite L-energy on a transient manifold M and X an L-diffusion on M . Then {u(Xt) ; 0 ≤
t < ζ } is a uniformly integrable submartingale under Pµ for any µ ∈ S00.

PROOF. The well-known Royden decomposition (cf. [1, 2, 13]) or the orthogonal de-
composition of reflected Dirichlet space (cf. [4]) implies thatu has anL-harmonic function
part of finite Dirichlet integral, sinceM is transient andu is of finite energy. Thenu has an
L-harmonic majoranth. By the Burkholder inequality

Ex

[
sup

0≤t≤τn
u(Xt)

2
]

≤ Ex

[
sup

0≤t≤τn
h(Xt)

2
]

≤ const.Ex[〈h(X)〉τn ]

for τn = inf{t > 0 ; Xt /∈ Gn} with an exhaustion{Gn} defined as in Section 1.2. Take
µ ∈ S00. Then

∫
M
Ex[〈h(X)〉τn ]dµ(x) ≤ ‖ ∫

M
g(·, y) dµ(y)‖∞µ〈h,h〉(M). This shows

Eµ[sup0≤t<ζ u(Xt)2] < ∞. �
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In the transient case we know the asymptotic behavior ofL-harmonic maps along
L-diffusions by Darling’s martingale convergence theorem [7].

PROPOSITION 44. Let M be an L-transient manifold and f an L-harmonic map to a
Riemannian manifold N . Then f (Xt) converges in N ∪ {∞} as t → ζ , Pµ-almost surely for
any µ ∈ S00.

PROOF. We note only that

Eµ[[f (X), f (X)]ζ ] = 1

2

∫
M

∫
M

g(y, x)dEf (x)dµ(y) < ∞ . �

PROOF OFTHEOREM 42. Let d be the distance ofN and setr(x) = d(o, x) for an
arbitrary reference pointo ∈ N . It is well-known that ifr(x) is convex, thenr ◦ f is L-
subharmonic. Moreover, as before

dµ〈r◦f,r◦f 〉 ≤ dEf (x) .

Then r ◦ f (X) is a uniformly integrable martingale underPµ. By the above proposition
limt→ζ f (Xt) exists inN , Pµ-almost surely. Since the invariantσ -field of X is trivial,
limt→ζ f (Xt) is a constant point, sayy0. Thend(yo, f (X)) is a uniformly integrable sub-
martingale again. Hence, the submartingale property shows that

∫
M d(yo, f (x)) dµ(x) = 0

for arbitraryµ ∈ S00. �

Appendix. In this section we present a simple statement and its proof in the Dirichlet
form setting of our equivalence (i) and (ii) in Theorem 20. This was pointed out by Professor
M. Takeda.

PROPOSITION 45. Let X be a strong Markov process associated with a Dirichlet
space (E,F). The following conditions are equivalent:

(i) X is recurrent;
(ii) for any u ∈ Ḟloc with E(u, u) < ∞, there exist {φn} ⊂ F ∩ Co(M) satisfying

φn → 1 as n → ∞ m-almost everywhere such that

lim
n→∞ E(u, φn) = 0 .

PROOF. (ii)⇒(i) is essentially the same as in our case and we omit it. We assume that
X is recurrent. In this case

F ref = Fe
holds (see [4]). This implies thatE(u, u) < ∞ meansu ∈ Fe. On the other hand, it is known
(cf. [13]) that (i) is equivalent to the condition that there exits a sequence{ψn} ⊂ F satisfying
limn→∞ ψn = 1 m-almost everywhere and limn→∞ E(ψn,ψn) = 0. Combining these facts
we see thatE(u,ψ) for ψ ∈ F makes sense. Then we have

|E(u,ψn)|2 ≤ E(u, u)E(ψn,ψn) → 0 .
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We remark that the recurrence is equivalent to

1 ∈ Fe and E(1,1) = 0 .

Hence,
|E(u,1)|2 ≤ E(u, u)E(1,1) = 0 . �

We also note a simple argument about Theorem 12 for functions of finite Dirichlet inte-
gral.

PROPOSITION 46. Let u be a δ-L-subharmonic function of finite Dirichlet integral on
D. Then its Riesz charge is a smooth signed measure.

PROOF. By the Kunita-Watanabe inequality we see that forφ ∈ F ∩ Co(M)∣∣∣∣
∫
D

dµ〈u,φ〉
∣∣∣∣ ≤

( ∫
D

dµ〈u,u〉
)1/2( ∫

D

dµ〈φ,φ〉
)1/2

= constantE(φ, φ)1/2 .

On the other hand,

−
∫
D

dµ〈u,φ〉 =
∫
D

φdνu

by definition. Thus,νu is of finite energy. Hence, by the general theory of Dirichlet spaces
(cf. [13]), νu charges no sets of zero capacity. �
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