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Abstract. We show that under certain symmetry, the images of complete harmonic
embeddings from the complex plane into the hyperbolic plane is completely determined by the
geometric information of the vertical measurfetlation and is independent of the horizontal
measured foliation of the corresponding Hopf differentials.

In this paper, we find a new explicit relation between the image of harmonic embeddings,
with certain symmetry, from the complex pla@énto the hyperbolic plankl 2 and the metric
of the associate®-tree of the corresponding vertical measured foliation of the Hopf differ-
entials. Unlike in the case of compact surfaces, holomorphic quadratic differentials cannot be
determined by the vertical measured foliation only. So it is kind of surprising for us to find
that the image set of the corresponding complete harmonic embedding is completely deter-
mined by the vertical measured foliation and is independent of the geometric information of
the horizontal measured foliation.

The symmetry condition that we consider is as follow. We assume that the harmonic
embedding: from C into H? is invariant under the grouf; by rotations and its image is an
ideal polygon with 2 vertices for any integet > 2. This is the next nontrivial case after
the case 0¥y, symmetry which gives harmonic embeddings with regular polygonal images.
This condition can be regarded@asaving half of the symmetry of a regular polygon.

The symmetry assumption implies that the Hopf differentials are of the fo#t— (a +
ib)z"1]dz? for a 4 ib € C. For a generic holomorphic quadratic differential in this family,
the associateB-tree hasn + 1 finite edges of equal length given by= n|b|/(2(m + 1)).

We will show that

THEOREM 1. Letu : C — H? betheunique (up to equivalence) complete orientation
preserving harmonic embedding associated to a quadratic differential equivalent to [z2" —
(a + ib)z"1dz2. Then, up to isometry, the image u(C) is the interior of the ideal polygon
with vertices given by {1, ¢/, w, we'®, ..., o™, @™ ¢'®} in the unit disc model of H 2, where

w= leri/(erl),

o=, = 2tant ( sin(/(m + 1)) )

cosn/(m + 1)) + e2
andv = 7|b|/(2(m + 1)) is the common length of the finite edges of the R-tree associated to
the quadratic differential given by Lemma 1.1
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In this paper, a harmonic embeddingis called complete if its d-energy metric
10u||?|dz|? is a complete metric 08, wherez is the standard complex coordinate®n

The result is related to the work of Shi andri [7]. The facts that complete harmonic
embeddings fronC to H?2 are parametrized by Hopf differentials [8, 9] and the images are
determined by the asymptotic behaviors of the harmonic embeddings [1, 2, 3], suggest the
following problem as a step toward Schoen’s conjecture [6] on the nonexistence of harmonic
diffeomorphism from the complex plane to the hyperbolic plane: Suppose thatcomplete
orientation preserving harmonic embedding with polynomial Hopf differedtia)dz?, is it
possible to find explicit relation between the coefficient®af) and the vertices af(C)? For
this problem, they showed that, up to isometry, the image of a complete orientation preserving
harmonic embedding from the complex plane into the hyperbolic plane is a regular ideal
polygon if its Hopf differential is given byz?" — az"~1)dz? for somereal numbera. This is
the first nontrivial example of a family of harmonic maps (for fixepiwith identical images.

It is obvious that our result is a generalization of that of Shi-Tam. However, the method
is quite different. In [7], the authors studied the asymptotic behavior of the image of the har-
monic maps along euclidean rays to infinity. Our approach adopts more geometric properties
of the Hopf differential, especially those related to the metric information oRttkee as-
sociated to the vertical measured foliation of thepf differential. The relationship between
the asymptotic behavior of harmonic maps and the associteees has been studied by
Minsky [5] and Wolf [10, 11, 12], independently. In these works, the asymptotic behavior
of a sequence of harmonic maps on a compact surface with energy (or the norm of the Hopf
differential) going to infinity was studied. In our case, instead of a sequence of maps, we are
interested in the asymptotic behavior of harmonic maps on a complete noncompact surface
as in [3]. In particular, the asymptotic behavior of the length of the image of a horizontal tra-
jectory near infinity was studied. More precisely, it was shown that the image of a horizontal
trajectory is asymptotic to a geodesic; and thigerence between the lengths of this image
and the asymptotic geodesic is actually tending to zero a@ttistance is going to infinity.

The arrangement of this paper is as followsSkection 1, we will give a brief description
of harmonic maps, its Hopf differentials and the geometric information oRttees asso-
ciated to the Hopf differentials. Then we will study the asymptotic behavior of the image of
horizontal trajectories in Section 2. Finally, we prove our main result in Section 3.

1. Background.

1.1. Harmonic maps between surfaces. MetndN be oriented surfaces with met-
rics p2|dz|? ando2|du|?, wherez andu are local complex coordinates #f and N, respec-
tively. A C? mapu from M to N is harmonic if and only if: satisfies

uz;z +2(logo ), uuz =0.

The Hopf differentiald = ¢ (z)dz2 of a mapu between these surfaces is defineddy) =
o2 (u(2)) u;(2)ii-(z). If uis harmonic, then it is well-known that is a holomorphic quadratic
differential onM.
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The d-energy density andd-energy density of « are defined by
o2(u) o?(u)

p? p?

19u]|? = luz|? and [[9ul|® = Juz|?.
In terms of thed-energy density andd-energy density, the energy density and Jacobiaruof

can be written as
_ 2, 13 a2 _ )
e(u) = [ou“ + |ou|© and J(u) = |dul|” — ||0ul*.

In this paper, we are interested in the case Mat C, N = H?, and that: : C — H?
is an orientation preserving open harmonic embedding. In this case, the Jacobian is strictly
positive, i.e.,J (1) > 0, and hencddu|?> > 0. Therefore, one can consider thenergy
metric [|du||%|dz|? on the complex plan€. As mentioned in the introduction, is called
complete if its 9-energy metrid|du||?|dz|? is a complete metric o€. As the completeness
is only defined for orientation preserving the termcomplete harmonic open embedding
implies implicitly that the harmonic embedding is orientation preserving.

It was shown in [8, 9] that for each holomorphic quadratic differential= ¢ (z)dz?
which is not identically zero, there is a complete harmonic open embedding, unique up to
conformal transformations, : C — H 2 such that the Hopf differential of is exactly®.

1.2. Trajectory structures and measured foliations of the Hopf differentials. ®Let
be a holomorphic quadratic differential @) which is given in local coordinate as® =
#(2) dz2, whereg is in general a holomorphic function. For any € C with ¢(z0) # O,
there is a choice of a continuous branchép(z) in a neighborhoodV of zo. Then for a
given base point, € W sufficiently close ta, the mapping

{(z) = f Vow)dw

is univalent in possibly a smaller neighborhoodzgfin W. This defines local charts on
{¢ # 0} and determines two measured foliations@with singularities at the zeros ¢f. In
particular, the leaves of them are curves given locally by the sets,

I={zew;Im@k)=v}, veR,
vu=1{zeW; Re(¢(2) =u}, pmeR.

Eachr}, andy, is called ahorizontal trajectory andvertical trajectory, respectively. The
foliations formed by these curves are callamtizontal foliation andvertical foliation corre-
spondingly. Obviously, the two foliations have orthogonal leaves. Furthermaig afC is
a zero of ordem of ¢, then there are: + 2 horizontal trajectories, as well as vertical ones,
limiting to zg. Therefore, the horizontal and vertical foliations are in faeasured foliations
with singularities at the zeros @ with natural measures given byim¢| and|dRe; |, re-
spectively. We refer the reader to [11] for the definition of measured foliation on Riemann
surface in the general situation.

1.3. The canonical trees associated to the Hopf differentials. For @acthe leaf
space of the measured foliation given by the wattirajectories has a special 1-dimensional
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structure calledk-tree [10, 11, 12]. In this article, we shall call it tiRetree associated to @
and denote it by, or simply byT.

A trajectory that tends to a zero &fat least in one direction is callectstical trajectory.
Each connected domain of the complement of dtiaal vertical trajectories is sometimes
called avertical domain, which is foliated by non-critical vertical trajectories.

In the particular case of a quadratic differential= P (z)dz? for a polynomialP of de-
green onC, according to the global structural theoref meromorphic quadratic differentials
on compact Riemann surfaces [4], there are generically Pvertical domains. Among these
domainsy + 2 are callecend domains and at most — 1 arestrip domains. The definition of
these two types of domains is given as follows.

For each vertical domaif, a canonical mapping — ¢(z) sendsf2 one-to-one onto
one of the following domains i€,

(1) ahalf plane, in such cage is called arend domain;

(2) avertical strip{¢ € C;a < R&(¢) < b}, a,b € R, in such case? is called astrip
domain.

Note that the distance on thetree T can be realized in the following way. Let g
be two points orfl" represented by two leaveg andy», respectively. One may construct a
sequence of arcs fromy to y» such that each arc lies either in a horizontal trajectory or a
vertical one. The distancér (p, ¢) is given by the sum of the lengths of the horizontal arcs.
In particular, if the straight line betwegnandg on theR-tree can be represented by a single
horizontal trajectory in an end domain, thén(p, ¢) equals thed-length of that horizontal
trajectory.

Consequently, one can see that the associttde T hasn + 2 infinite edges corre-
sponding to the: + 2 end domains, at most — 1 finite edges corresponding to the strip
domains, and witl vertices corresponding to the zeros counted with multiplicity.

For the special case thdt = (z2" — ¢z 1)dz? with genericc € C, we see that there
arem + 1 non-degenerate vertices corresponding to the roaté of — ¢ andm — 1 vertices
degenerated to a single vertex corresponding=o0 if m > 3. The treel” will degenerate to
a single vertex it is real. More precisely, we have

LEMMA 1.1. Let T bethe R-tree associated to the quadratic differential @ = [z2" —
(a +ib)z" Ydz%, a +ib e C,andm > 1.

(1) Ifm > 2andb # 0, then T has m + 1 non-degenerate vertices each incident
with two infinite edges; and all of these vertices are adjacent to a unique vertex, which is
non-degenerate for m = 2 and degenerate otherwise, by finite edges of equal length given by
7|b]/(2(m + 1)).

(2) Ifm =1landb # 0,then T has 2 non-degenerate vertices each incident with two
infinite edges; and they are connected by a finite edge of length 7z |b|/2.

(8) Ifm > 1andb = 0,then T hasa unique vertex incident with 2m + 2 infinite edges.
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REMARK 1.2. Inthe case (2), if we take the mid-point of the 2 vertices as the center
of the R-tree, then the vertices are in distanci|/4 to this center. This is exactly the same
value given by the formula in the case (1) with= 1. An illustration is given in Figure 1.

/ Yy
RPN

FIGURE 1. m =1, 2, 3 from left to right.

REMARK 1.3. If we consider the associatesht tree to the leaf space of the measured
foliation given by horizontal trajectories instead of vertical ones, we have anRthree as-
sociated tap. One sees that the same is true for this tree except that the common length of the
finite edges becomes|a|/(2(m + 1)). This tree will degenerate wheris pure imaginary.

PROOF. By the argument before the Lemnfahas 2n 42 infinite edges corresponding
to the 2n + 2 end domains and has+ 1 non-degenerate verticesnsif> 2, thenT also has
a vertex with multiplicitym — 1. So we only need to show that each non-degenerate vertex
is incident with two infinite edges and calculate the distance between the non-degenerate
vertices and the vertex with multiplicity.
For anym > 1, letn be a(m + 1)-root of ¢ = a + ib andw be a primitive(m +
1)-root of unity. Then the roots af”*! — ¢ are exactly{n, wn, ..., »™n}. For any fixed
k =0,1,...,m, there is a wedge with vertex at= 0, containing the patb (1) = ro*n,
t € (0,1), but no other zero o®. Therefore, one can find a domai?). containing the path
zx(t) which is contained in a strip domain @&f. Choosing a branch of the natural parameter

8 (2) =/ V@t — oydz

on §2; and taking limits ag — 0 andr — 1, one sees that

1
G ) — £e(0) = ic / I = s
0

This implies that the horizontadb-distance between the roet*n and 0 is given by
|b] [le/tmfl(l— tmtNdr = 7|b|/(2(m + 1)). This proves that, in th&-tree, the vertices
corresponding to the roots gf+1 — ¢ are adjacent to the vertex corresponding te 0 by a
finite arc of lengthr |b|/(2(m + 1)) if m > 2. If m = 1, then the same calculation shows that
the 2 vertices are connected by a finite arc of length2/b|/(2(m + 1)) = = |b|/2.

Therefore, in the case that > 2, the vertex corresponding to= 0 with multiplicity
m — 1 already has + 1 finite edges incident with the 4+ 1 non-degenerate vertices, and
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hence it is not incident with any other edgesTof Since there aren2 + 2 infinite edges,

each of the vertices corresponding to the roots”of! — ¢ must be incident with 2 infinite
edges. The case that= 1 is trivial, sincez = 0 is not even a critical point ab. Finally, by
counting the multiplicity of the vertices and the number of edges, we see that there is no other
edge ofT and the proof is completed.

2. Digtanceestimates. In[3], it was shown that the image of an horizontal trajectory
far from zeroes is exponentially close to the geodesic connecting the end pointsdn the
distance of the trajectory. However, this is not enough in our discussion about the image of
the harmonic map. In fact, we need to show tthett difference between the lengths of the
image and the geodesic is actually tending to zero agtldéstance is going to infinity. Note
that we need more than just the ratio tending to 1 as in Proposition 2.2 of [7].

LEMMA 2.1. Letyg, R > Obeafamily of curvesin the hyperbolic 2-space such that,
asR — 400, L(yg) = O(R) and |kg|l(Yr) = O (e~*R) for somea > 0, where L(yg) isthe
length of yz and ||k4 || (¥&) is the supremum of the absol ute value of the geodesic curvature of
yg. Then the distance d(R) between the end points of yg satisfiesd(R) = L(yg) + o(R) as
R — +o0.

PrROOF. For a sufficiently large fixe® > 0, we work in the Fermi coordinatés, v)
with respect to the geodesjg; passing through the end pointg (0) andyx (), wherel =
L(yg) is the length ofyx. Thatis,yz : [0, 1] — H? is parametrized by arc-length, apgd is
given byv = 0.

By Lemma 3.1 in [3], there exists a constant> 0 such that, for sufficiently small
e >0, lkgll(yr) < eimpliesd(yg, y;) < Ce. Thatis,

(2.2) lu(yr(s))| < Ce forall s €[0,1].

As in [3], we have

(2.2) u'?cosRv+v?=1,

and

(2.3) kg = cosf v + 2u'v' tanhv)2 + (v — u'? coshv sinhv)?.
Let

. 2 .
h1 = u” coshw + 2u'v' sinhv, hy = v — u'“ coshv sinhv .

Thenh? + h3 = k2. On the other hand, differentiation of (2.2) givies:’ coshv + hov' =
0, i.e., (h1, hp) is orthogonal to(u’ coshv, v'). Therefore, we must havéii, h2)
+|kg|(v', —u’ coshv). Consequently, we have

(2.4) |h1| < elv’| and |ha| < e|u’| coshv.



IMAGES OF HARMONIC MAPS WITH SYMMETRY 327

We may assume that(0) = 0. Thend(R) = u(l). Applying Poincaré inequality t8’(s) —
u(l)/1 andv’(s), we conclude that there is a constanht> 0 such that

! 2 !
d(R
(2.5) / u? < (R + CllZ/ w")?
0 l 0
and
- !
(2.6) / Ve < €yl / w")?2.
0 0
erefore, (2.1), (2.2), (2.4) and (2.5) imply
Theref (2.1), (2.2), (2.4) and (2.5) impl
! d(R)? !
(2.7) / u'? < ARy + C21282/ V'
0 l 0
for some constanf, > 0. Similarly, we have from (2.1), (2.2), (2.4) and (2.6) that
! !
(2.8) / V% < 31262 / u'?
0 0
for some constand’s > 0. Putting this into (2.7), we have
l d(R 2 1
(2.9) / u'? < (z) +C2C314s4/ u'?.
0 0

By the assumption on the geodesic curvatjitg||, we may choose = O (e “F). Then,
together with = O(R), one hasC>C3l%s* < 2 < 1 for sufficiently largeR. Hence, (2.9)
gives

P 1 d(R)? _2ar, d(R)?
(2.10) /o u's < (1_82)T=[1+ Of(e )]T'
On the other hand, from (2.1) and (2.2), we have

l I l
l=/ u/zcosﬁv—l—v’zf(l—i—Czsz)/ 1/2—1—/ V2,
0 0 0

Together with the estimates (2.8) and (2.10), this gives

2
I<[1+ O(e—“R)]@.

Therefore] = O(R) implies
d(R) > 11+ 0 “®) =1 —-1.0@*®)>1—-0(R?),
As itis trivial that/ > d(R), we have shown that(R) = L(ygr) + o(R). O

From Lemma 2.1, we have the following corollary on the asymptotic behavior of har-
monic maps.

COROLLARY 2.2. Let 'y, R > 0,beafamily of horizontal trajectories of a holomor-
phic quadratic differential @ with @-length equal to L. If the @-distance of 'k to every zero
of @ tendsto infinity as R — oo, then the images u(I'r) of I'r under the unique harmonic
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embedding « : C — H?2 corresponding to & approaches a boundary geodesic arc of length
2L of theimage set u(C) as R — +oo.

PROOF. Let us writeyg = u(I'g) anddg(R) for the minimal @-distance ofl'; to
zeroes ofp. First of all, the arguments of Lemma 3.2 and 3.4 of [3] imply thaapproaches
the boundary geodesic afC). So we only need to calculate its length. &8¢ be thed-
energy density of; with respect to the-metric in its natural coordinates, i.@, = dz? =
(dx + idy)?. Then, by Formula (3.6) of [3], we obtain

L(yR)=/ \/62w+e_2w+2dx=/ <2+4Sinhﬂ)dx.
I'g I'r 2

The exponential decay estimate of [2] then implies that
L(yr) = 2L + O(e” ™)

for some constant; > 0. On the other hand, the estimate as in the proof of Lemma 3.2 in [3]
shows that

lkgll(vg) = O (e 2% R)
for some constant; > 0. Therefore, by Lemma 2.1, we conclude that the distance between
the end points ofx is equal to Z + o(R) asR — oo. Therefore, by lettingR — oo, we
have the desired result. O

3. Imageof harmonicmaps. In this section, we prove our main result on the explicit
determination of the image of the harmonic embedding with suitable symmetry. We are inter-
ested in a harmonic embeddindrom C into H 2 such that is equivariant under the grodi
by rotations and its image is an ideal polygon withv&rtices for any integer > 2. In some
sensey has half of the symmetry of a regular polygon. Note that our symmetry requirement
is not just on the image set but on the map

According to this requirement, the Hopf differentials of these harmonic embeddings are
equivariant under the actian — wz for any k-root of unity » and their coefficients are
polynomials of degreei2— 2. This immediately implies that the Hopf differentials are of the
form [z2" — (a + ib)z"1dz?, wherea + ib € C. For these type of harmonic embeddings,
we have the following

THEOREM 3.1. Letu : C — H? bethe unique (up to equivalence) harmonic embed-
ding associated to a quadratic differential equivalent to [z2”" — (a + ib)z"1]dz2. Then, up
to isometry, theimage u(C) istheinterior of theideal polygon with vertices given by

(1, 6% w, we'®, ..., o™, ")
in the unit disc model of H?2, where w = ¢27/n+D,
sin(zr/(m + 1))
cogn/(m+ 1)+ ez") ’
andv = 7 |b|/(2(m + 1)) isthe common length of the finite edges of the R-tree associated to
the quadratic differential given by Lemma 1.1

o =oy(v) = 2tant <
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PROOF. As a harmonic map from a surface is invariant under conformal change of
metrics on the surface, we may assume that the Hopf differentialisfin fact given by
@ = [z2" — (a+ib)z"11dz2. Then, by the symmetry of the quadratic differentiahnd the
unigueness property of the corresponding complete orientation preserving harmonic embed-
ding, after a composition with an isometry Birf, the harmonic embedding satisfie®) = 0
and the image (C) is an ideal polygon with vertices given by

(1, €% w, we'®, ..., o", o)

for somea € (0, 27/(m + 1)). What we need to do is to determine We also note that,
by the rotation of an anglea, this polygon is equivalent ttl, ¢’?, w, we' , ..., o™, w™e'f)
with 8 = 27 /(m + 1) — «. Therefore, we may assume that (0, 7/(m + 1)).

Let 0 € (T,dr) be the vertex on the associatBetree not incident with any infinite
edge form > 2 or the mid-point of the unique pair of vertices fer = 1 as described in
Lemma 1.1. For sufficiently large > 0, the sefg € T ; dr(q,0) = L} has exactly & + 2
points {qo, - .., g2m+1} C T such that each infinite edge contains exactly gneAs the
treeT is coming from the trajectories structure®fon the plane, there is a natural induced
cyclic order of the set of infinite edges. Assume thyaare labelled in the same cyclic order,
fori € Zp,4+2. Then for each pair of consecutive poists ¢;+1, we can findz; and z§+l
in C both contained in a common horizontal trajecta@ryof distancer to zeroes in an end
domain, denoted b¥;, of @ such that each; andz;_, belongs to the vertical trajectories
representing; andg; 11, respectively. Note that from our choicg,andz; belong to the same
vertical trajectoryy; representing;. An illustration is given in Figure 2.

FIGURE 2.

Up to isometry, we may assume that the image curve of the vertical trajectory represent-
ing go approaches the ideal boundary to the point 1 in the unit disc modtef L — +oo.
Correspondingly, the image pointszo) andu(zg) of zo both tend to 1. Then, by the symme-
try of u and our assumption, for eaéh= 0, ..., m, the image curve of the vertical trajectory
representingz; approaches the ideal boundary paifit= ¢27%/("+1 "and the image curve
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of the vertical trajectory representingy+1 approaches the ideal boundary paift’®, re-
spectively, in the unit disc model &f2. In accordance with this, the image points2) and
u(zy,) tend tow, while u(zpr41) andu(z/Zk+1) tend towke'®.

To determine th@-length of each’;, we observe from Lemma 1.1, which concerns the
tree structure oR-treeT associated t@, thatdr (¢;, gi+1) = 2L or 2(L — v), with the value
taken alternatingly in, wherev = x|b|/(2(m + 1)) is the common length of those finite
edges ofl'. We first assume that

dr(q2k, q2x+1) = 2(L —v) and dr(qa+1, qax+2) = 2L .
An illustration is given in Figure 3.

FIGURE 3.

As I; is a horizontal trajectory with end points representjngndg; 11, the®-length of
I is exactly equal talr (¢;, gi+1). Therefore, fok =0, ..., m,

Lo(I'y) =2(L—v) and Lo(I2k41) =2L.

On the other hand, the vertical trajectofyrepresenting; is mapped to a curve of finite
length inH2. Indeed, using natural coordinates®fin an end domain containing with
respect to the vertical trajectories system, the length of the image curve is given by

+00

+00
li=Lp2(u(y)) = / Vet fe=2w _ 24y = / 2 sinhwdy,
—00

—00
wherew as in the proof of Corollary 2.2. Ag; is at least ab-distance ofL. — v away from
zeroes, the exponential decay estimate dmplies that for someg anda > 0,

v —y +
li<C [/‘O e tdy + (/ B +/ oo) e“(L”)/ﬁdy}
—)o -0 Yo

< 0(eLIV2)

Therefore/; are finite and tends to zero As— +oo.
Let o, be a point on the intersection ofy») and the ray from 0 te* in the Poincaré
disc. Similarly, letro;+1 be a point on the intersection @fyz;1) and the ray from 0 ta*ei®.
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Now consider the polygon il 2 with vertices 0¢o, ¢1, and¢z. Note that, sincé;, — 0 as
L — 400, the distance between andu(z;) or u(z}) also tends to zero. An illustration is
given in Figure 4.

FIGURE 4.

On the other hand, by lettin@ — 400, Corollary 2.2 implies that the imagg(/7;)
of the horizontal ard’; connecting:; andz; approaches a boundary geodesic arc of length
2(L —v) and 2, alternatingly ini. All together, we conclude that, ds— +o0,

dy2(¢0, 1) =4L —v)+o(L) and dy2({1,82) =4L +o(L).

Letx1 = x1(L) = dy2(%o, 0) andxz = x2(L) = dy2(¢1, 0). Then, by symmetryd 2(¢2, 0)
is also equal ta;. Hence from the cosine rule of the hyperbolic plane, we have

cosh4(L — v) + o(L)) = coshxy coshxz — sinhxj sinhxz cosa
and
cosH4L + o(L)) = coshxy coshyy — sinhxy sinhxp cog27/(m + 1) — «) .

It is easy to see from these identities thatim, o (e ~*" sinhx1 sinhx,) exists and is non-
zero. Let us denote
A=[4 lim (e~*L sinhxy sinhx2)] 7.

—+00
Then multiplying by(sinhx1 sinhx2)~* to the above equations and lettiig— +oo, one
concludes that
VAe? —sin and VA =sin <L - E) .
2 m+1l 2
Itis easy to solve the above and obtain
o sin(w/(m + 1))

2~ coSn/(m + 1) + e

)

which is the desired result.
In the case that

dr(gak, g2e+1) = 2L and  dr(gak+1. qox+2) = 2(L —v) ,
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the same calculation shows that the angle is given by
o sin(z/(m + 1))

2 codn/(m+1)+e 2
The angle obtained in this formula belongd4g m + 1), 27 /(m + 1)), which is equivalent

to the one in previous formula by the transformator> 27/(m + 1) — «. ]

In [7], a harmonic map was constructed with image equal to a regular ideal polygon of
4 vertices and Hopf differential is given liy? + ib)dz? for some real number € R. From
our theorem, one in fact has

COROLLARY 3.2. Theharmonic diffeomorphism constructed in Proposition 1.6 of [7]
is a unique, up to equivalence, complete orientation preserving harmonic embedding with
Hopf differential z2dz2.

PrROOF. Whenm = 1, the theorem implies that the image of the harmonic map is
equivalent to{1, e, —1, —e’®} with « = 2tarm1(e=2"). Soa = /2 if and only ifv = 0.
Sincev = 27 |b|/(m + 1), we conclude that = 0. O

Finally, let us finish the paper by a couple of remarks.

REMARK 3.3. The fact that the image ideal polygon depends onlybdiut notb
can be easily seen from the fact tha?” — (a + ib)z" 1]dz? is equivalent tdz2" + (a +
ib)z"1dz2.

REMARK 3.4. LetP, be the equivalence class of the ideal polygon

(1, e w, we', ..., 0", "} .

Then the mapping — P, from (0, 27/(m + 1)) to all such equivalence classes is two-to-
one except ax = 7 /(m + 1), which maps to the regular ideal polygon. Therefore from the
proof, one may define, for eadh = [z2" — (a + ib)z"1]dz2, the angle function by

sin(r/(m + 1)) )
cogn/(m + 1)) + eb/m+D) ]~

that is, by the same formula without taking absolute valugé a$ inv = 7 |b|/(2(m + 1)).
This angle functior is a bijection fromR to (0, 27 /(m + 1)). Thus, the mapping — Py
behaves similarly. This gives a 2-fold covering exdept O for each fixed: and is consistent
with the previous remark.

a(b) = 2tanmt <

Note that if we let the angle run through the whole interva0, 2z /(m + 1)), the ideal
polygon{l, /% w, we'®, ..., ™, w™e!®} runs over the set of all possible equivalence classes
of polygons except the regular polygon twice and once at the regular idea polygon. Then for
each fixedu, « : R — (0,27 /(m + 1)) is a bijection and the corresponding ideal polygon
with vertices(1, ¢'®, w, we'®, ..., »™, »™e'®} runs through the set of all possible equivalent
classes of ideal polygons except the regular idea polygon twice and once at the regular idea
polygon ash run throughR once.
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