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MIRCEA MUSTATA

(Received August 3, 2000, revised April 25, 2001)

Abstract. We use Cox’s description for sheaves on toric varieties and results about
local cohomology with respect to monomial ideals to give a characteristic-free approach to
vanishing results on toric varieties. As an application, we give a proof of a strong version of
Fujita's Conjecture in the case of toric varieties. We also prove that every sheaf on a toric
variety corresponds to a module over the honrmagris coordinate ring, generalizing Cox’s
result for the simplicial case.

Introduction. Our main goal in this article is to give a characteristic free approach
to vanishing results on arbitrary toric varieties. We prove that the vanishing of a certain
cohomology group depending on a Weil divisor is implied by the vanishing of the analogous
cohomology group involving a higher multiple of that divisor. When the variety is complete
and the divisor iQ-Cartier, one recovers in this setting a theorem due to Kawamata and
Viehweg. We apply these results to prove a strong form of Fujita’s conjecture on a smooth
complete toric variety.

Let X be a toric variety ands, ... , Dy the invariant Weil divisors oiX, so thatwy =~
Ox(—D1 — --- — Dg). In the first part of the paper we deduce the following generalization
of the theorem of Kawamata and Viehweg, for toric varieties.

THEOREM 0.1. Let D be an invariant Weil divisor on X as above. Suppose that we
have E = Z?zlaij, witha; € Qand 0 < a; < 1 such that for some integer m > 1,
m(D + E) isintegral and Cartier. If for somei > Owehave H (Ox (D + m(D + E))) = 0,
then H (Ox (D)) = 0. In particular, if X is complete and there is E aforementioned such
that D + E isQ-ample, then H' (Ox (D)) = Ofor everyi > 1.

As a particular case of this theorem, we see that if for seme 1 andL € Pic(X)
we haveH! (L™ (—=Dj, —---— D;,)) = 0, thenH'(L(—Dj, — --- — Dj,)) = 0. The cases
r = 0 andr = d of this assertion were known to hold by reduction to a field of positive
characteristic. Over such a fiekl is Frobenius split and one concludes using arguments in
Mehta and Ramanathan [MR]. The fact thatis Frobenius split will follow also from our
results.

Our method yields other vanishing results as well. For example, we prove tkasif
a smooth toric variety and € Pic(X) is such that for some: > 1 andi > 0 we have
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H"(.Q)’; ® L™ =0, thenH"(.Qj; ® L) = 0. By takingX complete and. ample, we thus
recover a theorem of Bott, Steenbrink and Danilov.

In the second part of the paper we give some applications of vanishing theorems on toric
varieties. Our main result is a proof in the toric case of a strong version of the following
conjecture due to Fujita (see [La] for discussion and related results).

CONJECTURE 0.2. LetX be a smooth projective variety of dimensisnand L €
Pic(X) an ample line bundle. Thany ® L"** is globally generated andy ® L"*2 is very
ample.

When the ample line bundlIk is generated by global sections, an argument of Ein and
Lazarsfeld [EL] based on vanishing results @sithe conjecture over a field of characteris-
tic zero. Under the same hypothesis bnthe first assertion of the conjecture is proved in
arbitrary characteristic by Smith [Sm]. On a smooth projective toric variety every ample line
bundle is very ample (see [De]), so these results prove the conjecture in this setting.

We give a direct proof of a strengthened form of the conjecture in the case of a toric
variety, where instead of making a conclusion about a pdWemwe make a statement about
any line bundleL satisfying conditions on the intersection numbers with the invariant curves.
We are able to replacey by the negative of the sum of any setf, and also improve the
bound by one in the case whénis not the projective space. More precisely, we prove:

THEOREM 0.3. Let X beann-dimensional completesmoothtoricvariety, L € Pic(X)

alinebundleand Dy, ... , D, distinct prime invariant divisors.

(1) If(L-C) > nforeveryinvariantintegral curve C C X, then L(—Dy — -+ — Dy,)
isglobally generated, unless X ~ P", L ~ O(n)andm =n + 1.

(2) If(L-C)=n+1for everyinvariantintegral curve C C X, then L(—D1—---— Dy,)

isveryample, unless X ~P", L ~Om +1)andm =n + 1.

To obtain these results we use Cox’s notion of homogeneous coordinate ing\dfien
the fan definingX is nondegenerate (i.e., it is not contained in a hyperplane), this is a polyno-
mial ring S = k[Y1, ..., Y;] together with a reduced monomial idgabnd with a grading in
the class group ok which is compatible with th&?-grading by monomials. In general we
need to slightly adjust this definition, but we leave this generalization for the core of the paper.
As in the case of projective space, each grasiedoduleP gives a quasi coherent sheabn
X and for eachi > 1, the Zariski cohomology’ (X, P) is the degree zero part of the local
cohomology moduIeHg*l(P). This idea has been used in [EMS] to give an algorithm for the
computation of cohomology of coherent sheaves on a toric variety.

Our basic result says that # is in factz?-graded and if the multiplication by; is an
isomorphism in certaiZ?-degrees, then the same is true fﬁg(P). The main example is
P = S in which we get that the multiplication

vy, : Hy(Sa = Hy(S)ate,

is an isomorphism for every = («;) € Z% such thate; # —1. In particular,H,"g(S)a
depends only on the signs of the components.oT his case was used in [EMS] in order to
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describe the support @i (S). Similar results for the Ext modules appear also in [Mu] and
[Ya]. Our second example is that of the modules giving the she@\g'(esn a smooth toric
variety. Using this result and the relation between the local cohomology of a module and the
Zariski cohomology of the corresponding sheaf, we deduce the various vanishing theorems.

In the first section of the paper we summarize the construction in [Cox] for the homoge-
neous coordinate ring suitably generalized to be applicable also to toric varieties defined by
a degenerate fan. All the results can be easily extended to this context. We prove that every
guasicoherent sheaf on a toric variety comes from a graded module over the homogeneous
coordinate ring, generalizing the result in [Cox] for the simplicial case. We describe the rela-
tion between the local conomology of modules and the cohomology of the associated sheaves.
This is used in the second section to prove the vanishing results described above.

In order to apply these results, we need nugercharacterizations for ampleness and
numerical effectiveness for the toric case anthia third section we provide these results. In
the simplicial case, a toric Nakai criterion is given in [Oda]. We show that the result holds for
an arbitrary complete toric variety. We also prove that Pic(X) is globally generated if and
only if (L - C) = 0, for every integral invariant curv€ C X. In particular, we see thdt is
globally generated if and only if it is numeribaeffective. These radts have been recently
obtained also by Mavlyutov in [Ma]. We mention a generalization in a different direction due
to Di Rocco [DR] who proved that on a smooth toric varigtye Pic(X) is k-ample if and
only if (L - C) > k for every invariant curv&€ C X.

As a consequence of the above results, we deduce tiebig and nef if and only if
there isa mag : X — X' induced by a fan refinement (therefgrés proper and birational)
andL’ € Pic(X") ample such that ~ ¢*(L’). This easily implies the version of Kawamata-
Viehweg vanishing theorem for nef and big line bundles.

The fourth section is devoted to the above generalization (in this context) of Fujita’s
Conjecture and some related results. The proof goes by induction on the dimenXiphyof
taking the restriction to the invariant prime divisors. The result which allows the induction
says that for every > 1, if L is aline bundle such thal. - C) > [ for every invariant integral
curveC C X, then for every invariant prime divisdd and everyC c X aforementioned,
(L(=D) - C) =1 — 1. From the casé = 1 we see that ifL is ample, thenL(—D) is
globally generated. We conclude this section by proving a related result, which characterizes
the situation in whiclL is ample and is a prime invariant divisor, but (— D) is not ample.

A well-known ampleness criterion (see, for example, [Fu]) can be interpreted as saying
that on a complete toric variety, L € Pic(X) is ample if and only if it is globally generated
and the map induced by restrictions

HYL) - €D HO(LI)
xeXo
is an epimorphism, whetky is the set of fixed points of.
In the last section we generalize this property of ample line bundles under the assumption
that X is smooth. We prove that the analogous map is still an epimorphism if we reftace
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with any set of pairwise disjoint invariant subvarieties. In this case, the blowing-op
X along the union of these subvarieties is still a toric variety and we obtain the required
surjectivity by applying taX the results in the second section.

This work started from a joint project with David Eisenbud and Mike Stillman to un-
derstand the cohomology of sheaves on toric varieties. It is a pleasure to thank them for
encouragement and generous support. We lae\eery grateful to William Fulton, Robert
Lazarsfeld and Sorin Popescu for useful digans and to Markus Perling for his comments
on an earlier version of this paper. Last but not least, we acknowledge the referee’s numerous
comments and suggestions which greatly improved the quality of our presentation.

1. The homogeneous coordinate ring of a toric variety. Let k be a fixed alge-
braically closed field of arbitrary characteristic. We will use freely the definitions and results
on toric varieties from [Fu]. We first review the notation we are going to use.

Let N ~ Z" be a lattice and/ = Hom(N, Z) the dual lattice. For a rational faf in
V = N ® R, we have the associated toric varisty= X (A). For everyi < n, the set of
cones inA of dimension is denoted byj;. The torusV ®z k* acts onX, and by an invariant
subvariety ofX we mean a subvariety which is invariant under this action.

The closed invariant subvarieties Xfof dimension are in bijection with the se\,,_;.
For each cone € A we denote byV (t) the corresponding subvariety. Recall thatr)
is again a toric variety andy C 72 if and only if V(r2) € V(z1). In particular, the prime
invariant Weil divisorsDy, . .. , D4 on X correspond to the one dimensional conedirf X
is smooth, then so is eadh(t).

Let vV’ be the vector space spanneddyN’ = N NV andM’ = Hom(N’, Z) its dual
lattice. We have an exact sequence:

0—- M — Divr(X) = Cl(X) — 0,

where Divy (X) = @?:1 ZD; ~ 7% is the group of invariant Weil divisors and @) is the
class group o¥.

We fix a decompositiod! >~ M’ x Z¢, wheree is the codimension of/’ in V. We
correspondingly have a decompositi&in~ X’ x (k*)¢, whereX’ is the toric variety defined
by Ain N’.

The homogeneous coordinate ring¥fvas introduced by Cox in [Cox] in the case when
the fanA is not degenerate, i.e., is not contained in a hyperplane. We slightly generalize this
notion in order to allow an arbitrary toric variety, following the suggestion in [Cox]. We
first review some of the definitions and the results in that paper, all of which can be easily
generalized to this context.

For eachi with 1 < i < d we introduce an indeterminaté, corresponding to the
divisor D;. We introduce also the indeterminatés with d + 1 < j < d + ¢, and the

homogeneous coordinate ring &f is the ring$S = k[¥1,... Y4, Y3y ..., ¥; 1. Note
that the decompositiodd ~ M x Z° corresponds to a decompositiéfM] ~ k[M'] ®
kyEL, ..o vEl)

d+1° d+e
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For every effective divisoD = Zle a; D;, we write Y P for the corresponding mono-
mial ]'[j’:1 Yl.“" € S. On the ringS we have a fine grading, the usid*¢-grading by mono-
mials. However, in this section we will consider exclusively a coargXgrading defined
by

d+e d
deg(]_[ Yﬁ") = [Zaia} e Cl(X).
i=1 i=1

In the ring S there is a distinguished ideal which is a reduced monomial ideal. For each
coneo € Awe putDs =} ;.. -, Di, the sum being taken over the divisors corresponding
to one dimensional cones outsideand Y% = Y2 . If Amaxis the set of maximal cones in
A,thenB = (Y% |0 € Amay).

As in the case of projective space, a gradeahodule P gives a quasicoherent sheaf on
X by the following procedureX is covered by the affine toric varietiés, = Sped[o" N
M], for o € A. Using the above decomposition bfM] and the argument in [Cox], we
obtain canonical isomorphisnt$o ¥ N M] = (Sys)o for everyo € A, which are pairwise
compatible. Therefore iP is a gradeds-module, on the affine piedé, we can consider the
quasicoherent sheaf defined @§,s )o. These sheaves glue together to give a quasicoherent
sheaf P on X. In this way we get an exact functdt — P from gradedS-modules to
quasicoherent sheaves Afis finitely generated, theft is coherent.

In particular, ifa € CI(X), O(«) is defined to bé(&). As in [Cox], if « = [D], then
there is a natural isomorphis@(«) >~ O(D). Moreover, we have an isomorphism of graded
rings

S~ P H'X.0w).

aeCl(X)
For a quasicoherent sheaf we putF(«) := F @ O(a).

REMARK. In general, ifP is a gradeds-module, the natural morphisi ® O(«) —
1% is not an isomorphism. However, it is an isomorphism ¥ Pic(X). Indeed, by taking
a graded free presentation Bf we can reduce ourselves to the case whea S(8) for some
B = [E]. Sincea = [D] with D locally invertible, O(«) is invertible and the fact that the
morphismO(D) ® O(E) — O(D + E) is an isomorphism follows now directly from the
definition.

We prove now that every quasicoherent sheaf is isomorphig for some graded-
module P. This was proved in [Cox] under the assumption tiats simplicial. With a
slightly different definition for the homogeneous coordinate ring it was proved more generally
for toric varieties with enough effective invariant divisors by Kajiwara in [Ka].

THEOREM 1.1. For everytoricvariety X and every quasicoherent sheaf 7 on X, there
isagraded S-module P suchthat F ~ P.

PROOF We takeP = @aeCl(X) HO(X, F(a)), which is clearly a graded-module.
For simplicity, we will use the notatioR, = Py .



456 M. MUSTATA

For eachr € A, there are canonical maps
o 1 (Po)o— HOUs, F)

defined as follows. 1§ /Y2 € (P,)o such that € HO(X, F(«)) andD is an effective divisor
with [D] = « and Sup@ N U, = @, then 1Y defines a section iU, , O(—x)) and
¢o(s/YP) = (1/YP)s is the image of 1/ Y P, 5) by the canonical pairing

HO(U,, O(—a)) x H(X, F(a)) — HU,, F).

These morphisms glue together to gie: P — F (note thatF is assumed to be
guasicoherent). We will prove thatis an isomorphism by proving that, is an isomorphism
foreacho € A.

We first show thaip, is a monomorphism. Suppose that(s/Y?) = 0 for some
s € HO(X, F(a)) andD effective,[D] = a.

We may assume that Supp= Ur’, ¢o V(1;), and in this case we will prove that there is
anintegerN > 1 such tha¥Ps = 0in H9(X, F(« + Na)). In fact, we will find for each
T € A anintegerV; such thatr¥*Ps|y = 0. Thenitis clear thaV = Y, N, satisfies the
requirement.

From now on, we fix alse@ € A. Sinces Nt is a face ofr, we can writes N\t = T Nut
for someu € ¥ N M. If for eachv € M, the corresponding element bfM] is denoted by
x ", we consider the principal divisdbg = div(x"). It is effective onU;, where its support
corresponds to the one-dimensional cotles T No.

We consider the restrictions of all the sections from abovétas|y, HOU,, F()),
Y2y, € HOUy, O(@) and(1/YP)|y,nv, € H'Uonr, O(—a)).

Sinceg, (s/YP) = 0in HO(U,, F), we have that|y, = 0 € HO(U,, F(x)), as the
image of(Y?, ¢, (s/Y?)) by the canonical pairing

H(Uy, O(0)) ® HOU,, F) = HOU,, F(a)).

In particular, we have|y, .., = 0. ButU, NU, = Usn; C U, is a principal affine subset
defined byy?o € HO(U,, Ox). Therefore, we get an integer> 1 such that’’?os = 0 in
HOU;, F(a)).

If a,/ andaf/ are the coefficients o¥ (z’) in D and Dy, respectively, andv; is such
thatN;a, > ta?, for every one-dimensional facé c t (by the form of D and Do, we can
choose such aw;), thenY"-Ps = 0in HO(U,, F(a + N-a)). This follows from the fact
that if t” is a one-dimensional cone wittf ¢ t, thenO(V (z”))|y, is invertible andrV @)
is an invertible section in it. This completes the proof of the factijait a monomorphism.

We prove now thai, is an epimorphism. Let e HO(U,, F), and letD = Zr, ¢o Di
anda = [D].

Using an analogous argument, we see that for e@aehA, there is an integeN; such
that YV-P¢|y, .. € H%Uyne, F(N.a)) can be extended to a section #P(U., F (N, «)).
Indeed, with the notation and arguments we used before, we firsvirglich thaty Ve Doy
can be extended t6; and then findV;, as claimed.
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If we apply this to two conesy, 72 € A and takeV > N, Ny, we see that ¥P¢ can be
extended to botl;, andU-,, giving sections; andr,, respectively. Sincé — 2| Ugrreyney =
0, by applying tor1 N 72 the argument we used to show tiggtis a monomorphism, we find
Ny, such thatr V2P = YNl on Uy, N U,

This shows that for large enough, we can extend¥P¢|y, . tot, € HO(U,, F(Na))
for everyr € A such that, |v, ., = tr,|vu, ., fOr everyzi, 2 € A. Thereforer is in the
image of¢,, which completes the proof. O

Using the same argument as in [Cox], we deduce the following corollary.

COROLLARY 1.2. For every toric variety X and every coherent sheaf F on X, there
isafinitely generated S-module P’ such that 7 ~ P’.

PrROOF  With the notation in the proof of Theorem 1.1, we have seen that
o : (Po)o— HUs, F)

is an isomorphism for every € A.

SinceF is coherent, this implies that we can find a finitely generated graded submodule
P’ C P suchthatP,)o = (Ps)o foreveryo € A. Itis clear that thisP’ satisfies the assertion
of the corollary. O

As in the case of projective space, the cohomology of the shezin be expressed as
the local cohomology of the modul® at the irrelevant ideaB.

PROPOSITION 1.3. Let P beagraded S-module. Then there exist an isomorphism of
graded modules
H P = @ H (X, P(@)
aeCl(X)
for every i > 1 and an exact sequence

0— HJ(P) > P~ P HX.P@)— H(P)— 0.
aeCl(X)

PROOFE X is covered by the affine open subséts, 0 € Amax, and we compute the
cohomology ofP as Cech cohomology with respect to this cover.

On the other hand, we can compute the local cohomologg at B, using the direct
limit of Koszul complexes on the powers of the generatorB & (Y; |0 € Amax) (see [Eil,
Appendix 4.1).

Since foroy, ... , 01 € Amax (i—1 Us; = Us, Whereo = (;_; 0; and

HOUs, P(@) = (P@)ys)o = (Py,, .. 1, )a»
we conclude as in the case of the projective space (see [Ei], Appendix 4.1). O

NOTE. In the situation in Proposition 1.3, suppose tRais in fact az¢*¢-gradeds-
module, so that the corresponding sh&ai equivariant with respect to the torus action. In
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this case the local cohomology modu@“(P) is Z4+¢-graded, too, and under the isomor-
phism in Proposition 1.3 thiiner decomposition OHngl(P) corresponds to the eigenspace
decomposition of the Zariski cohnomology of the different twiBi&).

2. Vanishing theorems. We keep the notation from the previous section. However,
from now on we consider off the finez¢*¢ grading by monomials and ai-modules are
assumed to b9 +¢-graded. Note that this implies that the associated sheaf is equivariant with
respect to the torus action. The canonical basig?df will be denoted byfi, ... , fiie.

For every subset C Z and every graded-module P, we will say thatP is I-homo-
geneous if for every = (a;) € Z4*¢ with «; ¢ 1, the multiplication byy:

vy; : Po = Postf;
is an isomorphism. Our main exampleSiswhich is obviously{—1}-homogeneous.

PropPoOsSITION 2.1. If P is an I-homogeneous S-module, then HI’;(P) is I-homo-
geneous.

PROOFE We compute the local cohomology module as the cohomology of a Cech-type
complex (see, for example, [Ei], Appendix 4.1). Let us temporarily denote the generators
of Bbyms,...,m;. ForasubseL C {1,...,t}, letm be the least common multiple of
{m; |1l € L}. Since it is enough to prove the assertion at the level of complexes, we have to
check that for every € Z4+¢ with o; ¢ I, the multiplication byy;:

Wy; (Pnp)a = (PmL)Ol+f_/

is an isomorphism.

This is obvious ifY j|m . Suppose now that; { mz. Then the assertion is clear once we
notice that in this case, i /m} € Py, , then degn/m}); = degm);, so that we can apply
the fact thatP is I-homogeneous. O

We consider now an example pf1, 0}-homogeneous-modules. These are the mod-
ules which define the exterior powesfg( of the cotangent sheaf. For simplicity, in this case
we will assume thak is smooth.

It is shown by Batyrev and Cox in [BC] that if the fan definiXgs nondegenerate, then
the cotangent bundle axi appears in an Euler sequence:

d
0— 2% > P Ox(-Dj) > 0" > 0.
j=1
In general, we hav& ~ X’ x (k*)¢ with X’ as above anw}( ~ p{(Q}(,) ® O%. Therefore
we can includeR} in an exact sequence:

d
0— 2% — (@Ox(—Dj)) ® 0% - Of " - 0.
j=t
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We consider the graded morphism inducing the epimorphism in the second exact se-
quence:

d
E= (@S(_fj)) eS¢ — F :Sdfn+e.
j=1

For each > 1, let M; be the kernel of the induced mgly E -~ A" 1 E® F.

LEMMA 2.2. With the above notation, we have

() M;~ 2.

(i) M; is{—1, 0}-homogeneous.

PrROOF (i) The assertion follows easily from the above mentioned result of Batyrev
and Cox and the fact that in the Eulegsence all the sheaves are locally free.

(i) SinceM; is a submodule of\' E, which is free, the multiplication by; onM; is
injective.

Leta = (a;) € Z9%, a; ¢ {—1,0}. Since\' ' E ® F is free, the surjectivity of the
mapvy; : (Mi)e — (M;)e+f,; follows from the surjectivity of the analogous map f,qf E.
The latter is surjective sincd E is a direct sum of modules of the forst— fj, — - -- — f;,)
withr <iandj; <--- < j,. O

PROPOSITION 2.3. Let X bean arbitrary toric variety.

(i) If Pisa{—1, 0}-homogeneous S-module and L € Pic(X) is such that H (P ®
L™) = 0for somei > Oandm > 1, then H/(P ® L) = 0. In particular, if X is projective
and L € Pic(X) isample, then H/(P ® L) = Ofor all i > 1.

(i) Let P bea {—1}-homogeneous S-module such that for every « € CI(X), P(a) ~
P ® O(x). Suppose that D € Divy(X) and that thereis E = Z?zlaij with a; € Q
and 0 < a; < 1suchthat m(D + E) isintegral and Cartier for some integer m > 1.
If H(P ® Ox(D + m(D + E))) = 0for somei > 0, then H/(P ® Ox(D)) = 0. In
particular, if X is projective and we have E aforementioned such that D + E is Q-ample,
then H (P ® Ox(D)) = Ofor all i > 1.

PROOF (i) If L = O(a), H (P ® L) = H!(P(a)) (see the remark in the first sec-
tion). We will restrict ourselves to the cage> 1 in order to apply the isomorphism in
Proposition 1.3. When = 0, one can give a similar argument using the exact sequence in
that proposition.

As already mentioned, we have

H'(P®L)~PH; P,
b

where the direct sum is taken overthése (b1, ..., bgste) € Z9+¢ such tha(Zj’:1 b;D;] =
@ Since by hypothesisﬁl"(l3 ® L™) = 0, for everyb with [Z?zl b;D;] = a we have
Hy(P)mp = 0. Proposition 2.1 implies that

Hy(P)p = Hy(P)mp
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which proves the first assertion.

In the case of an ample line bundleon a projective toric variety, we havé (PQL™) =
O fori > 1 andm > 0, so that we are in the previous situation.

(i) We proceed similarly. Using our hypothesis #hand Proposition 1.3, for every
i > 1 we have

H'(P® O()) ~ H'(P(D)) ~ P HG™(P)y .
b

where the direct sum is taken overthése (b1, ..., bg4te) € Z9%¢ such tha(Zj’:1 b;D;] =
[D].

Using again the hypothesis dhand the fact that:(D + E) is Cartier (see the remark
in the first section), we get

H((P(D+m(D + E)))”) = 0.

We fix someb € Z4+¢ with [0, b; D;] = [D]. We have to prove that;™(P), = 0.
If b’ =b+m(b+a), wherea = (a1,...,a4,0...,0), then[Zf=l b;D;] = [D4+m(D+E)],
and thereforef;**(P),, = 0.
Proposition 2.1 implies that in order to complete the proof, it is enough to show that
b; > 0ifand only if m 4+ 1)b; +ma; > 0. This follows easily from the factthat8 a; < 1.
O

We apply Proposition 2.3 in conjunction with Lemma 2.2 foe= M; and forP = S.

THEOREM 2.4. (i) (Bott-Steenbrink-Danilov) If X is a smooth toric variety and
L e Pic(X) issuchthatH"(Q{(®L'") = Ofor somem > landi > 0, then H”(Qﬁ@L) =0.
Inparticular, if X isprojectiveand L € Pic(X) ample, then Hi(9§®L) = Ofor everyi > 1.

(i) Let X be an arbitrary toric variety, D € Divy(X) and E = Z”leaij, with
aj € Qand0 < a; < 1 suchthat for someinteger m > 1 we havem(D + E) integral and
Cartier. If H (Ox(D 4+ m(D + E))) = 0, then H (Ox(D)) = 0. In particular, if X is
projective and there is E aforementioned such that D + E is Q-ample, then H (Ox (D)) =0
forall i > 1.

REMARK. As pointed out by the referee, in the caBe= S the assertion in Proposi-
tion 2.1 can be proved also via the combinatorial description of the cohomology of a sheaf of
fractional ideals (see for example [KKMS], $#2). More precisely, the graded components
HE(S) anng“(S)aJrfj (or, equivalently, the corresponding eigenspaces @, O(«))
andH' (X, O(x + f;))) can be described as simplicial cohomology groups of certain subsets
of R". The assertion can be proved by showing that these spaces are homotopically equivalent.
Note that the cas® = S is enough to give the statement of Proposition 2.4 (ii).

If D =Y"_,b;D;is aQ-divisor, we define

d
[D]:=) [b1D;,

j=1
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where for any real numbaer, [x] is the integer defined hy < [x] < x + 1. Similarily, we
define

d
LD] :=_1bjID;,
j=1
where for every, | x| is the integer defined by — 1 < |x] < x. Kx denotes the canonical
divisor— 39_; D; so thatwy = O(Kx).

COROLLARY 2.5. Let X bea projectivetoric variety.
() (Kawamata-Viehweg) If D = Y"9_; b; D; isaQ-Cartier ample Q-divisor, then
H (Ox(Kx + [D])) = Ofor everyi > 1.
(i) If Disasabove, then Hi (Ox (| D])) = O for everyi > 1.

(i) Let L e Pic(X) beanamplebundle. If D;,, ..., D;, aredistinct prime invariant
divisors, then H'(L(—Dj, —--- — D;,)) = Ofor everyi > 1.
PrROOFE All these are particular cases of Theorem 2.4 (ii). O

REMARK. Inthe proof of Fujita’s Conjecture we will use the assertion in Corollary 2.5
for smooth varieties. As the referee pointed out, wi¥eis smooth it is possible to prove this
assertion directly, by induction on dimension and descending inductiopasforr = d this
is just Kodaira’s vanishing theorem.

As we mentioned in the Introduction, some particular cases of the above results can be
proved by reducing the problem to a toric variatyver a field of positive characteristicand
prove that such a variety is Frobenius split. This means thatigf the Frobenius morphism,
then the canonical morphisly — F.Ox has a left inverse. With the description for the
cohomology we used above this can be seen as follows.

First of all, by embeddind as an open subvariety of a complete toric variety, we may
suppose thaX is complete. Next, by taking a toric resolution of singularities, we may suppose
thatX is also smooth (see [MR]). Moreover, an argument in that paper shows that in this case,
if dim(X) = n, thenX is Frobenius split if and only if the morphism

f: H (wx) —> H"(0%)

induced by the Frobenius morphism is not trivial. Blit (wy) =~ Hg“(S)(,lm,l) ~ k, all
the other components being zero. On the other hand,

H'p =~ @ H7 S,
[>(aj+p)Djl=0

has by Proposition 2.1 the componeH‘lI'g’Jrl(S)(_,,,__,,_,,) canonically isomorphic with
Hg’*l(S)(_l,___ .—1) and therefore witlt. It is easy to see that via these identifications, the cor-
responding component gf is just the Frobenius morphism bf and thereforef is nonzero.

For a different approach to Frobenius splitting in the toric context and other applications
we refer to Buch, Thomsen, Lauritzen and Mehta [BTLM].
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3. Ample and numerically effective line bundles. Our main goal in this section is
to give the condition for a line bundle to be ample or nef (i.e., numerically effective) in terms
of the intersection with the invariant curves. For ampleness, this is the toric Nakai criterion
which is proved in [Oda] in the smooth case and is stated also in the simplicial case. We
obtain also a similar condition for the nef property, both the results holding for arbitrary
complete toric varieties. In particular, we will see that on such a variety, a line bundle is nef
if and only if it is globally generated. With a different proof, these results have been obtained
also by Mavlyutov in [Ma]. We use the ideas in [Oda] together with the description for the
intersection with divisors in the non-smooth case from [Fu].

We will apply these results to show that a line bundlen X which is big and nef is
a pull-back of an ample line bundle o¥, for a proper birational equivariant map of toric
varietiesp : X — X’. Recall that a line bundI& on X is called nef if for every curv€ C X,
(L-C)=>0.

THEOREM 3.1. If X isa complete toric variety and L € Pic(X), the following are

equivalent:
(i) L isglobally generated.

(i) L isnef.

(iiiy For everyinvariant integral curveC C X, (L - C) > 0.

PrRoOOFE (i) = (ii) is true in general and (iB= (iii) follows from the definition.

We now prove the implication (iiiz (i). Let D be an invariant Cartier divisor such that
L >~ O(D). Recall that there is a functiofh = ¥p : N ® R — R associated witlD which is
linear on each cone € A. Itis defined in the following way: iD|y, = div(x ~*7)|y,, then
Yle = uq|s (the notation is that used in the first section).

A well-known result (see [Fu], Section 3.3) says thas globally generated if and only if
Y is convex. Recall that dir)X) = n. To prove that/ is convex, it is enough to prove that for
everyoy, o2 € A, with dim(o1No2) = n—1,¥|su0s, IS CONVEX, i.€., forevery € o1,y € 02
andr € [0, 1] suchthatx+(1—t)y € o1Uao2, we have) (tx+(1—1)y) > t (x)+A—)y (y).

Itis clear, therefore, from the definition gf that it is enough to prove that for eael,
o2 as above and eadd; = V (1;), with t; C o2 \ 01 a one-dimensional cone,

Ugy (V) < Ugy (V7))
wherev; is the primitive vector ot;.
Let D = Y°9_, a;D;. Note that by definition, itD; = V(z)), 7; C o, thenuy (v)) =
—aj. Foroy ando as above, let = o1 N o2. Our hypothesis givegD - V(r)) > 0. By
definition, (D + div()(“ffl))wg1 = 0. Therefore

D+div(xs)= Y biDi+--- .
7iCo2\o1
where we wrote down only the divisors corresponding to cones; itV o2. Sincea; =
—lUgy(v) fOr 7; C 02, We get

bi = ug (v;) — ug,(vi) ,
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if 7; C 02 \ o1.

On the other hand, let us denotedthe generator of the one-dimensional lattiéenN,
such that the classes of the primitive vectors;dbr t; C o2 \ o1 are positive multiples o#.
Here N, denotes the subgroup of generated by N 7. If for every r; aforementioned we
write v; = c;je, then the intersection formula in [Fu], Section 5.1 shows that

(D +div(x*1) - V(1)) = bi/ci,

for everyt; C o1\ 02. Since 0< (D - V(1)) = b;/¢c; andc; > 0, we deduce that; > 0 for
everyt; aforementioned. From the formula fbrwe see that the proof is complete. O

REMARK. The equivalence between (i) and (ii) above can be deduced also from the
result of Reid from [Re], which says that every effective one dimensional cycleismatio-
nally equivalent to an effective sum of invariant curves.

THEOREM 3.2 (Toric Nakai criterion). If X isacompletetoric variety, withdim(X) =
n and L € Pic(X), then the following are equivalent:

(i) Lisample.

(i) For everyinvariant integral curveC C X, (L - C) > 0.

PrROOF The proof of the relevant implication (i (i) is the same as the above proof
for the implication (iii)= (i). We have just to use the fact that= O(D) is ample if and only
if ¥p is strictly convex and to replace all the inequalities by strict inequalities. O

Recall that aline bundl& € Pic(X) is called big if for a certain multipl&.”, the rational
map it definesp.» : X — PV has the image of maximal dimensian= dim (X).

ProPoOsSITION 3.3. (i) If X is a complete toric variety of dimension n and L €
Pic(X) isaline bundle which is globally generated and big, then dim ¢, (X) = n.

(i) L e Pic(X) isglobally generated and big if and only if there isa fan A’ such that
Aisarefinement of A’ and L’ € Pic(X’) ample, where X' = X (A’), andthatif f : X — X’
is the map induced by the refinement, f*(L’) ~ L.

PrROOF Let us fix an invariant Cartier divisaP such thatL. ~ O(D). If ¥p is the
function which appeared in the proof of Thewr8.1, it defines an associated convex polytope

Ppb={ueM®@R|u>yponN QR}.

If L is globally generated, then digy (X) = dim Pp (see [Fu], Section 3.4). Buk,p =
m Pp, so that dim¢, (X) = dim ¢r» (X), which completes the proof of (i).

Since a map as in (ii) is birational, the “if” part in (ii) is trivial. Let us suppose now
that L is globally generated and big. By the above arguméng: Pp is ann-dimensional
convex polytope. Such a polytope defines a completeAfaand an ample Cartier divisd’
on X' = X(4’). The cones imA’ are in a one-to-one correspondence, reversing inclusions,
with the faces ofP: for a faceQ of P we have the cone

Co={ve NOR|(u,v) < (u',v)forallu e Q,u’ € P}.
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For everyo € A,, uy is avertex ofP. Indeed, it is the intersection @f with
{ue M®R| (u,v;) > ¥p(v;) forv; e o}.

In fact, every vertex oP is of this form. Indeed, ifig is a vertex ofP, then there is € NQR
such that(ug, v) < (u,v), forallu € P\ {ug}. In particular, we have/p(v) = (uo, v). If
o € A, issuchthab € o, then(ug, v) = (us, v), SO thatug = u,.
Now it is easy to check that
Cy, = U T.
TEA, Ur=Uy

ThereforeA is a refinement ofA’. Moreover, the ample divisab’ on X' is defined by

Yp (v) = MiNgea, (1o, v) = Yp(v).

It follows that if f : X — X’ is the map induced by the refinemerft;(D’) = D, which
completes the proof. O

It is easy to see that using the results of this section, we can extend the form of the
Kawamata-Viehweg theorem we obtained in the previous section to the case of a divisor
which is big and nef. For the proof, however, we have to assume that the divisor is Cartier.

THEOREM 3.4 (Kawamata-Viehweg).If X is a projective toric variety and L €
Pic(X) isaline bundle which is nef and big, then H (wx ® L) = 0 for everyi > 1.

PrROOF SinceL is a line bundle, the duality theorem gives
H' (X, 0x ® L) ~ H" (X, LY,

wheren = dim(X) (see [Fu], Section 4.4).
Using Theorem 3.1 and Proposition 3.3, we get a morphfisnX — X', induced by a
fan refinement, and’ € Pic(X’) ample such thaf*(L") >~ L. But then

H' (X, LY~ H" (X', L' Y~ H (X, oy ®L)=0,
by Corollary 2.5. O

COROLLARY 3.5. Let X beacompletetoric variety and L aline bundle on X. If the
base locus of L is nonempty, then it contains an integral invariant curve C C X.

PROOFE This is an immediate consequence of Theorem 3.1, since for an integral curve
C C X, if Cis not contained in the base locuslofthen(L - C) > 0. O

4. Fujita’sconjectureon toric varieties. The main result of this section is the fol-
lowing strong form of Fujita’s Conjecture in the toric case.

THEOREM 4.1. Let X be an n-dimensional projective smooth toric variety, L €
Pic(X) alinebundleand Dy, ... , D,, distinct prime invariant divisors.

(i) If (L-C) = nforeveryinvariantintergral curveC C X,then L(—D1—---— Dy,)
isglobally generated, unless X >~ P*, L ~ O(n) andm = n + 1.
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(i) If (L-C) = n+ 1for everyinvariant integral curve C C X, then L(—Dy — - --
— Dy) isveryample, unless X ~P*, L~ Om+ 1 andm =n + 1.

In particular, we have the following corollary.

COROLLARY 4.2. Let X beann-dimensional projective smooth toric varietyand L €
Pic(X).

(i) If(L-C) = nforeveryinvariantintegral curve C C X, then wx ® L isglobally
generated, unless (X, L) >~ (P", O(n)).

(i) If(L-C)=>n+ 1foreveryinvariant integral curve C C X, then wx ® L isvery
ample, unless (X, L) >~ (P", O(n + 1)).

We prove Theorem 4.1, using the numerical conditiondftw be globally generated or
ample, as well as the vanishing result in Corollary 2.5 (iii). The proof goes by induction on
the dimension o, based on the following proposition.

PROPOSITION 4.3. Let X be a projective smooth toric variety with dim(X) = =,
L € Pic(X)and! > 1aninteger. If (L - C) > [ for every invariant integral curve C C X,
then for every prime invariant divisor D and every C aforementioned, (L(—D) - C) > 1 — 1.

We first deal with the case= 1 of this proposition in the lemma below.

LEMMA 4.4. Let X bea projective smooth toric variety, dim(X) = n. If L € Pic(X)
isampleand D isan invariant prime divisor, then L(— D) is globally generated.

PROOF OFLEMMA 4.4. We prove the lemma by induction enForn = 1, X = P!
and the assertion is clear.df> 2 andL(—D) is not globally generated, since the base locus
of L(—D) is invariant, we can choose a fixed painin this locus.

Let D’ be a prime divisor distinct fronD and containinge. By Corollary 2.5 (iii), the
restriction map

HL(-D)) - H%L(-D)|p)

is surjective. On the other hand) is a smooth toric variety of dimension— 1 andD N D’
is either empty or a prime invariant divisor @i. Therefore the restriction map

HYL(-D)|p) — H%L(-D)ly)

is also surjective.
Since the composition of the above maps is surjective, we get a contradiction to the
assumption that is in the base locus df(— D). O

We now give the proof of the proposition for an arbitrary 1.

PROOF OFPROPOSITION 4.3.  We make induction om, the case: = 1 being trivial.
Note that sincé > 1, L is ample.

Let us assume now that= 2. Clearly, it is enough to prove thét(—D) - D) > [ — 1.
Since(L(—D) - D) = (L - D) — (D?), we may restrict ourselves to the cd$#) > 2. From
the description of the selfintersection numbers in terms of theAfait follows easily that
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if D’ and D" are the divisors whose rays are adjacent to the ray correspondibg tteen
(D'?) <0or(D"?) <0.

But if, for example,(D'?) < 0, thenL(—(I — 1)D’) is ample, so that Lemma 4.4 implies
thatL(—(I — 1) D’ — D) is globally generated and therefore

0<(L(=(-1D'=D)-D)=(L(-D)-D)— (-1,

which completes the cage= 2.

Suppose now that > 3 and lett € A,_1 be such that = V(r). We can choose
a prime invariant divisoD’ such thatD’ = D andC c D’. Therefore(L(-D) - C) =
(L(—D)|p - C), and we may clearly restrict to the case whem D’ # @, so that it is a
prime invariant divisor orD’. We apply the induction hypothesis fbf ; note that for every
integral invariant curve&’ C D/,

(Llp-C)y=(L-C"=1.
This concludes the proof. O

We can now prove the strong form of Fujita’s conjecture for the toric case.

PROOF OFTHEOREM 4.1. (i) Itis clear that we may assume> 2 andX 2 P”.
We make induction on. If L(—D; — - -- — Dy,) is not globally generated, then

(L(=D1—---—Dn)- V(1)) <0

for somer € A,—1. We will show that this asumption implie$ ~ P", a contradiction.

We can immediately restrict ourselves to the following situatiork 2 < n+ 1, D;
and D, are the divisors corresponding to the rays spanning togethermwithximal cones
andDs, ..., D,41 are the divisors containing (z).

Claim. Wehaven =n +1,D; ~ P 1 foreveryi,1<i <n+1,andD, N D; # ¢
foreveryi # j.

Fix i such that < m. Sincen > 2, our hypothesis and Proposition 4.3 imply that
L(—D;) is ample. Hence Corollary 2.5 (iii) shows that the restriction map

HoL(=D1—--- = Dy)) = HL(=D1—--- — Dp)Ip,)

is surjective. Sinc&/(tr) C BSL(—Dy — --- — Dy,), it follows thatL(—D1 — - - - — Dy,)|p,
is not globally generated.

Another application of Proposition 4.3 gives(—D;) - C) > n — 1 for every integral
invariant curveC C X. In particular,(L(—D;)|p, - C’) > n — 1 for every integral invariant
curveC’ C D;. Fromthe induction hypothesis we gat ~ P"~1, m = n+1 andD;ND; # @
forj #i.

It is now easy to see that ~ P". The claim implies that iD; = V(7;),1 <i <n +1,
and if rg is any other one-dimensional coneA) thentg andz; do not span a cone ia for
anyi. From this it follows that the only one-dimensional conegliarers, ... , 7,4+1. Since
X is smooth, it follows thaX ~ P".
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(i) Since an ample line bundle on a complete smooth toric variety is very ample (see

[De)), itis enough to prove thati£ (—D1 — - - - — Dy,) is notample, thetX ~ P". Again we
may assume > 2.
If L(—D1—---— Dy) is notample, then there exists avariant integral curv€ c X
such that
(L(=D1—+--—Dp)-C) <0.

As above, we may assume thAt and C correspond to cones it spanning together a
maximal cone.
By Proposition 4.3, we may apply (i) tb(—D1) and conclude that iff % P”", then

L(—2D1 — D — - -- — Dy,) is globally generated. In particular,
(L(=2D1—D2—---—Dy)-C) =0,
so that
(L(=D1—+---—=Dn)-C) =1,
a contradiction. O

We conclude this section by giving two results with the same flavour as those proved
above. By Lemma 4.4, iL. is ample, thenL(— D) is globally generated for every integral
invariant divisor. The cas& = P", L = O(1) shows that this is optimal. The next propo-
sition gives the condition under which férample we gef.(— D1 — D>) globally generated
for distinct divisorsD1 and D, as above.

PROPOSITION 4.5. Let X be a projective smooth toric variety with dim(X) = n,
L € Pic(X) ample and D1, D> distinct prime invariant divisors. Then L(—D1 — D2) isnot
globally generated if and only if thereis an (n — 1)-dimensional cone t € A such that if 7,
72 are the one dimensional cones correponding to D1 and D, then (z, 71) and (z, 72) Span
conesin A, and (L - C) = 1, where C = V(7).

PROOFE The “if” partis clear, since in this case we haV¥a— D1 — D2) - V(1)) = —1.

Suppose now that(— D1 — D») is not globally generated. We prove the proposition by
induction onn. The caser = 1 is trivial, and therefore we may assume- 2. Letx € X be
a fixed point in the base locus &{— D1 — D).

Suppose first that there is an invariant prime diviBoet D1, D> such thatt € D. We
apply the induction hypothesis for the smooth toric variBtythe line bundleL|p, and the
prime invariant divisorsdD N D1 andD N D». By Corollary 2.5 (iii), the restriction map

HO(L(~D1 — D2)) = H°(L(—D1— D2)|p)

is surjective, so that our hypothesisoandD implies thatx is in the base locus df (— D1 —
D2)|p. Lemma 4.4 implies thab N D1 and D N D, are nonempty. IfD = V(zp), then by
induction we find a cone’ in the fan Stafrp) of D. This corresponds to a comes A which
satisfies the requirements of the proposition.

Therefore it remains to consider the case when, for every fixed pamthe base locus
of L(—Dj1 — D) and every divisoD containingx, we haveD = D; or D = D;. Clearly
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this impliesn = 2 and the fact that the base locus consists of a point, the corresponding cone
being generated by the rays definibg and D,. But this contradicts Corollary 3.5 and the
proof is complete. O

As a consequence of Proposition 4.3 we get th@t ifC) > 2 for every integral invariant
curve onX, thenL(— D) is ample for every prime invariant divis@. The next result makes
this more precise by giving the condition for an ample line buridiend a prime invariant
divisor D to haveL(— D) not ample.

PROPOSITION 4.6. Let X be a complete smooth toric variety with dim(X) = n, L €
Pic(X) an ample line bundleand D = V (1p) a prime invariant divisor. Then L(— D) is not
ampleif and only if thereist € A,,_1 suchthat (z, 10) € A, and (L - V(1)) = 1.

PrRoOOFE It is clear that if there exists as above, thedL(—D) - V(r)) = 0, so that
L(—D) is notample.

Suppose now thak (—D) is not ample and therefore there existse A,_1 such that
(L(—=D) - V(r)) < 0. SinceL(—D) is globally generated by Lemma 4.4, we must have
(L(=D)- V(") =0.

We must haveD - V(z')) # 0, and therefore we deduce that eitkey, z’/) € A, or
V(z') C D. Inthe first case, we havd. - V(z')) = 1 and may take = 7’.

If V(') c D, we choose a divisab, = V (11) such thatz1, ') € A,. Then(L(—D —

D1) - V(t')) < 0, and Proposition 4.5 implies that thereri€ A,_1 such that(zg, t) € A,
and(L - V(1)) =1. O

5. Sections of ample line bundles. In this section we fix a globally generated line
bundle L on a complete toric varietX and an invariant divisoD such that. ~ O(D).
SinceL is globally generated, for each maximal can¢here is a uniqua, € M such that
div(x*s) + D is effective and zero oti,,. Equivalently, for each maximal come there is a
nonzero section, € H°(X, L), unique up to scalars, which is an eigenvector with respect to
the torus action and whose restrictionlg is everywhere nonzero.

A well-known ampleness criterion (see [Fu], Section 3.4) says thiat ample if and
only if u, # u, (or, equivalentlyk s, # k s;) for o # =. From the unicity of the sections,
this is equivalent to the fact thatdf # t, thens, |y, vanishes at some point. But in that case,
it must vanish at the unique fixed point of U-.

We consider the following map whose components are given by the restriction maps:

¢:HOL) > @ HLIy,).

0 € Amax

Since¢ is an equivariant map under the torus action, the discussion above shovisithat
ample if and only if¢ is surjective.

Our goal in this section is to extend this property of ample line bundles in the case when
X is smooth to a set of higher dimensional subvarieties which are pairwise disjoint. More
precisely, we have the following
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THEOREM 5.1. Let X be a projective smooth toric variety and L € Pic(X) an ample

linebundle. If Y1, ..., Y, C X areintegral invariant subvarietiessuch that Y; N Y; = ¢ for
i # jand

v HYL) — @ HO(LIy)

i=1

isinduced by restrictions, then i is surjective.

PROOF LetY = J;_; Yi. In order to prove that
v HO(L) - HO(L|y)

is surjective, it is enough to prove that (L ® ZIy,x) =0.

Letr : X — X be the blowing-up ok alongY andE the exceptional divisor. Then
HYX, L ®Iy,x) ~ HXX,7*L ® O(—E)).

SinceX is smooth, the blowing-up of along an integral invariant subvariety is still a smooth
toric variety ([Ew]). Since¥; NY; = @ fori # j, m is a composition of such transformations,
and thereforeX is a toric variety. Moreover, from the description in [Ew] it follows that if
E; = n~1(Y}), thenE; is an invariant prime divisor oX andE = Zf’:l E;.

SinceL is ample, Proposition 7.10 in [Ha] implies that there is an integerl such that

7*(L%) ® O(—E) is ample onX. We choose an invariant divis@ on X such thatt*L ~
O(D). ThenD — (1/s)E = D — (1/s) Y i_, E; isQ-ample and. D — (1/s)E| = D — E.

Now Corollary 2.5 giveH (X, 7*L ® O(—E)) = 0. O
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