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Abstract. Germs of holomorphic vector fields at the origineoc2 and polynomial
vector fields orC? are studied. Our aim is to classify these vector fields whose orbits have
bounded geometry in a certain sense. Namely, we consider the following situations: (i) the
volume of orbits is an integrable functioni) (the orbits have sub-exponential growth, (iii)
the total curvature of orbits is finite. In each case we classify these vector fields under some
generic hypothesis on singularities. Applicats to questions, concerning polynomial vector
fields having closed orbits and complete polynomial vector fields, are given. We also give
some applications to the classical theory of compact foliations.

1. Introduction. Let M be a manifold with a foliatiorF. We equipM with a Rie-
mannian metrials2, and for each leal. ¢ M consider the isometric immersion given by
the inclusion. It has been shown by several authors that for nonsingular real foliations their
global behavior is often related to the geometric properties of isometrically embedded leaves
([22], [13], [28], [29]). In many cases, this global behavior depends on finiteness conditions
on the geometry of leaves. In this paper we are concerned with similar problems for complex
(possibly) singular foliations, defined for instance by a (singular) holomorphic vector field on
a manifold ([20]).

The following theorems are main results proved in this paper.

THEOREM 1. Let X beagermof holomorphic vector field in an open neighborhood U
of the origin 0 € C2. Assume that the Euclidean volume function of X isintegrable and that
the total volume of the orbits accumulating to the origin is finite. Then F has a holomorphic
first integral.

For the definition of the volume function of a vector fietd see Section 3.

THEOREM 2. Let X bea polynomial vector field in C2. Assume that the Fubini-Sudy
volume function of X isintegrablein C? and that the singularities of the corresponding pro-
jectivefoliation F(X) of CP(2) in L, areof rational type. Then F(X) admitsarational first
integral.
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For the notion ofrational type singularity, see Section 2. Theorems 1 and 2 are related
to the main result of [1], which is in a local nature.

Given a polynomial vector field in C2 there is an induced foliatiof = F(X) on the
complex projective plan€P (2) = C2 U Lo ([20]). Denote by singd c CP(2) the singular
set of 7. Note that thdine at the infinity Lo, = CP(1) must have some singularity ¢f
([20)).

THEOREM 3. Let F beafoliation by curveson CP(2) whose singularitiesin Lo, are
of rational type. If the leaves of 7|2 areclosed in C?\ singF, then F admitsa rational first
integral.

The above result is analogous to the theorem of Mattei-Moussu for germs of foliations
([22]). For the next theorem we need the notion of growth of leaves introduced in [28].

THEOREM 4. Let F be a foliation on CP(2), whose singularities on CP(2) are hy-
perbolic and whose leaves have sub-exponential growth, for some C* metric ¢ on CP(2)
which is Hermitian along the leaves. Then F islinear of theformx = x, y = Ay, . € C\ R,
with respect to some affine coordinates (x, y) € C2 C CP(2). In particular, the limit set of
F isaunion of singularities and algebraic leaves.

Theorem 4 gives rise to, from the standpoint of Plante ([28]), a variant of Poincaré-
Bendixson type theorem for polynomial vector fields.

THEOREM 5. Let X bea polynomial vector field in C2, whose corresponding projec-
tive foliation F(X) has only hyperbolic singularitiesin CP(2). Assume that the orbits of X
havefinitetotal curvature for theisometricimmersion given by theinclusion. Then X islinear
X =2x(9/0x) + uy(d/9y), r/n € C\ R, in some affine chart.

Theorem 5 concerns a question relatedniaimal immersions in Euclidean spaces (see
Osserman [27]).

In the last section of the paper we considempact foliations (that is, foliations on
compact manifolds by compact leaves), and study the basic questions in a classical framework.

It should be remarked that our global approach is based on the study of the holonomy
groups associated to some algebraic invariant curv€ B(2), to which we extend the foli-
ation induced by any polynomial vector field @f. This algebraic curve may be the line
at the infinity Lo = CP(2) \ C?, or some other algebraic leaf which exists depending on
the context. These holonomy groups are proved to be finite, abelian linearizable or solvable
affine groups depending on the situation we deal with, as a consequence of our hypothesis
of bounded geometry. Then the classification of these foliations is obtained by applying the
main results in [5], [8], [31] and [33].

Although the results stated above have geometric interpretations, our approach stems
from complex dynamics and geometric theory of foliations. It is interesting to exploit such



COMPLEX VECTOR FIELDS 369

machinery in further investigation of geometric questions such as (i) the existence of excep-
tional minimal sets for holomorphic foliations i@P(2) ([6]), (ii) polynomial vector fields
with simply connected orbits i€” ([11]), and others.

| would like to thank the referee of the original manuscript for the careful reading and
suggestions, which helped improve the final form of this paper. The first part of this work was
conceived during my visit to the IMCA-Peru. | wish to thank my hosts for their hospitality.

2. Preliminaries. In this section we introduce basic notation and relevant facts from
complex dynamics for later use. We refer to [22], [31] and [33] for further specific informa-
tion.

2.1. Groups with finite orbits ([22]). Let DifC, 0) denote the group of germs of
holomorphic diffeomorphisms at the origin® C. We denote byC* = C\ {0}. For each
k € N we define the group

. v Mgt .

Hy = {fﬂe Diff (C, 0); ¢(2)" = Tchpzl" ne € C*ay EC} .
ThenHy is a solvable group and, up to formal conjugacy, any solvable nonabelian suligroup
of Diff (C, 0) is of this type ([21]) (a result by Cerveau-Moussu). If this conjugacy is analytic,
then the group is callednalytically normalizable (see [9], [33] for the general notion of
analytic normalizable group). This analytic normalization can be carried out except for some
special cases where the group of commutéarG] is cyclic ([21]). Such non-analytically
normalizable groups are callesiceptional. The following is a generalization of a result in
[22].

LEMMA 1. Let G c Diff (C, 0) be afinitely generated subgroup such that for almost
every point p (with respect to the Euclidean Lebesgue measure) in a neighborhood 2 of 0 € C
the pseudo-orbit of p isfinite. Then G isfinite and analytically conjugate to a cyclic group of
rational rotations.

PROOF.  First we observe that by Nakai density theorem ([26]) the gréumust be
solvable. On the other hand, @ is nonabelian, then we may take an elemene G of
the formg(z) = z + ar41251 + hoot., ax11 # 0. According to [3] the pseudo-orbits of
this element are not finite. Thus must be abelian and cannot contain elements of the form
g(2) = z + ars1Ztt + hoot., g # 1d.

CLaiMm 1. Anyelement g € G hasfinite order.

Indeed, assume that there exigtse G with ¢" # Id for anyn € Z — {0}. We may
assume thaj(z) = A -z + h.ot., A" # 1 foranyn € Z — {0}. If |A| # 1, then by Poincaré
linearization theorem we may linearizeor ¢ —1 as an attractor so that none of its pseudo-
orbits is finite. Thugi| = 1 and we have. = exp(2r+/—1a) for somea € R\ Q. This
implies that the pseudo-orbits gfare not finite, which is a contradiction and proves the claim.

SinceG is abelian and finitely generated, the claim implies tGatself is finite. Ac-
cording to [22],G must be a group of rational rotations up to analytic conjugacy. O
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2.2. Singularities in dimension two ([22], [20]). Given a foliatiiof dimension one
on a complex surfac#/ with singular set sing, the reduction theorem of Seidenberg ([35])
(see [10] for a version in dimension three) asserts the existence of a proper holomorphic map
7: M — M which is a finite composition of quadratic blowing-up’s at the singular points of
F in M such that the pull-back foliatioft := 7*F of F by 7 satisfies:

(@) singF c =~ Y(singF), and

(b) any singularityp € singF belongs to one of the following categories (these are
calledirreducible singularities):

(i) xdy — Aydx + h.ot. = 0 andA is not a positive rational number, i.e.,¢ Q.
(simple singularity),

(i)  yPtldx — [x(1+ ry?) + h.ot]dy =0, p > 1. This case is calledsaddle-node.
We call F thedesingularization or reduction of singularities of F.

DEFINITION 1. A singularity of type (i) is calledesonant if A is negative rational
number, i.e.r € Q_ ([23]). An isolated singularity ofF is called ageneralized curve if the
desingularizatior of F admits no saddle-node singularities.

The exceptional divisor D = 7 ~1(singF) ¢ M of the resolutionr can be written
asD = U’}'zl D;, where eaclD; is diffeomorphic to an embedded projective li6# (1)
introduced as a divisor of the successive blowing-upi3; are calledcomponents of the
divisor D. A singularityq € singF is nondicritical if 7 ~1(¢) is invariant byF. Any two D;
andDj, i # j, intersect (transversely) at at most one point, which is calleatiaer. There
are no triple intersection points.

Given any analytic curvé” ¢ M we denote by™ := 7 —1(I" \ singF) C M thestrict
transformof I". Let now p be a singularity of a germ of foliation admitting a germ of smooth
separatrixS. A linear chain at p (with respect taf) is a sequence of blowing-up’s constructed
in the following way: Letr; be a blowing-up ap and P, = ﬂil(p). If pr=n*(S)N Py is
reduced (where*(S) denotes the strict transform §funderry), then the linear chain at;
is 1. If p1is not reduced, then we consider another blowingsp@t p1, and if necessary,
successive blowing-up’s at the corners, until all of them are reducedlifids chain at p
consists of the compositiom, o - - - o 7r1 of all these blowing-up’s (see [7], [25] for further
information).

A dicritical singularityg € singF N S (whereS is as above) will be calledrdinary
dicritical (with respect tas) if only one component of ~1(¢) is noninvariant and appears in
the first linear chain of (with respect tas).

We will mainly consider nondicritical singularities. However we do admit dicritical sin-
gularities of the following type:

DEFINITION 2 (rational singularity [25]). LetF be a foliation onCP(2). Given a
smooth algebraic curveA ¢ CP(2) we say that the singularities ¢f in A are ofrational

typeif:
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(i) either A is not invariant byF, or the complement of the resolution divisbr of
singF N A is pseudo-convex (see [9] for sufficient conditions for pseudo-convexity).

(i) the singularities sing N A are generalized curves (see Definition 1 above) and one
of the following conditions is satisfied:

(il.1) singF N A has a nondicritical singularity.

(il.2) singF N A = {gq} andgq is ordinary dicritical (with respect ta).

(ii.3) singF N A contains at least + 1 ordinary dicritical singularities, where > 0
is the self-intersection number df C CP(2).

Conditions (ii.2) and (ii.3) are assumed when all singularitiestimre dicritical. If
A = L, the conditions above exclude the case where&ingA consists of more than two
dicritical singularities but only one of them isdinary dicritical. One of the main results in
[25] is the following

THEOREM 6. Let F bea singular holomorphic foliation by curves on a complex sur-
face M, S ¢ M aninvariant analytic (irreducible) compact curve. Then the foliation F has
some separatrix transverse to S provided that one of the following conditionsis satisfied:

(i) Somesingularity p € singF N S isa non-dicritical generalized curve.
(i) S issmooth with negative self-intersection number and each p € singF N Sisa
generalized curve.

(iii) S issmooth with self-intersection number n > 0, each p € singF N S isa gener-
alized curve, and at least n + 1 of themare ordinary dicritical.

In particular, if 7 admits a meromorphic firstintegral £: M\ § — C, then £ extendsto
a meromorphic first integral on M provided that one of the conditions aboveis satisfied.

We apply this result in the proof of Theorem 2 as well as Proposition 4 to find some sep-
aratrix transverse th, in CP(2) or to extend some meromorphic first integral to a rational
function.

Examples of ordinary dicritical singularigeénclude singularities admitting a local mero-
morphic first integral of the forre” /y™. Note that singularities admitting holomorphic first
integrals are always nondicritical ([22]).

2.3. Adjunction of holonomy groups ([33]). We consider the following situation mo-
tivated by the above reduction theoretf:is a foliation on a compact complex surfatg,
andD C M is a compact (codimension one) invariant divisor with normal crossing and no
triple points. We writeD = U’;;l Dj, where eaclD; is an irreducible smooth component,
and fix local transverse sectiofig such thatS; N D; = p; ¢ singF, and(S;, p;) = (C, 0).
Denote byG ; the holonomy group HoI(ﬁ,Dj, S;) of D; (we refer to [22] for the definition
and properties of the holonomy group). Denotelbythe leaf of F that contains the point
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z € M. Thevirtual holonomy group G ; of F relative to the componerid; at the sectiors;
is defined to be ([5])

G; =Hol(F, D;,Sj) = {f e Diff (S, pj)|L. = Ly, foranyz e (S;, pj)}.

Clearly, this virtual holonomy grouﬁj contains the holonomy groug ;. Now we fix
acornery = D; N D;, and make the following assumption:

ASSUMPTION 1. The virtual holonomy group?,» is solvable and the grouéj is fi-
nite.

Thus, in the nonabelian case we haAi/,ec H, for some formal embedding. We now de-
fine theG; to G, which is, roughly speaking, a consequence of passing one holonomy group
to the other adjacent transverse section, by usindpiliac correspondence, as follows (see
also [9], [11] and [33] for more details and the original construction): Choose a neighborhood
U of ¢, whereF can be written in theormal form. In U, we take small transverse sections
2, X, cU to F such thats; N D; = gi andX; N D; = q;. Denote byF(X;) the collection
of subsetsE C X; such thatt is contained in some leaf d?|U. DefineF(X;) in a similar
way. The Dulac correspondence is a multivalued correspondBpceF (X;) — F(X;),
which is obtained by tracing the local Ieavesfo|fU. Given anyx € X; the set of intersec-
tions of the local leaf ofF | y that containse, with the transverse sectiab;, is denoted by
Ly N %; € F(X;). The correspondenc®, associates to any poigte L, N ¥;, a subset
D,(z) C L,N X e F(X)), thatis defined by the local normal form &fin U.

Given an element € Hol(F,D;, X;), we associaté with a collection of elements
{(hP} Diff (¥}, g;), each of which satisfies the following relation

hDquzl)qoh,

called theadjunction equation. Remark that the adjunction equation is not exactly an equa-
tion but an equality of sets or correspondences. More precisely, given any element
Hol(F, D;, X;), each diffeomorphism? e Diff (X}, ¢;) must satisfy, for every € X, the
equality of seté1” (D, (x)) = D, (h(x)), whereD, (x) C L, N X; andD, (h(x)) C L, N X;

are subsets as above. This adjunction is adetyudefined for the special case of singularities
{q} = D; N D; we consider below.

Up to a conjugacy induced by a simple pathlin\singF joining p; to ¢;, we can
assume thaG; = Hol(F,D;, ¥;) andG; = Hol(F, D;, X;). Therefore, the adjunction
equation induces a subgroafy * (D, ,G;) C Diff (S;, p;) which is generated bg ; and all
elements:Ps, h e G,. This subgroup is unique up to above conjugacies. We observe that
the subgroug ; * (D, ,G;) is not necessarily finitely generated.

For our purpose we may assume the following:

ASSUMPTION 2. The corney is a singularity with a holomorphic first integral.

Therefore there are local holomorphic coordinatesy) € U such thatD; N U = {x =
0}, Dj NU = {y = 0}, and such thafF|,, is given in thenormal formasnxdy + mydx = 0
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andg : x = y = 0, wheren/m € Q, and(n, m) = 1. We fix the local transverse sections
asX; = {x =1} andX; = {y = 1}, such thatX; N D; = ¢; # ¢q andZ‘j ND; =q; #

qg. Denote byh, € Hol(F,D;, ;) the element corresponding to the corger Then we
haveh,(x) = exp(—2./—1wn/m)x. The local leaves are given by'y" =cte. The Dulac
correspondence is therefore given by (all branches are considered)

D,: F(Xi) — F(Xj), Dyx)= {x™/my

Case 1. G; is abelian: Take any elemehte G;. SinceG; is abelian, we have(x) =
puxh(x™) for someh € O1,h(0) = 1. We takeus = ™" andhy = ™" to be one
of the n-roots of u andh™, respectively. Then we define’s : (Xj,q)) = (Xj,q)) by
hPa(y) = p1yh1(y™). We consider the collectiofh P} of all these elements.

Case 2. G; C Hy, is nonabelian, analytically normalizable amk /m = k; € N: In
this case we have an analytic embeddihgC Hy,. Take an element

h(x) = Ax/(1+ ax*)Yk e G;
and consider the collectioi®?} of all branches of
th: V> )Lm/ny/(l_i_aynki/m)m/nk; )

Case 3. G; is solvable, nonabelian and not analytically normalizable: In this case it
follows from [21] that the group of commutatof§;, G;] is cyclic, that is[G;, G;] = (h1)
for someh; € G; andG; is generated by some power or root of local holonomy rhgp
(associated to the singularity = D; N D;) and some poweh!, I € Z. Notice that if
n = m = 1, then the local leaves are given by =cte and we hav®, (x) = {x"/m} = {x}.
Thus, in this caseD, is a mapD, : X; — X;. Given anyh € G;, we may therefore define
hPa Gj ashP4 (y) = h(y) in the coordinates defined above. Hence we may assuge:.

First, consider the case where the virtual holonomy grégp’s abelian. Then all el-
ements ofG ; commute with the local holonomy, aroundg, associated to the separatrix
contained inD;. Therefore, using the same construction as in Case 1 above, we may con-
sider the adjunction orf?, to the holonomy grouy;, as a subgroup of the virtual holonomy
groupG;. If Gj contains some elementof infinite order, then we have two possibilities to
consider:

(3.a) ¢ has nonperiodic linear part. In this cagejnduces an elemerit in the ad-
junction holonomy and therefore in the virtual holonomg G;, which also has nonperiodic
linear part. This implies thak; (which is solvable by hypothesis) is analytically normalizable
[21]. Therefore we may exclude this case.

(3.b) Every elemeny in Gj has periodic linear part. In this case, we may find some
nontrivial elemeny € G ;, which is tangent to the identity(y) = y + ay'** +h.o.t..a # 0.
Then,g induces an elemeritin the virtual holonom)f},-, which has infinite order and some
power tangent to the identity. Moreover, sinég is analytically normalizable, it follows
thatg andh are analytically normalizable. This implies that the powers afe analytically
normalizable and therefore, since the group of flat elements is cyclic, G; is analytically
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normalizable. Hence we exclude this case, and conclude that all elemehjshiave finite
order. It follows thatG, is a group whose elements are rational rotations, and that each
finitely generated subgroup is in fact a finite analytically linearizable group. In particu)ar,
is a finite linearizable group.
Now we consider the case tl*éy is solvable nonabelian, and analytically normalizable.
In this case, once again we may use the same procedure as in Case 2 above to induce nontrivial
analytically normalizable flat elements in the virtual holono{hy and conclude that this is
in fact analytically normalizable. Thus we exclude this case, too.
Summing up, we obtain the following:

CoNcLusioN.  Under our assumptions above, if G; is exceptional (that is, solvable
nonabelian and not analytically normalizable), then G ; iseither a group of rational rotations
and hence with a finite number of finitely generated subgroups, or an exceptional group.

In this last (exceptional) case, it follows from [21] théy is generated by some root
of the local holonomyy, associated tg (we may havey, = Id), and some flat element
g1. Moreover each flat element itﬁj is some power ofyj;. Then ideas in [26] and [9]
conclude that certain power af corresponds to some power @f by means of the Dulac
correspondence. Indeed, it is possible to use the Dulac correspondence gifghy=
{x™/"},in order to consider the sets of “pseudo-orbits"

{glirquohé’qu‘lo---oglizquohé_zopq_loglilquohlll(x)}CZ',',

wherex € X, I, andk; are integers, anﬁ’;l is the correspondencB(X;) — F(X)), y —
{y"/™}. These sets are contained in the same leaF dbr each fixedx, and as in [26], if
the powersf1 andh’i are never related by the conjugacy equation (adjunction equation), then
we have accumulations for the leaves’f outside the origin in¥;. On the other hand, in
the case we are interested in, we have discrete intersections of the leaves with the transverse
sections, outside the origin, so that some pdvﬁepasses to the virtual holonorﬁ})/j, as some
k
powergy.

3. Vector fields with integrable volume function. In this section we prove Theo-
rems 1, 2 and 3. We consider the following situation: XKebe a meromorphic vector field
in a complex manifoldV/, with polar set(X)., of codimensior> 1, and discrete singular
set sind(. Thus X induces a (singular) holomorphic foliatiof(X) of dimension one on
M, whose leaves are integral curvesXfin M \ singX ([20]). The singular set sing(X)
of F(X) is an analytic subset of codimension 2. For each poink € M we denote by
L, C M\ singF(X) the corresponding leaf, and Iy, c L, the associated orbit of in
M\ (X)s. Let M be equipped with a Riemannian met#ic?, which is Hermitian along the
leaves ofF (X). Thevolumefunction of X (with respect to the metriés?) is therefore defined

by

Voly : M — [0, +00], Volx(x) :/ i:(dsz),
Ly
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wherei,: L, — M is the inclusion map. We assume that ¥d an integrable function
or that some open leaf of (X) has finite volume. For technical reasons we avoid some
exceptional singularities and work only with rational type singularities.
Let us now recall some basic facts on the geometry of the complex projective plane

CP(2). The Fubini-Study metric o€ P (2) is defined as

ds? = A(\dx|? + |dy|* + |xdy — ydx|?) /(L + x|+ [y[%)?,
and the associated quadratic 2-form is written as

2 = —4/=18d log(1 + |x|° + |y[?).

Given a foliationF by curves inCP(2) and a leafL ¢ CP(2) \ singF, the area of a regular

domainD C L is given by
1
AD) = - /D 2|,

For any local parametrizatiop(z) = (x(z), y(z)): D € C — L of L, by settingy(z) =
1+ 1x@12 + ly(2)[?, we find that

499 logy = Alogyr = [y Ay — [grady|]/y?.
Before proving Theorems 1 and 2, some examples illustrating these results are in order.

EXAMPLE 1. LetR:C2 c CP(2) — CP(1)bea (nonconstant) rational function.
The levels ofR define a foliationF by algebraic curves i€P(2). Given any affine space
C2 c CP(2), there exists a polynomial vector field whose orbits are punctured leavegof
C2. The rational vector fieldk = (—Ry, R,) definesF outside its polar set. For any leaf
the induced metric is written as

1?2 = 4(X @+ 1Y @1 + 1x(2)y'(2) — X' @y@)1D /A + 1x(2) 12 + |y(2)12)?|dz|?
=4 @D+ 1Y @1D/QA+ x@)% + 1y(2)1H?dz)?.

Since the leaves are algebraic subvarietieS Bt2), theleaf space (CP(2) \ singF)/F
is a nonsingular orbifold (a compact analytic space) and therefore (as in [1]) by Fubini's
theorem the integral of the volumes of leaves (fibergpis integrable ove€P(2).

EXAMPLE 2. Let us take a linear vector field(x, y) = x(9/9x) + Ay(3/dy), 1 €

C*, where(x, y) are affine coordinates i62. The orbitO(, ) through a point(x, y) is

parametrized by, y)(z) = (xe?, ye*?),z € D(A) € C, whereD(1) C CisR?if A ¢ Q.

If » = +n/m e Qwithn,m € N, (n,m) = 1, then we havdd (1) = R x [0, 2rm]. Again

we consider the Fubini-Study metric 6 (2). The metric induced by, ), onC is written

as

eZRG(z)|x|2 + |k|2|y|2e2Re()‘Z) + A= 1|2|xy|2e2R€[(A+l)z]
a+ |x|262Re(z) + |y|262Re(kz))2

The area form induced hy is then given by

[x|22Re2) 4 |y |2e2REA) 4 |xy|2|n — 1]2e2RAGAD]
a1+ |x|2e2Re(Z) + |y|26,2Re(Az))2 d

ldz|?.

WP (x, y) = @l ) (ds®) = 4

do(x,y) =4

V 9
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which yields
[|x|2€2u + |)Ly|2€2(au—ﬁv) + |Xy|2|)\ _ 1|262(au—/3v+u)]
(1+ |x|2€2u + |y|2€2(au—ﬁv))2
where we writex = « + +/—18 andz = u + «/—1v. Performing the change of variables
s =e?, t = e 2, we obtain
do(x, y) = ZECI A YERES TR 4 Py P — 15
’ (14 |x|2s + |y|2s«th)2

do(x,y) =4

dudv ,

dsdt .

PropPOSITION 1. If A € C\ Qthen Volx (xo, yo) = +0o0, provided that xg, yo # 0in
C?. Moreover, if » € Q, then Voly isintegrablein C2.

PrRooOF If A € Q, then the volume function is given by

t=1 s=400
Vol x (xo, yo) = / / do (xo, yo) .
1= s=0

e—4mtm

Now we recall the fact thafOJroo 1/(1+ u")du converges fon > 1. Note that, for
A < 1, the termu” is given by(|xo|2«)? in the denominator. Fox € (1, +00), it is given by
(|yol%u™)2. The case. = 1 gives(x — 1)2|xoyol%u* = 0 in the numerator, for which we take
v given by (|xo|2u)? for instance. Thus we conclude that the volume is integrable in the case
A e Q.

Assume now that € C\ Q. In this case, we consider the integral

I(«, B) // ol ! dsdt
a, B) = s
Rz (1+ |xols + |yol?s*1P)2

and use the following fact, which completes the proof of the proposition.
CLAIM 2. Thevalueof theintegral [,"*° +=/(1+ t#)2dt isinfinitefor any 8 € R.

Indeed, assume tha@ > 0. For 0 < r < 1, we have 14+ t# < 2 and therefore
1/(1+t#)%2 > 1/4, which yieldsfol[rl/(1+tﬂ)2]dt > (1/4) foldt/t = +00. Assume
now that8 = —y < 0. Then

1 1 1
= >
A+t7)2 42087 4112 T 4 K

for some constank > 0 and sufficiently large > M. Hence /)" r=1/(1+ t#)%dr >
011 + K) dt = +oo. O

LEMMA 2. Let X be a meromorphic vector field in a complex manifold M equipped
with a €2 Riemannian metric which is Hermitian along the leaves of the induced foliation
F(X). Assume that Vol x (x) < +oo for acertainx € M \ singF(X). Thentheleaf L = L,
is closed outside singF (X).

PROOF.  Fix apointp € L \singF(X). By the flow-box theorem there exists a complex
diffeomorphismgy from a small neighborhoo® of p onto a polydiscA in C”, which takes
]—‘(X)\W into the horizontal foliatiori{. The mapy is locally Lipschitz so that the sum of the
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volumes of the plaques df in W is finite if and only if there are only finitely many plaques
of H in A that correspond to the intersectiénn W. This implies thatL N W consists of
finitely many plaques and therefopee L. This shows that is closed inM \ singF(X). O

A consequence of this lemma is the following

PROPOSITION 2. Let X bea polynomial vector field on C? such that (i) the singular-
ities of F(X) are hyperbolic, and (ii) there exists a nonsingular orbit O, C L, which has
finite volume for the Fubini-Study metric in duced on C2. Then L, isan algebraic curve.

PROOF. The orbit®; is closed inC? \ singF(X) by Lemma 2. If there existp €
O, N singF(X), then, by the local structure of hyperbolic singularities in the complex case,
it follows that O, must be locally contained in the two separatriceXadt p. ThusO, is
analytic of dimension one i62.

Now we considetF(X) in a neighborhood of the liné,, = CP(2) \ C2. Then there
are two possibilities:

Case 1. L isnotinvariant byF(X). In this case, given any poipte L, \ SingF (X),
by the flow-box theorem the ledf, is locally closed aroung and therefore analytic around
p. Letnowp € Lo NsingF(X) N O,. Sincep is hyperbolic andL, is closed inC?, it
follows again that_, is contained in the set of separatrices/X) at p. ThusL, is analytic
in CP(2).

Case 2. L is invariant by (X). By the maximum principle(, accumulated.
and, since itis invariant, it follows thdt, accumulates some singularjpye singF (X)N L.
As above, the hyperbolic type pfimplies thatL, is contained in the separatrix transverse to
L at p. Thus again we conclude that, is analytic of dimension one 6P (2).

Consequently, it is implied by Remmert-Stein theorem [16] that= O, is analytic in
CP(2) and by Chow theorem [16] it is an algebraic curve. i

PROOF OFTHEOREM 1. The proof is now reduced to a mimic of the original proof of
Mattei-Moussu theorem ([22]) if one remarks the following: (1) Almost every leaf has finite
Euclidean volume and is therefore closed outside the origirG¥ (Lemma 2). (2) All virtual
holonomy groups arising in the reduction process of 5i(Xj) are finite and therefore each
one is conjugate to a cyclic group of rational rotations (Lemma 1). O

PROOF OFTHEOREM 2. If Lo, = CP(2)\C?is notinvariant by the foliation, then the
leaves ofF (X) are also closed i€ P (2) \ singF (X). As above, this implies that the leaves are
contained in algebraic curves. By Darboux theorem ([20]) the foliation admits a rational first
integral. We may therefore assume tha is invariant and by Theorem 6 conclude tHatx)
has some separatriX transverse td..., with I' N L, = p € singF(X). After performing
the reduction of singularities faF (X) | L We then obtain a strict transfori transverse to
the divisorD = (J}_; D;, which cutsD at a singularityp = I' N D = I" N P;,. The local
holonomy associated tb* = I" \ {} has finite pseudo-orbits and is therefore finite. By a
result of Mattei-Moussu ([22])F is linearizable aroung asnxdy + mydx =0, n,m € N
andl™ : {x = 0}, P;, : {y = 0}. The virtual holonomy group associated to a small transverse
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section diskZ;, £; NP; = ¢; ¢ singF(X), has discrete pseudo-orbits outside the origin
and hence is solvable ([26]). This holds for any comporgrf the divisorD.
Sincep is of typed (x™y™) = 0, we may consider the adjunction of the holonomy group
Hol(F(X), P},) to the local holonomy:, of I™* and obtain a subgroup,  Hol(F(X), P;,) *
(ho) C HAol(Jt"(X), X)), where X' is a transverse sectiofy = cte} at a point inl™*, and
HAol(]j'(X), X7) denotes the virtual holonomy at this section. This adjunction group has also
finite pseudo-orbits (as well as the virtual holonoh‘fgl(]j'(X), X)) and is therefore finite.
Thus, using the construction given in Section 2 for the gerHol(ﬁ(X), P;,) * (ho),
we conclude that HOF (X), P;,) is also finite (recall the construction in Section 2: In fact,
each elemeny € Hol(F(X), P;,) induces an element®« in the adjunction group, which
is a periodic rotation. Using the explicit formulae fgP« given by the possible cases (i.e.,
Hol(F(X), P;,) is abelian or solvable, nonabelian isomorphic to a finite ramified covering
of a group of homographies, and in this last cad® is also a finite ramified covering of
a homography and cannot be finite) we see th& also a rational rotation. Alternatively,
one may prove that HaF (X), P;,) has finite pseudo-orbits, using the fact that the Dulac
correspondence associated to the cofhira finite-to-finite correspondence (see Section 2).
At this stage we know thaf has a holomorphic first integral in a neighborhood of
P;, U . Given any cornep; = P; N P;, we may iterate the above process: Indgedis
necessarily of typé(x"y™) = 0, n,m € N ([22]) and, as above, we may perform the adjunc-
tion of the holonomy oP; to the holonomy oP;, . This gives a new group that by its turn will
constitute a group; + (D, *Hol(F(X), P;) xHol(F(X), P;,)) * (h,) C HOI(F(X), X). As
above, the new adjunction group is finite and therefore(JAQK), P;) must be finite. Since
the groupD; * (D, * Hol(F(X), P;) * HOl(F(X), P},)) * (h,) C HOl(F(X), X) is finite,
we may construct a holomorphic first integral {5t X) in a neighborhood of U P;, UP;.
A standard induction argument then shows that we may construct a holomorphic first integral
for F(X) in a neighborhood of the invariant part of the dividor= U, Pj. Since, by hy-
pothesis, the complement of the invariant part of the resolution divisor ofgiKig N L is
pseudo-convex, we may extend this function to a rational function ([36]) which blows-down
to a rational first integrak for 7(X) in CP(2) (see [9)). O

PROOF OF THEOREM 3. The proof for Theorem 2 also works here, since we only
need to use the facts thbl(F(X), X) is finite andHol(F(X), P;) is solvable with discrete
pseudo-orbits off the origin, which also hold provided that the leave5s|gf are closed in
C2\ singF(X). O

3.1. Applications. In this paragraph we give some applications of the preceding re-
sults.

PROPOSITION 3. Let F bea foliation with rational first integral on CP(2) and C? ¢
CP(2) an affine space such that all singularities of F in Lo, are of rational type. Let F; be
any foliation on CP(2) which is topologically conjugate to F on C? and have also rational
type singularitiesin L. Then 71 admitsarational first integral.
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PROOF.  First we notice that by topological equivalence the leavegioére closed in
C2\ singFi. Since the singularities ofy in Lo are also rational, it follows from Theorem 3
thatF; admits a rational first integral. O

The hypothesis on sif§N L., may not be omitted as illustrated by the following exam-
ple.

ExaMPLE 3. LetF : dy — ydx = 0. ThenF admits no rational first integral, for
it admits the (primitive) algebroide first integra¢—*. In particular, its leaves are closed in
C2. On the other hand, the homeomorphigmC? — C?2 defined by (x, y) = (x, xe *y)
conjugatesF to the radial foliatiorR : xdy — ydx = 0, which has the rational first integral
R = x/y. We have sin@ N Lo, = @ with L, transverse tdR, but the same does not hold
for F; there is a saddle-node singularity= u?, v = v(u — 1) in Loo.

In what follows we refer to [34] and [37] for the notion géneric type of the orbits of a
holomorphic flow on a Stein surface.

PROPOSITION 4. Let X be a complete polynomial vector field in C2. Assume that

(i) thegeneric type of the orbit of X isC*, and

(i) thesingularities of F(X) in L, are of rational type.
Then F(X) admitsarational first integral and one of the following occurs:

(a) X hasno dicritical singularity in C2 and there exists a (non-constant) polynomial
firstintegral F: C? — C.

(b) X hasadicritical singularity in C2 and there exists an entire automorphism ¢ €
Aut(C?), whichlinearizes X, thatis, ¥, X = nx(3/9x)+my(3/dy),n, m € N. Inparticular,
there exists only one dicritical singularity in C2.

PROOF.  According to [37], there exists a meromorphic first integralGi(2). Since
singF(X) N L consists of rational singularities, Theorem 6 assures the existence of a
rational first integral. Using now [11], we find (a) and (b) as the only possibilities. O

COROLLARY 1. Let 71 and F> be germs of holomorphic foliations at O e C2 such
that there exists a germ of measure isomorphism 7: C%,0 — C?, 0 conjugating F1 to F.
Then F; admits a holomorphic first integral if and only if 7> admits a holomorphic first
integral.

PrROOF. In fact, a measure isomorphism conjugating the foliations preserves the vol-
ume functions of the foliations, so that it suffices to use Theorem 1. O

4. Sub-exponential growth. Our goal here is to show another approach to the study
of the behavior of foliations o€ P (2), with geometric features. We refer to [28] and [29] for
the notion of sub-exponential growth of a leaf.

Let F be a foliation with hyperbolic singularities ddP(2), andg a C*° Riemann-
ian metric onCP(2), which is Hermitian along the leaves &. Suppose that siif§ =
{p1,...,ps}, and for eachy € {1,...,r} choose a small closed ball centeredpat say,
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B(pj) > p;. Sincep; is hyperbolic,F is transverse to the spheréB(pj) and hence we
may consider the double ¢f as in [2] and [34]. This is & regular codimension-two real
foliation F; on a compact real 4-manifold,;, which contains two copies of the foliated pair

,
<CP @\JBwp).F ler@\U;y B(m))‘
j=1
The leaves ofF; have also natural structures of Riemann surfaces and the madtrtuces
a C* Riemannian metrig,; in M, that can be chosen to be Hermitian along the leaves of
Fa. The corresponding leavds; of F; have sub-exponential growth fgr; so that, using
Theorem 4.1 of [29], we obtain

PROPOSITION 5. Let F, g be asin Theorem 4. Then there exists a non-trivial ho-
lonomy invariant transverse measure u for F,, which is finite on compact sets and whose
support is contained in the closure L, of some leaf Ly of F.

Now we takeK = suppu) C My the support ofx. We have a compackE-saturated
non-empty set. According to [6], we know that a non-trivial minimal setCd(2) cannot
support an invariant transverse measure. Hence one may conclude.

LEMMA 3. KNaB(p;) #¥forsomeje{l, ..., r}.

As in [2] and [34], this implies that if. is a leaf of 7 such thatZ \ U;’:l B(pj) C K,
thenL = LU{pj,, ..., pj}forsomep;, € singF, and therefore by Remmert-Stein theorem
and Chow theorem [16], is an algebraic curve 08P (2). Hence we obtain.

LEMMA 4. Let F, g beasin Theorem4. Then F has some algebraic invariant curve
S Cc CP(2).

We consider the algebraic le&f ¢ CP(2), given by Lemma 4, and take a poipte
S\ singF, and a small transverse digk ¢ CP(2) with ¥ NS = {¢}. Thus we may consider
the holonomy group H@JF, S, X) as a subgroup of Difl, ¢) ~ Diff (C, 0) ([8]).

LEMMA 5. Hol(F, S, X) isa solvable group.

PrRooOF Thisis provedin [32]. The idea is as follows. Denotedyhe set of algebraic
leaves ofF in CP(2). We haveS C A. According to [32] acompact total transverse section
to F is a compact (real’>) submanifoldv < CP(2) \ singF (possibly with boundary), of
dimension two, such that every leaf #f intersects the interior oV andF is transverse to
N \ 9N (see the Remark after Corollary 4.2 in page 340 of [29]). It is not difficult to prove
that, as a consequence of the compactnes3RiR) together with the maximum principle,
the foliation admits a compact total transverse section; indaeid,a finite union of closed
disks whose interiors are transverseRd[32]). Therefore, again according to the Remark in
page 340 of [29], it follows that, fobd = CP(2) \ A, the restrictiorﬂ-‘\M admits a non-trivial
holonomy invariant transverse measureTo get a contradiction assume that HB| S, X)
is non-solvable. Any non-algebraic leaf, must accumulate the poigt = ¥ N Sin X
and therefore, as it follows from [26], the leaf, is dense in a neighborhodd C X of ¢
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and HolF, S, ) has a dense set of hyperbolic periodic pseudo-orbit¥ dine., a dense
set of hyperbolic fixed points). Given such a fixed painte V we consider the worg' e
Hol(F, S, X) such thatf (z,) = z,, With | f'(z,)| # 1. This mapf may be linearized in
a small diskD(z,,€) C V as f(z) = rz with A, € C*\ S1. Notice that this local map
corresponds to the local holonomy map of some cyglén the leafL,, C M and therefore,
sinceu is Hol(]—‘|M, L. )-invariant, it follows thatu\D(M) is the Dirac measure with atom
atz,. In particular, supfu) N D(z,, €) = {z,}. On the other hand, sinde; is dense inV we
haveL, N D(z,, ¢) = D(z,, €) Which gives supfi) N D(z,, ) = D(z,, €), contradiction.
This contradiction proves Lemma 5. O

PROOF OFTHEOREM 4. We consider an affine chatt, y) € C2 ¢ CP(2), and a
polynomial 1-formw = Pdx + Qdy with isolated singularities, which definé%[cz. Since
Hol(F, S, X) is solvable, andF has hyperbolic singularities, it follows from [31] that there
exists a closed rational 1-formon CP(2), with simple poles, such thalw = n A w. In
particular,F is transversely affine outside some algebraic invariant set (given)ay N C?
[31]). SinceF has hyperbolic singularities, this implies thatis a Darboux (logarithmic)
foliation ([33], [34]), and hence must be line@recause of the hyperbolic singularities [2]),
as in Theorem 4. O

5. Orbits having finite total curvature. Lety: M — M = R" be a minimal iso-
metric immersion of a two-dimensional real maniféltiinto an-dimensional Euclidean space
R". WhenM is orientable, we have a natural conformal structure given by the isothermal co-
ordinates, and consider a local conformal coordinateu ++/—1v : U ¢ C— M on M.
Sincey is conformal, the metric induced hy is written asds? = 2F|dz|?, whereF = |¢|?,
andg = (¢1,...,@,): U — C" defined by

wy, 1/a  —20
90] 8Z 2<8M av)(%), J s & s 1,

is holomorphic. The fact that is conformal also implieg? = ’}zl gojz. = 0. The Laplace-
Beltrami operator induced by is given by

20 0
AZ____a
F 0z 0z

3 1[0 9
—_ = = — — ,/_1_
3z z(au 8v>

andz = u++/—1v € U C C. The Gaussian curvature of the isometricimmersion is therefore
given by

where

K = 18anF— 1AIoF
= T Foazaz 29F =R
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which can be also written as
K=—lpng/lol°.

In particular, we see that < 0, and (sincep is holomorphic) eitheik = 0 or the
set{K = 0} is discrete. This allows us to define thaal curvature of the immersion as
C(¥) = [, Kdo? € [—00, 0], wheredo? is the induced area elementifi. A well-known
result due to Huber ([18]) asserts the following

THEOREM 7 ([18], [38]). Lety: M — R", n > 3, be a minimal immersion, which
is complete and has finite total curvature. Then M is conformally equivalent to a finitely
punctured compact Riemann surface.

Subsequently, Osserman ([27]) showed that the Gauss map of such an embedding ex-
tends meromorphically to the ends Mf. This result is one of the main tools in the study of
complete finitely curved minimal immersionga@nEuclidean spaces. In this section we study
this problem for the orbits of a vector field on a complex manifold: Xdie a holomorphic
vector field on a complex manifolt! equipped with a Kaehlerian metric. The orbits¥oare
complex immersed submanifolds &f so that the inclusion gives minimal isometric immer-
sionsy: M — M. Examples of this situation afd = C” with its Euclidean structure, and
M = CP(n) with the Fubini-Study metric.

EXAMPLE 4. LetX, = x(3/dx) + Ay(3/dy) be a linear vector field ii€? = R*.
Then we have a local parametrizatigr(z) = (xe?, ye*?) for the orbitM = O, ,, and
ds? = (|x|2e2R8D 4 |ry|2e2R41))1dz|2. We writeh = a + v/—18.,z = u + ~/—1v, and
obtain

dsZ — (|x|2€2u + |y|2(a2 +ﬂ2)€2(0[u—ﬁv))(duz +dv2) .
Now we recall that for ang'2 real functionf we have
Alog f = Af/f — Igradf|?/f2,
where grag' = (f,, f,) is the gradient off. Thus for f = |x|2¢2 + |y|2(a? + p2)e2@u—Fv)
we find
Af = Alx |2 + |y|2(o? + pA2ePn =PV
and
|gl‘adf|2 — 4[|x|4€4u + (az + 182)3|y|4€4(au7ﬂv) + 20t|x|2|y|2(ot2 + IBZ)EZ(O”l7BU+u)] .
Therefore
fAf = |gradf|® = 4x ’|y[X(a® + BA)[(a — 1)? + pPle e Frto),

which gives

K — —8|x|2|y|2(ot2 + ,82)[((X _ 1)2 + IBZ]EZ(QM—,BU-i-u)/('leeZM + |y|2€2(au—ﬁv))3.

PROPOSITION 6. For anorbit : M — R* of alinear vector field X, = x(9/9x) +

Ay(8/dy) in C2, which is not contained in one of the complex axis, we have the following:
(i) IfreR\Q, thenC(y) = —oo.
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(i) 1fre(C\RUQ, thenC(y) > —oo.

PrROOF. Indeed, we have
eZ((a—i—l)u—ﬁv)

1211202 2N 1\24 A2
C) = 8Py P+ [ s dudy.

Hence, changing coordinates foe= ¢2, t = ¢=2", we obtain

o 121u120m2 1 a21( N2 L a2 s* Pt
Cp) = —2x Py 22 + Al — 12+ B ]//W e

for a suitable domaifv = W(L) C Ry x Ry (see Example 2). This proves the proposition.
O

dt

Theorem 5 is therefore a kind of converse of the above example. Next we show that
Theorem 5 is not true if we omit the hyperbolicity hypothesis on the singularities.

EXAMPLE 5. LetX = 3/dx + y(3/dy) be a non-singular vector field i62. The
foliation F(X) onCP(2) has a saddle-node singularity 65, : #2(3/du) + v(u — 1)(3/dv).
The orbit with an initial point(x, y) is given byg(z) = (z + x, ye?) , z € C, so thatds? =
(1 + |y|2e2R82))|dz|2 and therefore

K = —8|y|2e?RE) /(1 4 |y|?e?ReD)3,

The foliation has the first integrgl = ye ™, so that the leaves are closeddR. However the
total curvature of any leaf ¢ (y = 0) is —oo.

In order to prove Theorem 5 we shall employ the following well-known lemma.

LEMMA 6. Let L ¢ CP(2) bean orbit of X such that the total curvature C(L) of L
is zero. Then L isastraight linein CP(2).

PROOF. We use the fact that = —|¢ A ¢'|2/|¢|® to conclude thap(z) A ¢'(z) = 0
and therefore’(z) = A(z)¢(z). Hence, by complex integration, we obtain

¢(z) = eXp(/ )\(z)dz>w

for some holomorphic functioi(z) and some complex vectas € C". This implies that
¥ (L) C R" is contained in a complex line. O

DerINITION 3. Aflat orbitis the one whose curvature is identically zero.

COROLLARY 2. Assumethat X isa polynomial vector field on C? and has infinitely
many flat orbits. Then, up to some affine change of coordinates, we have

() X =Ar0/0x),

(i) X =A(x(3/3x) + y(3/dy)).

PROOF.  SinceX has infinitely many algebraic leaves, it follows from Darboux theorem

[19] that it admits a rational first integral. According to Stein fatorization theorem ([14]), we
may take such arimitive first integral, sayR : C2 c CP(2) — CP(1). Thus if we write
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onC? R = P/Q, whereP andQ are polynomials without nontrivial common factors, then
the leaves ofF are given by{a P + 8Q = 0} ase andpg vary onC. Since infinitely many of
these leaves are straight lines, it follows that fa@gP, degQ} = 1. We have therefore two
distinct cases:

(@) 0e C?is adicritical singularity. In this case,® {P = 0} N {Q = 0} and we can
find an affine change of coordinates which takemto the foliationd(x/y) = 0.

(b) There exists no dicritical singularity i@2. In this case, we conclude thgP =
0} N {Q = 0} = ¢ and therefore we may find an affine change of coordinates which fakes
into the foliationdy = 0. O

LEMMA 7. LetM C M beanorbit of X having finite (negative) total curvature. Then
M isclosedin M \ (singF(X) U X), where ¥ C M isthe union of the flat orbits of X.

PrROOF. Indeed, letp € M \ singF(X) be an accumulation point aff and denote by
L, the leaf of 7(X) containingp. Assume thaf., ¢ ¥. Then{K = 0} N L, is discrete
and (sinceM is invariant) we may assume th&t p) < 0. By continuity, there exists a small
neighborhoodV > p such thatk(q) < —e for anyg € V for somes > 0. By the flow-
box theorem we may choose a neighborhgod W C V where the flow ofX is trivial.
This shows that eithep € M or M N W contains infinitely many plaques and therefore
C(M) = —o0. SinceC (M) is finite, M is closed inM \ (singF(X) U X). |

The following is a local version of Theorem 5.

PROPOSITION 7. Let F be a germ of holomorphic singular foliation at 0 € C2.
Assume that for some neighborhood V' of O, the total curvature of the leaves is uniformly
bounded, that there are no separatrices contained in straight linesin C2 and that the number
of separatrices of F isfinite. Then F admits a holomorphic first integral.

PROOF.  We denote by the union of flat leaves. According to Lemma 6, each leaf
¥ is contained in a straight line i@2. Thus, according to our hypothesis on the separatrices,
we conclude tha® = ¢J. Lemma 7 now implies that the leaves are closed outside the origin.
Therefore, by Mattei-Moussu theorem ([22]), the foliation admits a holomorphic first integral.
O

PROOF OFTHEOREM 5. First we consider the case where there are no affine orbits
having total curvature equal to zero. In this case, according to Lemma 7 above, the leaves
of F(X) are closed inC? and therefore by Theorem 3 the foliation admits a rational first
integral, which is absurd because it has hjodic singularities. Thus there are some orbits
having Gaussian curvature identically zero. By Lemma 6, these orbits give some invariant
complex line, sayS c CP(2).

Now we consider the holonomy group of this line. By Lemma 7 we may assume that
¥ c C?is transversely discrete. Therefore, given a transverseliist F(X) centered
at a pointo € § \ singF(X) and a generic point € D, the pseudo-orbit of this point in
the holonomy group HoJF(X), S, D) is discrete outside the origin. According to [5], since
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the holonomy group contains hyperbolic atitors (coming from the hyperbolic singularities
of F(X) in S), this group must be abelian linearizable. This shows f&X) is a linear
logarithmic foliation onCP (2) ([5]). Using again the fact that the singularities are hyperbolic,
we conclude thaF (X) is linear in some affine chart ([2]). O

Next we give a partial generalization of Theorem 5.

PROPOSITION 8. Let X be a polynomial vector field on C? such that F(X) has only
rational singularities. If some open orbit (by open orbit we mean one whose closure is not
an algebraic curvein CP(2)) of X hasfinite total curvature, then 7 (X) is given by a closed
rational 1-formon CP(2).

PrROOF.  Firstwe claim thaf has some algebraic orbits. Indeed, if otherwise the leaves
of F(X) are closed irC? \ singF(X) (Lemma 6) and therefore, by TheoremB(X) has a
rational first integral, which implies that all leaves are algebraic.

Let thereforeS ¢ CP(2) be an algebraic leaf af (X) with S N c? £ . We may
assume thaf'(X) has no rational first integral. Then, by Corollary 3, the Set C2 of flat
orbits consists of a finite number of orbits, so that given a small Bisc C? transverse to
FwithDNS =g € S\ singF(X), the virtual holonomy grouHoI(]-‘, D, g) has discrete
pseudo-orbits outside the origjne D. Thus, this group is solvable ([26]).

LEMMA 8. Thel-formw = ix(dV) (whichisa polynomial 1-formwith isolated sin-
gularities that defines (X) in C?) admits a rational logarithmic derivative 5, with simple
poles: dw = n Aw, dn = 0. If all the virtual holonomy groups are abelian, then we may take
n with entire residues.

ProoOF. The 1-formpy is given by the main results in [8] and [33]. We explain here the
main ideas, additional details can be found in [33], [9] and [11]. Aet D be an irreducible
component of the divisor arising in the reduction of singularities# oK) \ - Leto == 1" (w).

We first construct &ransversely formal 1-form»n = 5 over the divisorA (we refer to [11] and

[17] for the notion of transversely formalform over a divisor on a projective surface): Recall

that, according to [22] and [23], a nondegenembndicritical singularity always admits a
formal integrating factor. Moreover, if is such a singularity, anleq is such an integrating

factor (defined as a formal expressiongdt with respect tav (that is,d)/fzq is closed as a

formal 1-form), then we can extenfq as a transversely formal integrating factor égrover

asmall diskD, C A centered ag, using the resummation properties of the integrating factors
along the separatrices for nondegenerate singularities. This is done by means of choosing a
local system of coordinatgs, y), centered ay and such that : {y = 0}. Then, in these
coordinates, we consider formal expressiéns, y) = ;ﬁ% aj (x)y, wherea;(x) are also

formal positive series in the variahle Now, if we impose thak is an integrating factor for

@, then we obtain a differential equation which has a formal solution as remarked above, and
the coefficients:; (x) are in fact analytic functions of, in a fixed small disk centered at the
origin, which is a consequence of Briot-Bouquet theorem type argument ([11]).
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Now we proceed as follows. First we assume that(Aplis abelian. According to [33],
[9] and [11], there exists a transversely formal integrating fastéor &, defined over the
open curveA, = A\sing(]?‘(X)). We show that may extend formally to sin§(X) N A.
Indeed, given a (nondegenerate) singulajity A, we have the following three possibilities:

(1) If @ atq is formally linearizable with a holomorphic local first integral. In this case,
according to [22]¢& admits a holomorphic first integral in a neighborhood pénd therefore
we may assume thét] is in fact holomorphic in a neighborhood @f Thush extends tay,
since it is already defined over the separatrix throgghngent toA,. In fact, we can find
analytic coordinategx, y) centered ag such thaty = 0} corresponds tot, and.F is given
in these coordinates bycdy + mydx = 0, withn, m € Z, (n,m) = 1. We takel, = xyg,
whereg is the meromorphic function defined bBy(x, y) = g (nxdy 4+ mydx). Then we have
d(&/hy) = 0.

Now, the fact that/(&/h) = 0, outside{x = 0}, implies thatd(h,/h) A & = 0. Thus
f = ho/h is a meromorphic first integral foF along{x # 0} and{y = 0}. Sinceq is
nondicritical, it follows that eitherf is constant or we havgé = ¢( f,) for some holomorphic
one variable functionp € C{z}, wherefo = x™y" is aprimitive holomorphic formal first
integral forF atq. Therefore we havé = o(™y"). Sincef is holomorphic formal along
{y =0} C A exceptay,andy =0 implieSx’"y” = 0, it follows that@ is holomorphic and
thereforef extends holomorphlcally aﬂf(,) to q. This shows thak extends in a transversely
formal way togq in the casef is nonconstant. Iﬁ‘ is constant, then the extension/ofo qis
immediate.

(2) @ atgq is formally linearizable but admits no formal holomorphic first integral. In
this case we claim that extends ta; as a transversely formal integrating factor. Indeed, first
we observe thab admits no transversely formal first integral defined over a punctured disk
D\ {q} foradiskD C A. Thisis a consequence of [22] and [23] (see also [9]). On the other
hand, the formal linearization @f atg gives a transversely formal integrating fackarfor &
defined over a dislo, c A and centered at. The quotientf := //h; of two transversely
formal integrating factors fab over the punctured disR, \ {g} in A is a transversely formal
first integral for and therefore it must be constant. This proves the extensibn of

(3) If w atq is a resonant singularity but not formally linearizable (see [23]), then we
havekxdy + lydx + h.ot. = 0 andk,! € N, (k,I) = 1. It follows that, /i is a formal
meromorphic first integral fo at g. But, sincew at g is supposed to be nonlinearizable,
it follows that no transversely formal first integral exists and therefigre= cte /2, so thath
extends formally tg;.

Now we assume that Holt) is solvable nonabelian. Using the techniques of [11] and
[34], it is not difficult to obtain a transversely formal closed meromorphic 1-fgrmefined
over A,, which satisfiesl® = 1 A @. Moreover, according to [21], we have a formal embed-
ding Hol(A) c Hy. The construction of the 1-forf gives Reg, 7 = k + 1+ [, wherel is
the order ofA as a zero of the 1-forrd ([8], [33]).

Fix a singularityg € A. Once again we have the following three possibilities:
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(1) @ atgq is formally linearizable and admits a formal holomorphic first integral. In
this case the extension follows as above.

(2) @ atq is formally linearizable and does not admit a formal holomorphic first inte-
gral. The formal linearization gives eansversely formal integrating factai defined over
some diskD, C A centered ay. Definefiy = dhi/h1. The difference? := 7/ — 7y is
a transversely formal closed 1-form defined over the puncturedijsk {¢} and satisfying
2 Ad = 0. Sinced atq is formally linearizable but non-resonant, it follows thatextends
as a transversely formal closed 1-formidg. This shows thaf extends tay.

(3) @ atgq is resonant but not formally linearizable. Here we notice that the local
holonomy associated to the separaffiatq is (tangent to 1) of the form

9(2) = z/(L+aF)V*

for some formal coordinate In fact, we know that any homography which is not tangent to

1 is linearizable, and on the other hand, the linearization on the local holonomy implies the
linearization of the formi at the singularity ([22]). Therefore, this holonomy coincides with
the holonomy of the germ afy ; at singularity

wk1 = lxdy + ky[1+ (v—=1/2m)x*y"dx = 0.

Thus (see [23], [9], [33]) the foliatio® = 0 at the singularity; is formally conjugate to the
foliation wi; = 0. Therefore there are formal coordinatgsy) centered ay such that for
some formal meromorphic functighwe haves(x, y) = gw (X, y). Moreover, if we define

o= (k+1Ddy/y+ 1+ Ddx/x+dg/g,

then we obtaini® = #, A @. We havej — 7, = ha for some formal expressioﬁn, which
satisfiesd(h@) = 0. On the other hand, we know that by construction, Res= k + 1,
so thatha is closed, and holomorphic alon,\{¢}. Since® at the singularityy is of the
(nonlinearizable) formal normal form above, it follows th@t = 0. Therefore we extengl
asi, tog.

Thus we have constructed a transversely forfnaler the curveA. In the same way,
we may construch over the divisorD ([8], [33]). Now, Hironaka-Matsumura theorem ([17])
asserts that both ands, constructed in the lemma above, extend meromorphicalyA®)
([11], [9]). This proves Lemma 8. O

Finally, we use the following

LEMMA 9. Ifall singularitiesareresonant, then n hasentire residues. If thereis some
nonresonant singularity, then each virtual holonomy group is abelian.

ProoF. If all singularities are resonant, then using the construction givefy &drove,
we conclude that it has entire residues. Now we use the following

CLAIM 3. Assume that there exists some nonresonant singularity ¢ € D. Then each
virtual holonomy group associated to a component of D contains some diffeomor phismwhose
linear part is nonperiodic. In particular, all virtual holonomy groups are abelian.
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Indeed, lety € D;, and D; be such thay; = D; N D;, # #. Then we have two
possibilities forg;. If ¢; is nonresonant, then its local holonomy associatef) tanduces
the desired diffeomorphism fdp;. If ¢; is resonant, then we may use the adjunction process
to “pass” the nonresonant diffeomorphism givengofrom the virtual holonomy ofD;, to
the virtual holonomy ofD;. This induced element is still nonresonant by the construction of
the adjunction given in Section 2. Thus we may reach all the components that are adjacent
to D;, U D; and so on. Using the fact that the invariant parfois connected, we conclude
that all virtual holonomy groups contain elements with nonperiodic linear part. According to
[20], a subgroup of DiffC, 0) with discrete pseudo-orbits off the origin and containing such
nonresonant elements must be abelian. O

Using Lemma 9 and the first part of the Lemma 8, we may assume that all singularities
g € A are resonant so thgthas simple poles and entire residues, all of which are along
and the separatrices through these pajndse transverse td. According to the integration
lemma ([31]), this implies thaj = d H/H for some rational functio#/ and thereforeZ (X)
is given by the closed rational 1-forfa = &/H. The proof of Proposition 8 is now complete.
(I

6. Compact foliations with singularities. One of the basic questions concerning
compact foliations in the classical frameworklisa compact manifold is foliated by compact
submanifolds in a smooth way, is there any upper bound on the volume of the leaves? The
positive answer to this question was given by Sullivan and Edwards-Millett-Sullivan ([12])
under some mild orientability hypothesis on tledidtion for the real (nonsingular) case. In
this last section we consider several related problems motivated by our results and some clas-
sical results of the theory of foliations.

PROPOSITION 9. Let F be a C2 codimension one (real nonsingular) foliation on a
compact connected manifold M of dimension three with 1 (M) finite. Assume that for some
C? metric on M the |leaves are nonpositively curved minimal surfaces with finite total curva-
ture. Then the following hold:

(1) Thereexistsa compact leaf.

(2) Theunion X of theflat leavesis compact and invariant.

(3) Theleavesare closed outside .

(4) If X isempty, then all leaves are compact and with finite holonomy groups.

(5) If there exists some nonflat compact leaf L,, then all leaves are compact with finite
holonomy groups.

ProoFr (1) follows from Novikov theorem ([4]). According to Lemma 7, the leaves
having finite total curvature are closed outside flat leaves. Thereilbie closed, and hence
compact, proving (2) and (3). ' = @, then by (3) the leaves are closed and hence compact.
Using [12], we conclude that all the holonomy groups are finite, proving (4).

Let nowL, be a compact nonflat leaf. Then sinEds closed, it follows that there exists
a certain relatively compact open neighborhdoaf L, such thatv N ¥ = ¢. SinceX is
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invariant, we can tak& to be invariant and choose an invariant subneighbortigod W

W C V. In particular, for any € W the leafL, > x is closed and contained #. ThusL,

is compact for alk € W. Therefore, sincé has codimension one, it follows from a result of
Reeb ([30]) that all the volume of the leaves meetitigs uniformly bounded and therefore
the holonomy groups of these leaves are finite. In particliiahas a finite holonomy group.
Using now Reeb stability theorem ([4]) for codimension one foliations, we conclude that all
the leaves are compact and with finite holonomy groups. d

If we take a complex Kaehlerian surfakgequipped with a singular holomorphic folia-
tion F, then all leaves of are minimal immersed submanifolds and therefore nonpositively
curved. Examples are given by rational 1-forms defining algebraic foliations on complex
projective surfaces. On the other hand, the additional restriction of finite curvature is quite
restrictive as seen by our next result.

PROPOSITION 10. Let F be a dimension one singular holomorphic foliation on a
complex manifold M of dimension two, equipped with a Hermitian metric ¢ which makes
the leaves nonpositively and finitely curved. Denote by ¥ c M \ singF the union of flat
leaves, and assume that F has some nonflat leaf. Then we have two possibilities:

(i) Theholonomy groups of the leaves are solvable with discrete pseudo-orbits outside
theorigin.

(i) X isnot transversely discrete. If moreover the metric ¢ is real analytic, then all
the leaves are flat.

PrOOF. Assume that¥ is transversely discrete. Lét, be a leaf of 7. If L, ¢ X,
thenL, N X = @, and given any sufficiently small transverse dixc L, = {g} ¢ singF we
haveD N X = @. This implies, by Lemma 7, that the holonomy group &6l L,, D) has
finite orbits and therefore it is a finite group as we have already seén. &f X, then, since
X is transversely discrete, given a small transversedias above we havEND = X NL,,
which is a point. Therefore, again HA, L,, D) has finite orbits and is therefore finite.

Assume now thak is not transversely discrete, andIetbe some leaf with nonsolvable
holonomy group. IfL, is accumulated by, then using Nakai density theorem ([26]), we
conclude that¥ is locally dense around,,. In this case, if we also assume that the metric
g is real analytic, therZ is transversely real aftytic and therefore? = M \ singF. If L,
is not accumulated by, then we may choose as above a small distansverse to- with
DN X c DNL,. Thisimplies that HAlF, L,, D) has finite orbits and is therefore finite.

The following proposition is proved in a similar way to Proposition 10.

PROPOSITION 11. Let F be areal analytic codimension one singular foliation on a
connected (real) manifold M of dimension three, such that there exists an analytic Riemannian
metric for which the leaves are nonpositively curved and with finite total curvature. If 7 has
some nonflat leaf, then all leaves have solvable holonomy groups (with discrete pseudo-orbits
outside the origin). Moreover, if M is compact, F is nonsingular and without flat leaves,
then all leaves are compact with finite holonomy groups.
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PROOF. LetL, be a leaf ofF. If L, is not accumulated by, then we may choose
a small transverse sectidn~ (—1,1) with I N ¥ = L, N X. Denote by Diff’(R, 0) the
group of germs of one dimensional real analytic diffeomorphisms fixing the origin. Therefore,
the holonomy group H&F, L,, I) c Diff (R, 0) has some orbits which are discrete and it
must be a solvable group ([26]). i, is accumulated by’ and HolF, L,, I) is not solvable
for some small transverse sectidnthen > N I is dense in/ and thereforex N1 = 1.
Since the metric is real analyti¢] is transverselyeaal analytic and~ N I = I implies that
X = M \ singF, a contradiction.

Assume now thad is compact,F is nonsingular and is empty. Then any leaf, of
F is compact, because it is closed by Lemma 7. Therefoignonsingular real analytic and
all its leaves are compact. This implies that the holonomy groups are finite, since they have
finite orbits. O

The following result gives a characterization of compact complex foliations with singu-
larities in terms of the total curvature.

PrROPOSITION 12. Let F be a holomorphic (singular) foliation by curves on a com-
pact complex manifold M of dimension two equipped with a C? Riemannian metric g of
nonpositive curvature. Then the following conditions are equivalent:

() Thereexists > 0and C > Owith —§ > [, Kdo > —C for all leaves L.

(i) Everyleafisnonflat, with compact analytic closure of complex dimension one, and
finite holonomy group.

PROOF  We only prove that (ii) implies (i). LeL, be a leaf of7. There are no flat
leaves so that, is closed outside the singular set sihgl. emma 7). According to Remmert-
Stein theorem ([16]), the closui, is an analytic curve and, sinde is compact,L, is a
compact curve. Therefore all leavessbaompact closures. Given any leafand a small
transverse dis® with D N L = p, the holonomy group HQJF, L, D, p) is a subgroup
of Diff (D, p) = Diff (C, 0) with finite pseudo-orbits (for the leaves are compact), and this
implies by [22] that this group is finite. The converse is left to the reader. O
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