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Abstract. An explicit upper bound is given for (i) the number ofn-dimensional mono-
mial modp Galois representations ofGQ with bounded conductor and (ii) the order of the
image of such a representation in terms ofn, p, and the conductor.

1. Introduction. In this paper, we give an explicit upper bound for (i) the number of
monomial modp Galois representationsρ : GQ → GLn(F̄p) and (ii) the order of the image
of the representationρ in terms ofn, p, and the conductor. Here,GQ is the absolute Galois
group Gal(Q̄/Q) of the rational number fieldQ, andF̄p is an algebraic closure of the prime
field Fp of p elements. We say that ann-dimensional representationρ : GQ → GLn(F̄p)

is monomialif it is of the form ρ = IndQ
Kχ , i.e., if it is induced from a one-dimensional

characterχ of the absolute Galois groupGK of an algebraic number fieldK of degreen over
Q.

In general, for a continuous representationρ : GK → GLn(F̄p), we denote byN(ρ) its
Artin conductor outsidep;

N(ρ) =
∏
��p

qn�(ρ) ,

whereq runs through the non-zero prime ideals ofK not dividingp, and

n�(ρ) :=
∑
i≥0

1

(G�,0 : G�,i)
dimF̄p

(V /V G�,i ) ,

whereG�,i is thei-th ramification group of the decomposition group of an extension ofq to a
splitting field ofρ, andV is the representation space forρ (cf. [Se4], [M]). We shall prove:

THEOREM. Fix positive integersn andM. Considern-dimensional monomialmodp

Galois representationsρ : GQ → GLn(F̄p) with N(ρ) | M. Then the following hold.
(i) The number of isomorphism classes of suchρ’s is bounded by

2n2+n+1 · (11.1)

πn

(
2 + 1

2
nnpn−1M

)n

p2n−1Mn .

(ii) The order of the image of such aρ is bounded by

2n(n+1)(11.1)n

πn2 n!nn2
pn(2n−1)Mn2

.
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A sharper estimate will be given in Theorems 4.4 and 5.2.
Now we explain the motivation for giving such an estimate. In our previous works ([M],

[MT]), we studied the following Finiteness Problem for modp Galois representations: Given
an algebraic number fieldK, a prime numberp, a positive integern and an integral idealM
of K, do there exist only finitely many continuous semisimple representationsρ : GK →
GLn(F̄p) with N(ρ) | M? We showed in [M] that the answer is affirmative forK = Q and a
few small values ofn andp. Also, in the general setting, we proved in [MT] the finiteness for
thoseρ’s with solvable image. For more discussions on this problem, we refer the reader to
the Introductions of [M] and [MT]. This problem for the general case seems very difficult. For
monomial representations, however, the finiteness follows fairly easily by using the Hermite-
Minkowski theorem and the finiteness of the ray class groups. So our interest is now in
quantitative results as in the above Theorem. For example, Serre gave an explicit upper bound
of the number of representationsρ : GQ → GL2(C) coming from modular forms of weight
1 and prime level ([Se1]).

Meanwhile, Ash and Sinnott ([AS]) conjectured that modp representations ofGQ sat-
isfying certain conditions should come from Hecke eigenclasses in cohomology groups of
congruence subgroups of GLn(Z) (this conjecture also motivates our Problem). Ash ([A])
proved this conjecture for monomial representations of degreep − 1. In view of this result,
the monomial representations would be a first tractable case, and it would be worth while
counting their number. Looking at Brauer’s induction theorem, we hope that monomial rep-
resentations would give a supply of a good portion of all the modp representations, so that
our estimate would be not too far from the truth even for all then-dimensional representations
with conductor dividingM.

We mention also a result of Brumer and Silverman ([BS]) in the same spirit as ours,
which gives an explicit bound for the number of elliptic curves overQ with bounded conduc-
tor.

The outline of the paper is as follows: In Section 2, we bound the discriminant ofK

and the conductor ofχ when the conductor ofρ = IndQ
Kχ is given. In Section 3, we give

an upper bound of the number of algebraic number fieldsK of degreen and discriminant
(outsidep) dividing D in terms ofn, p andD. The bound of thep-part of the discriminant
is classical. Once this is done, we may employ “geometry of numbers” to bound the number
of K ’s. In Section 4, for a givenK we give an upper bound for the number of charactersχ

of K with a given Artin conductorM. This amounts essentially to bounding the ray class
group ofK of conductorpM. The most essential is to bound the class numberhK . For the
productRKhK of the regulator and class number, an upper bound is well-known. We may
then use Friedman’s absolute lower bound ([F]) forRK to obtain the desired upper bound for
hK . Combining these results together, we obtain our Main Theorem 4.4. In Section 5, we
derive an upper bound of the image ofρ from the bound of the ray class group in Section 4
by group-theoretic arguments (Lemma 5.1).

I would like to express my gratitude to Yuichiro Taguchi who suggested studying the
quantitative version of our Finiteness Problem. I thank also the referee for useful comments.
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2. Discriminant of K and conductor of χ . Let K be an algebraic number field of
degreen, dK its discriminant and̃dK the prime-to-p part ofdK . Let χ be a one-dimensional
modp Galois representation ofGK = Gal(Q̄/K) andN(χ) its Artin conductor outsidep.
We consider the set of the induced representations

ρ = IndQ
Kχ : GQ → GLn(F̄p) ,

with bounded conductor. LetM be a positive integer prime top. If N(ρ) is bounded byM,
the discriminantd̃K and the conductorN(χ) of χ are bounded as follows.

LEMMA 2.1. Let ρ = IndQ
Kχ . If N(ρ) dividesM, then d̃K dividesM and N(χ)

dividesM/d̃K .

PROOF. By [Tag], the Artin conductor of an induced representation is calculated as
follows:

N(IndQ
Kχ) = NK/Q(N(χ)) · (d̃K)dimχ

= NK/Q(N(χ)) · d̃K .

Hence we havẽdK | M andN(χ) | (M/d̃K). �

By Lemma 2.1, the number ofρ = IndK
Q χ with N(ρ) | M is bounded by the product of

the following two; (i) the number ofK ’s with [K : Q] = n andd̃K | M, (ii) the maximum,
whenK as in (i) runs, of the number of charactersχ of K with N(χ) | (M/d̃K). The number
of (i) will be estimated in Section 3 and the number of (ii) will be estimated in Section 4.

3. Number of K’s. First, we begin with estimating the discriminant ofK in terms of
p, n andM. The following Lemma is basically well-known (cf. [Se3]).

LEMMA 3.1. Thep-part of the discriminant of an algebraic number fieldK of degree
n is bounded by

pn[logp n]+n−1 .

Note thatpn[logp n]+n−1 ≤ nnpn−1.

PROOF. Let p be a prime ideal ofK lying abovep. If F denotes the completion ofK
atp andDF/Qp

the different ofF/Qp, then

υ(DF/Qp
) ≤ υ(e) + e − 1

e
,

whereυ is the valuation ofF normalized byυ(p) = 1 ande is the ramification index ofF .
Indeed, we may assume thatF/Qp is totally ramified. Then the extensionF/Qp is defined
by an Eisenstein polynomial

G(X) = Xe + a1X
e−1 + · · · + ae , p|ai and υ(ae) = 1 ,
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and the differentDF/Qp
is generated byG′(π), whereπ is a root ofG(X). Hence

υ(DF/Qp
) = υ

(
eπe−1 +

e−1∑
i=1

(e − i)aiπ
e−i−1

)

≤ υ(eπe−1)

= υ(e) + e − 1

e
.

In general, if we letf be the residue degree ofF andm = ef , then

υ(dF ) = υ(NF/Qp
DF/Qp

)

≤ mυ(e) + f (e − 1) .

Now we globalize this. Letp1, . . .¸ , pg be all the distinct prime ideals ofK lying above
p. Let Ki be the completion ofK at pi . ThenKi is an extension ofQp of degreeni = eifi ,
whereei is the ramification index ofpi andfi is the residue degree ofpi . Finally, we obtain

υ(dK) =
g∑

i=1

υ(dKi )

≤
g∑

i=1

(niυ(ei) + fiei − fi)

=
g∑

i=1

niυ(ei) + n −
g∑

i=1

fi

≤ n[logp n] + n − 1 .

Here we used the inequalityυ(ei) ≤ [logp n] . �

The following estimate follows from the existence of a “small” integerω of K, the exis-
tence being proved by Minkowski’s methods of geometry of numbers (cf. [Tak, Chap. 5, §2]
or [L, Chap. 5, §4, Proof of Thm. 5]).

LEMMA 3.2. Letn andD be positive integers. Then

#{K ; [K : Q] = n and|dK | ≤ D}/� <
2n2

nn
· (2 + D/2)n ,

where/� means “modulo isomorphism”.

PROOF. If K is totally imaginary (resp. has a realplace), there exists a primitive ele-
mentω, i.e.,K = Q(ω), in the ring of integersOK such that

|Re(ω)| < 1 , |Im(ω)| ≤ D1/2/2 , |ω′′| < 1, . . . , |ω(n−1)| < 1

(resp. |ω| ≤ D1/2 , |ω′| < 1, . . . , |ω(n−1)| < 1) .

Hereω(i) are the conjugates ofω over Q. To compute the number ofK ’s, we compute the
number of possible equations

Xn + a1X
n−1 + · · · + an = 0 , ai ∈ Z ,
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for ω. Then the problem reduces to estimating the coefficientsai . We have a worse estimate
in the totally imaginary case, which is

|a1| =
∣∣∣∣ ∑

i

ω(i)

∣∣∣∣ < 2|Re(ω)| + n − 2 < n <

(
n

1

)
(1 + D/4) ,

|a2| =
∣∣∣∣ ∑

i �=j

ω(i)ω(j)

∣∣∣∣ <

(
n

2

)
(1 + D/4) ,

· · ·

|an| =
∣∣∣∣ ∏

i

ω(i)

∣∣∣∣ <

(
n

n

)
(1 + D/4) .

Hence the number ofK ’s (up to isomorphism) is bounded by

n∏
i=1

(
2

(
n

i

)
(1 + D/4) + 1

)
≤

(
1

n

n∑
i=1

(
2

(
n

i

)
(1 + D/4) + 1

))n

=
(

2(1 + D/4)(2n − 1) + n

n

)n

< (2n/n)n(2 + D/2)n .

Here, in the first inequality, we used the arithmetic-geometric mean inequality. In the second
line, we used the equality

∑n
i=0

(
n
i

) = 2n. In the last inequality, we usedn < 2+D/2, which
follows from the classical estimate of Minkowski. �

REMARK. If we use a refinement of Minkowski’s methods by Hunter (cf. [C, Chap.
9.3]), then the above Lemma 3.2 will be improved.

Combining Lemma 3.1 and Lemma 3.2, we obtain the following.

PROPOSITION 3.3. For any positive integersn andM, we have

#{K ; [K : Q] = n and d̃K | M}/�

≤ 2n2

nn

(
2 + 1

2
pn[logp n]+n−1M

)n

.

4. Number of χ’s. In this section, we bound the cardinality of the set

{χ : GK → F̄
×
p with N(χ) | M} .

SinceF̄
×
p is a union of finite cyclic groups of order prime top, the characterχ is tamely

ramified at prime idealsp (⊂ K) lying abovep. Let m = ∏
�|p p be the product of all the

distinct primes dividingp, andK�M the maximal abelian extension ofK with conductor
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mM. Thenχ factors through the Galois group Gal(K�M/K) of K�M/K;

χ : GK −→ F̄
×
p

↘ ↗
Gal(K�M/K)

Because Gal(K�M/K) is a finite abelian group, we only need to bound the size of
Gal(K�M/K) instead of bounding the number ofχ ’s;

(4.1) #{χ} ≤ #Gal(K�M/K) .

By class field theory, this group is isomorphic to the ray class group modulomM. In the
adèlic language, we have

Gal(K�M/K) � K×
A

K× ∏
υ Unυ

υ

if mM =
∏

υnυ ,

whereK×
A is the idèle group ofK andUυ is the unit group of the completionKυ of K at a

placeυ (resp. the connected component ofK×
υ ) if υ is a finite place (resp. an infinite place).

Also,Unυ
υ is the group of local units ofUυ which are congruent to 1 modulo thenυ-th power

of the maximal ideal atυ. Now the ray class groupK×
A /(K× ∏

υ Unυ
υ ) sits in the following

exact sequence:

0 −→
∏Uυ

(K× ∩ ∏Uυ)
∏Unυ

υ

−→ K×
A

K× ∏Unυ
υ

−→ K×
A

K× ∏Uυ

−→ 0 .

↑ 
| 
|
∏

υ|�M

( Uυ

Unυ
υ

)
Gal(K�M/K) C̃�K

Here the left vertical arrow is surjective and̃C�K denotes the narrow ideal class group ofK.
If we let qυ be the cardinality of the residue field ofυ, then

#

( Uυ

Unυ
υ

)
= (qυ − 1)qnυ−1

υ < qnυ
υ .

Therefore

#

( ∏
υ|�M

Uυ

Unυ
υ

)
<

∏
υ|�M

qnυ
υ ≤ pnMn .

LEMMA 4.1. LetK be a number field of degreen. Then we have

#Gal(K�M/K) < 2n · hK · pn · Mn ,

wherehK is the class number ofK.

PROOF. By the above exact sequence, we have

#Gal(K�M/K) ≤ #(C̃�K)#

( ∏
υ|�M

Uυ

Unυ
υ

)
< 2n · hK · pn · Mn .

�
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Since this result involves the class number, we need to estimate the class number only in
terms ofn, p andM. To estimatehK , we first estimate the product of the class numberhK

and the regulatorRK by using the integral expression of the zeta function.

LEMMA 4.2. LetRK be the regulator of a number fieldK andwK the number of roots
of unity inK. Then we have

hKRK < 2π−nwKdK .

PROOF. LetΛ(s) = (2−2r2π−ndK)s/2Γ (s/2)r1Γ (s)r2ζK(s). Then it satisfies the func-
tional equationΛ(1 − s) = Λ(s), and the residue ofΛ(s) at s = 1 is

λ = 2r1hKRK

wK

.

The functionΛ(s) has an integral expression of the form

Λ(s) = λ

s(s − 1)
+ (integral of a positive function) .

(See, e.g., [L, Chap. 13, §4, Thm. 3 and Chap. 14, §8, Thm. 15].) From this, it follows that,
for s > 1,

(4.2)
λ

s(s − 1)
≤ (2−2r2π−ndK)s/2Γ

(
s

2

)r1

Γ (s)r2ζK(s).

Now take a real numbers = 1 + 1/α, α ≥ 1. Then we have the inequalities

ζK

(
1 + 1

α

)
≤ ζQ

(
1 + 1

α

)n

< (1 + α)n ,

where the first inequality follows from the product expansion for the zeta function and the
second one follows from

∑∞
n=1 n−s < 1 + ∫ ∞

1 x−sdx. Puttingα = 1 in (4.2), we obtain that

hKRK ≤ 21−nπ−nwKdKζK(2)

< 2π−nwKdK .

�

REMARK. If we take other values ofα, the estimate may possibly be refined.

For the regulatorRK , Silverman [S] proved that, for some positive constantscn, dn

depending only on the degreen, one has

RK > cn(logdn|dK |)r−λ ,

wherer is the rank of the unit group ofK, andλ is the maximum of the ranks of the unit
groups of proper subfields ofK. Friedman improved the estimate of constantscn anddn.
In particular, he found the smallest regulator and that all number fields satisfyRK/wK ≥
0.09058> 1/11.1 (cf. [F, Thm. B]). Thus we have

hK <
2π−nwKdK

RK

<
2(11.1)dK

πn
.
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Putting this into Lemma 4.1 withM/d̃K in place ofM, we obtain:

#Gal(K
�M/d̃K

/K) <
2n+1(11.1)dK

πn
· pn ·

(
M

d̃K

)n

≤ 2n+1(11.1)

πn
pn[logp n]+2n−1 Mn

(d̃K)n−1
.

Noticing (4.1), the number ofχ is bounded as follows:

PROPOSITION 4.3. LetK be an algebraic number field of degreen with d̃K | M. Then
we have

#{χ : GK → F̄
×
p with N(χ) | (M/d̃K)} ≤ #Gal(K

�M/d̃K
/K)

<
2n+1(11.1)

πn
pn[logp n]+2n−1Mn .

Taking the “product” of Propositions 3.3 and 4.3, we obtain our main result.

THEOREM 4.4. The number of isomorphism classes ofn-dimensional monomial
modp representations with conductor dividingM is bounded by

2n2+n+1 · (11.1)

nnπn

(
2 + 1

2
pn[logp n]+n−1M

)n

pn[logp n]+2n−1Mn .

REMARK. Noticing the inequalitypn[logp n]+n−1 < nnpn−1, we obtain the “rounded”
result as in the Introduction.

5. Order of the image of ρ. An effective version of our Finiteness Problem is to give
an explicit upper bound of the order of the image ofρ. In this section, we give an explicit
upper bound of Im(ρ) for monomial representationsρ.

LEMMA 5.1. Let G be a group, and H a subgroup ofG with (G : H) = n. Let
χ : H → GLk(W) be a linear representation ofH on a finite-dimensional vector spaceW

over a fieldk, and letρ = IndG
H χ . Suppose that the image ofχ is finite. Then we have the

following:
(i) If H is normal inG, then#ρ(G) ≤ n · #χ(H)n.
(ii) In general, we have#ρ(G) ≤ n! · #χ(H)n.

PROOF. By Mackey’s theorem ([Se2, Chap. 7, Prop. 22]), we know that

(5.1) ρ|H =
⊕

s∈H\G/H

IndH
Hs

χs ,

whereHs = sHs−1 ∩ H andχs : Hs → GLk(W) is defined byx �→ χ(s−1xs). Put
ns := (H : Hs). Then by comparing the dimensions of both sides of (5.1), we have

n =
∑

s∈H\G/H

ns .
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(i) If H is normal inG, i.e.,ns = 1 for all s, then

ρ|H �
⊕

s∈G/H

χs ,

and
χs(H) = χ(H) .

Hence we have
#ρ(G) ≤ n · #ρ(H) = n · #χ(H)n .

(ii) We prove the statement by induction onn. The casen = 1 is trivial. Suppose
n > 1. We may assume thatns < n for all s, since otherwiseH = G. By the induction
hypothesis, we have

#Im(IndH
Hs

χs) ≤ ns ! · #χs(Hs)
ns .

Then from this and (5.1), we see

#ρ(H) ≤
∏

s∈H\G/H

ns ! · #χs(Hs)
ns

≤
( ∏

s∈H\G/H

ns !
)

(#χ(H))
∑

ns

≤ (n − 1)! · #χ(H)n .

Hence we have
#ρ(G) ≤ n · #ρ(H) ≤ n! · #χ(H)n .

The proof is complete. �

By the above Lemma (withH = Gal(K
�M/d̃K

/K) ) together with Proposition 4.3, we
conclude:

THEOREM 5.2. Let ρ = IndQ
Kχ : GQ → GLn(F̄p) be ann-dimensional monomial

representation withN(ρ) | M. Then we have

#Im(ρ) < n! ·
(

2n+1(11.1)

πn
pn[logp n]+2n−1Mn

)n

.
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