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Abstract. An explicit upper bound is given for (i) the numbermsfimensional mono-
mial modp Galois representations @fq with bounded conductor and (i) the order of the
image of such a representation in termspp, and the conductor.

1. Introduction. In this paper, we give an explicit upper bound for (i) the number of
monomial modp Galois representations: Gg — GL,,(IEP) and (i) the order of the image
of the representatiop in terms ofn, p, and the conductor. Her€q is the absolute Galois
group GalQ/Q) of the rational number fiel®, andlfp is an algebraic closure of the prime
field F, of p elements. We say that andimensional representation: Go — GL,,(pr)
is monomialif it is of the form p = Indgx, i.e., if it is induced from a one-dimensional
charactety of the absolute Galois grou@x of an algebraic number field of degree: over
Q.

In general, for a continuous representationGx — GLn(pr), we denote by (p) its
Artin conductor outside;

N(p) =[]a"",
atp
whereq runs through the non-zero prime idealskohot dividing p, and

1
= ——dimg (v/VCai),
a(P) ; (Gq,0:Gg,i) me, (V/ )
whereG, ; is thei-th ramification group of the decomposition group of an extensiantofa
splitting field of p, andV is the representation space fw(cf. [Se4], [M]). We shall prove:

THEOREM. Fix positive integers: and M. Considerm-dimensional monomiahodp
Galois representations : Gg — GLn(pr) with N(p) | M. Then the following hold.

(i) The number of isomorphism classes of spishs bounded by

2
v+l (111 1 g
( ) (2 + _nnpn—lM> p2n—an )
" 2

(i) The order of the image of suchgeis bounded by

2n a1y
ng)n!nnzpn(anl)an '
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A sharper estimate will be given in Theorems 4.4 and 5.2.

Now we explain the motivation for giving such an estimate. In our previous works ([M],
[MT]), we studied the following Finiteness Problem for map&alois representations: Given
an algebraic number fiel®, a prime numbep, a positive integer and an integral ideal
of K, do there exist only finitely many continuous semisimple representation& x —
GLn(pr) with N(p) | M? We showed in [M] that the answer is affirmative #6r= Q and a
few small values ofi andp. Also, in the general setting, we proved in [MT] the finiteness for
thosep’s with solvable image. For more discusss on this problem, we refer the reader to
the Introductions of [M] and [MT]. This problem for the general case seems very difficult. For
monomial representations, however, the finiteness follows fairly easily by using the Hermite-
Minkowski theorem and the finiteness of the ray class groups. So our interest is how in
guantitative results as in the above Theorem. For example, Serre gave an explicit upper bound
of the number of representatiops Go — GL2(C) coming from modular forms of weight
1 and prime level ([Sel]).

Meanwhile, Ash and Sinnott ([AS]) conjectured that mpotepresentations o g sat-
isfying certain conditions should come from Hecke eigenclasses in cohomology groups of
congruence subgroups of (Z) (this conjecture also motivates our Problem). Ash ([A])
proved this conjecture for monomial representations of degreel. In view of this result,
the monomial representations would be atfiractable case, and it would be worth while
counting their number. Looking at Brauerigdiuction theorem, we hope that monomial rep-
resentations would give a supply of a good portion of all the moepresentations, so that
our estimate would be not too far from the truth even for allitkdimensional representations
with conductor dividingM .

We mention also a result of Brumer and Silverman ([BS]) in the same spirit as ours,
which gives an explicit bound for the number of elliptic curves d@evith bounded conduc-
tor.

The outline of the paper is as follows: In Section 2, we bound the discriminakit of
and the conductor of when the conductor gf = Ind%x is given. In Section 3, we give
an upper bound of the number of algebraic number fi&gldsf degreen and discriminant
(outsidep) dividing D in terms ofn, p andD. The bound of the-part of the discriminant
is classical. Once this is done, we may employ “geometry of numbers” to bound the number
of K’s. In Section 4, for a giverK we give an upper bound for the number of characjers
of K with a given Artin conductoM. This amounts essentially to bounding the ray class
group of K of conductorpM. The most essential is to bound the class nunmiler For the
productRg hg of the regulator and class number, an upper bound is well-known. We may
then use Friedman'’s absolute lower bound ([F]) Rar to obtain the desired upper bound for
hg. Combining these results together, we obtain our Main Theorem 4.4. In Section 5, we
derive an upper bound of the imagefrom the bound of the ray class group in Section 4
by group-theoretic arguments (Lemma 5.1).

| would like to express my gratitude to Yuichiro Taguchi who suggested studying the
guantitative version of our Finiteness Problem. | thank also the referee for useful comments.
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2. Discriminant of K and conductor of x. Let K be an algebraic number field of
degreen, dx its discriminant and/x the prime-top part ofdg. Let x be a one-dimensional
modp Galois representation @ x = Gal(Q/K) and N(x) its Artin conductor outside.
We consider the set of the induced representations

p=Inddx : Go— GL.(F)),
with bounded conductor. Le be a positive integer prime tp. If N(p) is bounded by,
the discriminant/x and the conductal (x) of x are bounded as follows.

LEMMA 2.1. Letp = Indgx. If N(p) dividesM, thendk dividesM and N(x)
dividesM /d.

PROOF By [Tag], the Artin conductor of an induced representation is calculated as
follows:

N(ndQ x) = Nk /(N (x)) - (dx) 4™
= Nk,o(N(x)) - dk.

Hence we havdk | M andN (x) | (M /dk). O

By Lemma 2.1, the number of = Indgx with N(p) | M is bounded by the product of

the following two; (i) the number ok’s with [K : Q] = n anddk | M, (ii) the maximum,
whenKk as in (i) runs, of the number of charactgr®f K with N(x) | (M/&K). The number
of (i) will be estimated in Section 3 and the number of (ii) will be estimated in Section 4.

3. Number of K's. First, we begin with estimating the discriminant&fin terms of
p,nandM. The following Lemma is basically well-known (cf. [Se3]).

LEMMA 3.1. Thep-part of the discriminant of an algebraic number fieddof degree
n is bounded by

pn[logl7 nl+n—1 )

Note thatp"!0% "1+n=1 < yn pn=1,

PROOF Letp be a prime ideal oK lying abovep. If F denotes the completion &f
atp andDr/q, the different ofF/Q,, then

e—1
v(Dr/q,) = vle) + —

whereuv is the valuation off normalized byv(p) = 1 ande is the ramification index of .
Indeed, we may assume théfQ, is totally ramified. Then the extensiaryQ, is defined
by an Eisenstein polynomial

GX)=X+a1X 1+ +a,, pla; and wv(a,) =1,
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and the differenDp/Qp is generated by’ (), wherer is a root ofG(X). Hence

e—1
v(DF/Q,) = v<e7tel +Y (e— i)a,»n”1>

i=1
< v(er ™t

e—1
=wv(e) + .
e

In general, if we letf be the residue degree 6fandm = ef, then
v(dr) = v(NF/Q,DF/q,)
<mv(e) + f(e—1).
Now we globalize this. Lep, ... , py be all the distinct prime ideals & lying above
p. Let K; be the completion oK atp;. ThenKk; is an extension on of degreen; = ¢; f;,
whereg; is the ramification index of; and f; is the residue degree pf. Finally, we obtain
g9

v(dk) = ) _vldx,)

i=1

g
<Y (miv(e) + fiei — fi)
i=1

g g
= nvle)+n—Y_ fi
i=1 i=1
<nllog,n] +n—1.
Here we used the inequality(e;) < [Iogp nl]. O
The following estimate follows from the existence of a “small” integesf K, the exis-

tence being proved by Minkowski’s methods of geometry of numbers (cf. [Tak, Chap. 5, §2]
or [L, Chap. 5, 84, Proof of Thm. 5]).

LEMMA 3.2. Letr andD be positive integers. Then

n2

2
#K; [K:Ql=nandldg| <D}/~ < —-(2+D/2)",
n
where/~ means “modulo isomorphism”.

PrROOFE If K is totally imaginary (resp. has a rgalhce), there exists a primitive ele-
mentw, i.e., K = Q(w), in the ring of integer® g such that

IRe(w)| <1, |Imw)| < DY?/2, 1" <1,..., 0" V<1
(resp. |w| < DY?, o/ <1,...,10" V<.

Herew® are the conjugates @ over Q. To compute the number &'s, we compute the
number of possible equations

X"+a X" 14+ 4a,=0, a€eZ,



MONOMIAL MOD p GALOIS REPRESENTATIONS 93

for w. Then the problem reduces to estimating the coefficient¥Ve have a worse estimate
in the totally imaginary case, which is

jar] = | Y0
i
\ag| = Zw(ww(/’)

i#]j

<2Re)|+n—2<n< <'D(1+D/4),

< (Z) (1+ D/4),

jan| = | [T
i

Hence the number df's (up to isomorphism) is bounded by

I1 (2(?)(1+ D/4) + 1) < <% 3 <2<’;)(1+ D/4) + 1))
i=1 i=1

B <2(1+ D/4)(2" — 1) +n)"

n
< ( )(1+D/4).
n

n
< (2"/n)" (24 D/2)".

Here, in the first inequality, we used the arithmetic-geometric mean inequality. In the second
line, we used the equalify”;_, (?) = 2". In the last inequality, we used< 2+ D/2, which
follows from the classical estimate of Minkowski. O

REMARK. If we use a refinement of Minkowski’s methods by Hunter (cf. [C, Chap.
9.3)), then the above Lemma 3.2 will be improved.
Combining Lemma 3.1 and Lemma 3.2, we obtain the following.

PrRoOPOSITION 3.3. For any positive integers and M, we have

#K ; [K:Ql=nand dg | M}/~
2 n
< %<2+%pn[logpn]+nlM) )
n

4. Number of x’s. In this section, we bound the cardinality of the set
{x : Gg— F, with N(x) | M}.

Sinceﬁ; is a union of finite cyclic groups of order prime g the charactey is tamely
ramified at prime idealp (C K) lying abovep. Letm = [], , p be the product of all the
distinct primes dividingp, and Ky the maximal abelian extension & with conductor



94 H. MOON

mM. Theny factors through the Galois group G&l,y/K) of Ky /K;

x : Gk — [E;

N /
Gal(KmM/K)
Because G&Kny/K) is a finite abelian group, we only need to bound the size of
Gal(Kmu/K) instead of bounding the number p¥;

4.1 #x} = #GalKmm /K) .

By class field theory, this group is isomorphic to the ray class group madio In the
adeélic language, we have

X
Gal(Kmu /K) ~ Kxgﬁ if mM= ]‘[ o
whereK\ is the idele group oK andi{, is the unit group of the completiok, of K at a
placev (resp. the connected component&f) if v is a finite place (resp. an infinite place).
Also, Uy" is the group of local units dff, which are congruent to 1 modulo the-th power
of the maximal ideal ab. Now the ray class grouf X /(K * [, U,") sits in the following
exact sequence:

Ky KX
0 — HUU n — 7An — —A 0.
(K* N [[Uo) [TU K*[[Ur K* [t
t Y |
Uy ~
Hu\mM W Gal(KmM/K) CZ[(
v

Here the left vertical arrow is surjective addx denotes the narrow ideal class groupkaf
If we let ¢,, be the cardinality of the residue field of then

u _
#<u_:v) = (qu—Dgpt <ql.

v

Therefore

H( T1 ) = TTate =,

vimM Y vlmM
LEMMA 4.1. LetK be a number field of degree Then we have
#GalKmy /K) < 2" -hg - p" - M",
whereh g is the class number df.
PROOF By the above exact sequence, we have

~ U
#GalKmy /K) < #(czK)#( I1 —,,”) <2 hg P M.

vimM Y
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Since this result involves the class number, we need to estimate the class number only in
terms ofn, p and M. To estimatéix, we first estimate the product of the class numbger
and the regulatoR g by using the integral expression of the zeta function.

LEMMA 4.2. LetRg be the regulator of a number fieki andwg the number of roots

of unity inK. Then we have
hx Rk < 2r "wgkdgk .

PROOF LetA(s) = (2= 22x"dk)*/2I"(s/2)'1 T (s)"2{k (s). Then it satisfies the func-
tional equationA(1 — s) = A(s), and the residue ofi(s) ats = 1 is
_ 2 hg Rk
=~
The functionA(s) has an integral expression of the form

A

A(s) =

A
+ (integral of a positive function
s(s —1)

(See, e.g., [L, Chap. 13, 84, Thm. 3 and Chap. 14, 88, Thm. 15].) From this, it follows that,
fors > 1,

(4.2)

r
prosm (22’2n"d1<)5/zr<§) ()% (5)-

Now take a real number= 1+ 1/«, « > 1. Then we have the inequalities

1 1 n
CK<1+—> < {,’Q<1+—> <(1+a)",
o o

where the first inequality follows from the product expansion for the zeta function and the
second one follows fromy ;2 n™* <1+ [l°° xSdx. Puttinge = 1 in (4.2), we obtain that

hx Rk <2V "n"wgdi ik (2)

< 27 "wgdg .

REMARK. If we take other values af, the estimate may possibly be refined.

For the regulatorRg, Silverman [S] proved that, for some positive constantsd,
depending only on the degreeone has

Rk > cp(logd,|dk|) ™,

wherer is the rank of the unit group ok, and2x is the maximum of the ranks of the unit
groups of proper subfields d&f. Friedman improved the estimate of constafteindd,.

In particular, he found the smallest regulator and that all number fields s&jsfywx >
0.09058> 1/111 (cf. [F, Thm. B]). Thus we have

27 "widg 2(11.1D)dg
Rk = h )

hg <
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Putting this into Lemma 4.1 with/ /d in place ofM, we obtain:

2+t ydy  , (M
fidd p dx
1

- 2nt (11-1)pn[logpn]+2nfl ~M" ‘
m (dg)"—1

Noticing (4.1), the number of is bounded as follows:

#Gal K /K) <

mM/dg

PROPOSITION 4.3. LetK be an algebraic number field of degreavith dx | M. Then
we have

#{x : Gk — F, with N(x) | (M/dk)} < #GakK ,; q. /K)
2rt1(11.1)
<———7

nn

n[logl7 n]+2nfan

Taking the “product” of Propositions 3.3 and 4.3, we obtain our main result.

THEOREM 4.4. The number of isomorphism classes mflimensional monomial
modp representations with conductor dividig is bounded by

0t (117)

n
(2 + }pn[logp n]+n—1M> pﬂ[|09p n]+2n—an
ntmah 2 ’

REMARK. Noticing the inequalityy”°% "1+"=1  yn pn=1 \ye obtain the “rounded”
result as in the Introduction.

5. Order of theimageof p. An effective version of our Finiteness Problem is to give
an explicit upper bound of the order of the imageopofin this section, we give an explicit
upper bound of In) for monomial representations

LEMMA 5.1. Let G be a group and H a subgroup ofG with (G : H) = n. Let
x : H — GLi(W) be a linear representation af on a finite-dimensional vector spaeé
over a fieldk, and letp = Indf,x. Suppose that the image gfis finite. Then we have the
following:

(i) If HisnormalinG, then#p(G) <n-#x(H)".

(i) Ingeneral we havetp(G) < n!-#x(H)".

PROOF By Mackey’s theorem ([Se2, Chap. 7, Prop. 22]), we know that
(5.1) plu= € Indfjx",
seH\G/H

whereH, = sHs™ 1N H andx® : Hy, — GLy(W) is defined byx — x(s~1xs). Put
ns := (H : Hy). Then by comparing the dimensions of both sides of (5.1), we have

n= E Ny .

seH\G/H
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(i) If HisnormalinG,i.e.,ny; = 1foralls, then
plH =~ @ X
seG/H
and
x'(H) = x(H).
Hence we have
#p(G) <n-#p(H) =n #x(H)".
(i) We prove the statement by induction an The case: = 1 is trivial. Suppose
n > 1. We may assume that < »n for all s, since otherwisédd = G. By the induction
hypothesis, we have
#imandif x°) < ng! - #x° (Hy)™ .
Then from this and (5.1), we see

#o(H)< ] not-#x*(H)™
seH\G/H

( I1 n') (#x (H)) ="

seH\G/H
<m-1! #H".

IA

Hence we have
#0(G) <n-#p(H) <n!-#x(H)".
The proof is complete. O

By the above Lemma (witltf = GaI(KmM/C;K/K) ) together with Proposition 4.3, we
conclude:

THEOREM 5.2. Letp = Ind%x : Gg — GL,(F,) be ann-dimensional monomial
representation withV (p) | M. Then we have

1 n
2"ti(111) p"[logp n]+2n—1Mn> )

#lm(p) < n!- <
n—n
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