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Abstract. We give an affirmative answer to the following conjecture of Ma. Kato: Let
S be a compact complex surface in Kodaira’s classpMihich contains a strictly positive
number of rational curves being exactly equal to the second Betti numiSerTdfenS admits
a global spherical shell.

Introduction. Kodaira’s class VIj, which consists of minimal compact complex sur-
facesS havingb1(S) = 1, is not completely understood so far. In fact, only the case when
b2(S) = 0is completely classified, by the work of Kodaira [13], Inoue [11], Bogomolov [1],
Li-Yau-Zheng [14] and Teleman [18].

For b2(S) > 0 a construction method and thus a large subclass of surfaces have been
introduced by Kato [12]. These e@rexactly the minimal surfaces withy > 0 containing
global spherical shells (see the next section for the definition). One can show that a surface
S of class Vlp has at mosb2(S) rational curves on it and that if moreovgradmits a global
spherical shell, then there are exadi(.S) rational curves or§. Kato conjectured that the
converse should be true as well. Important progress towards this conjecture was made by
Nakamura [15], [16], who showed thatSfhasb»(S) rational curves, then their configuration
is that of the curves of a surface with global spherical shells &gl a deformation of a
blown-up Hopf surface.

This paper is devoted to the proof of Kato’s conjecture:

MAIN THEOREM. If S isasurface of class VIl g with 52(S) > 0 and with b>(S) ratio-
nal curves, then S admits global spherical shells.

At present all known surface$ of class VIp with b2(S) > 0 contain global spherical
shells. In fact, by making additional assumptionsSlike the existence of a homologically
trivial divisor [8] or of two cycles of rational curves [15] or of a holomorphic vector field [6],
[7], it was shown thats contains global spherical shells. The present paper makes a further
step in this direction.

The paper is organized as follows. Sectiois Jpreparatory. We recall some facts on
surfaces with global spherical shells and on surfategclass Vlp with b2(S) > 0 rational
curves. Such surfaces were callgmcial by Nakamura [16]. We also prove a fact we shall
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need later, namely that & is special, then the canonical bundle of a suitable finite ramified
covering ofS is numerically divisorial.

Using the knowledge of the configuration of rational curves on a special surface, we
prove in Section 2 the existence of a logarithmic 1-form twisted by a flat line bundle. Passing
to a finite ramified covering we get a global twisted holomorphic vector field. The twisting is
again by some flat line bundle. This induces a true holomorphic vector field on the universal
coverings of S.

In Section 3 we prove that this holomorphic vector field is completely integrable and that
the universal covering of the complement of the curves & isomorphic toH x C, where
H denotes the complex half plane. Section 4 is devoted to the computation of the action of
the fundamental group dd x C. This allows us to recover in Section 5 the contracting rigid
germ of holomorphic map which gave birth to our surféceUsing the work of Favre [9]
which classifies such germs, we are able to conclude.

1. Preliminaries. We start by recalling some definitions and known facts. A compact
complex surface is said to belong to Kodaira’s class VII#(S) = 1 and to class VY if it
is moreover minimal. Surfaces of class yWith 5, = 0 have been completely classified, see
for instance [18]. In this paper we deal with the case- 0. It is then well-known that the
Kodaira dimension of is negative and that the algebraic dimension vanishes. In particular,
S has finitely many irreducible curves.

At present the only known surfaces of classgith 5, > 0 containglobal spheri-
cal shells (GSS). A global spherical shell is a neighborhdadf $3 ¢ C2\ {0} which is
holomorphically embedded in the surfagesuch thatS \ V is connected. All surfaces with
GSS may be constructed by a procedure due to Kato [12]. As a consequence, they all have
exactlyba(S) rational curves; some of them admit an elliptic curve as well. Kato also made
the following

CoNJECTURE If Siisaclass VIl surface with b, > O rational curves, then S admits
aGSS

Following Nakamura [16], we shall call a class yBurfacespecial, if it hasb, > 0
rational curves. Since special surfaces admitting homologically trivial divisors or with all
rational curves organized in one or two cycles have been shown to admit GSS, [8], [15], [3],
[12], we concentrate our attention on the remaining ones. We shall callgbemial surfaces
of intermediate type.

In [16], Nakamura proved that the configuration of the rational curves of a special surface
of intermediate type is the same as that of a surface with GSS with the/sanhe partic-
ular the dual graph of such a configuration is connected and contains a cycle to which some
trees are attached. Nakamura also showed that these surfaces are deformations of blown-
up primary Hopf surfaces, in particular that their fundamental group is isomorpHicRar-
thermore, he proposed a line of attack to Kato’s conjecture. However, one of his conjectures
proved to be not correct, see [19].
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NOTATION. We denote byD the maximal reduced divisor of a special surfagey
M (S) the intersection matrix of the rational curvesoénd sek(S) := /[ detM (S)| + 1. (It
is well-known that,/] detM ()] is the index of the subgroup generated by classes of curves
in H2(S, Z) and thus it is an integer). Moreover we denoteStie universal cover of and
by D the preimage oD in S. ThenD is the universal cover ab.

In this section we show that after passing to a ramified covering and a resolution of
singularities, we may suppose that the anticanonical bundle of our surface is numerically
divisorial, i.e., there exists a flat line bundleon S and a divisorD_g such thatKS‘1 ~
L ® O(D_g).

Since under our assumptions(S) =~ Z, it is easy to see that the flat line bundles are
parametrized byC* ~ Hom(r1(S), C*) ~ Pic°(S). We shall often writeL* for the line
bundle corresponding to the complex number C*.

LEMMA 1.1. Let S bea special surface of intermediate type. Then there exist a posi-
tive integer m, a flat line bundle L and an effective divisor D,, such that

(Ks ® L)®" = O(=Dp).

PROOFE Since the cohomology classes associated to the rational cunsegenferate
H2(S, Q), there always exist € N*, L € Pic°(S) and a divisorD,, such that

(Ks ® L)®" = O(—= D).

We have only to check thdd,, > 0. LetD,, = Dy —D_with D,, D_ > 0andD,.D_ > 0.
The adjunction formula implies thd,,,.C < 0 for any irreducible curv€ on S. Hence

0> D,.D_=(Dy—D_).D_>—-D?>0.

But thenD_ = 0, sinceS does not admit homologically trivial divisors. a

DEFINITION 1.2. The smallest possible € N* for which a decomposition
(KS ® L)®m = O(_Dm)

as in Lemma 1.1 exists, will be called thelex of the surfaces and denoted by:(S). When
m(S) = 1, we denotedD_x = D1 and call this thenumerically anticanonical divisor of S.

Notice thatD,, is unique whers$ is of intermediate type. The following proposition will
enable us to reduce the proof of the Main Theorem to the case of special surfaces of index 1.
We have formulated it for sinjzity for special surfaces of intenediate type, but the general
case can be proved similarly.

PrRoOPOSITION 1.3. Let S be a special surface of intermediate type with index m :=
m(S) > 1. Then there exists a diagram
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Z T’
S
where

(i) (Z,n,S)isamfold cyclic ramified covering space of S, branched over D,,,,
(i) (T, p, Z) istheminimal desingularization of Z,
(i) (T, c, ") isthe contraction of the (possible) exceptional curves of the first kind,
(iv) S’ isa special surface with action of the group of m-th roots of unity U,,, with
indexm(S’) = 1,
(v) Z’isthequotient space of S’ by U,,,
(vi) (T, p',Z") isthe minimal desingularization of Z’, and
(vii) (T, c, S) isthe contraction of the (possible) exceptional curves of the first kind
such that the restriction over S \ D iscommutative, i.e.,

lon':S'\D — S\ D.
We havethat 6 : S\ D' — S\ D isa mfold non-ramified covering. Moreover, S’ has
aGSSifand only if S hasa GSS

:=mopoct=cop

PROOE We have
(Ks ® L)®" = O(—=Dy) .

Let X be the total space of the line bundte ! ® L. We choose an open trivialisation
coveringld = (U;) for K and L with local coordinatesz}, z5), defining cocyclesk;;) and
(gj) of K andL such thatD,, N U; = {f; = 0} and
i _
ij fj -
If ¢; is the fiber variable o over U;, the equationg/" = f;(z) fit together and define an
analytic subspacg c X. Itis easy to see thdi,, acts holomorphically and effectively dn
and thatZ/U,, = S. Letn : Z — S be the projection o§. The ramified coveringZ, =, S)
is branched exactly over su@,,). The local meromorphic 2-forms

kg

" 1.

_ dzil A dzé
i
yield a twisted meromorphic 2-fora on X, hence orZ, for

i

dzi ndZ k,;ldz{ AdZ) dzj ndz}
= = — = 9117
Gi (kijgi))~1¢; gj

i =g,ja)]
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Now, let (T, p, Z) be the minimal desingularization &. This includes of course the
normalization ofZ. Notice that the normalization is connected by the minimalityzofSet
H = p*L. Thent = p*w is a twisted meromorphic 2-form ¢fi, which does not vanish
and has a non trivial polar divisaf and Ky ® H = O(—E). Finally, in order to obtain
S’, we contract all exceptional curves of the first kind. It is clear that the irléx one.
As before,U,, acts holomorphically or$” and S’ \ D’ is a covering manifold ofS \ D.
The quotientz’ = §’'/U,, is a normal surface. The desingularizati@t, o', Z’) yields S
after contraction of the exceptional curves of the first kind. Sisideas no non-constant
meromorphic functions, the same holds $6r Applying then the classification of Kodair,
is a K3 surface, a torus or a surface of clasgVIThe first two cases have a trivial canonical
bundle, and hencéd’ belongs to class V4§l Moreoverb,(S’) > 0, because it contains a
cohomologically non trivial divisor.

We shall now show that if has a GSS, thef’ will also have this property. We may
choose a GSS3 ¢ V ¢ C?\ {0}, which after embedding if cuts only one curve of our
surfaceS. For a suitable choice of global coordinates, z2) on V, the intersectiorC NV
is given by the equatiosy = 0. MoreoverKs|y andL|y are trivial onV. Let¢ be the fiber
coordinate off overV. SupposeD,, NV = n(C N V). The pull-backr ~1(53) of the sphere
$3 to Z is given by the equations

2 2
lz2|* + |z21* =1, z{ =¢™.

Letd := g.c.d.(n,m) andn’ = n/d, m" = m/d. Then there are irreducible compo-
nents aroundr ~1($3) in Z, which will become disjoint after normalization. We denote by
X1, ..., X4 the corresponding componentsmf1(53). Let us chooser; with equations

|z1)? + |22/ = 1, z’{/ =",
This component is normalized by the map
(t,22) > (", 22,1").
The pull-backX; of X1 to T will be given in these coordinates by the equation
12" + |22l = 1.

We check now thal'\ X} is connected. LeP, Q € T'\ X1 two points in a neighborhood
of X} N p~1(x~1(D)) which find themselves on different sides Bf. Their projections
w(p(P)), m(p(Q)) onS may be connected by a path avoidistyand D. We may lift this path
to a pathy in Z which connects (P) to someQ’ € 71z (p(Q))). In order to ensure that
Q' andp(Q) coincide, it is enough to let the initial path shturn the needed number of times
around the components &f. By further lifting y to T, we obtain the desired connectedness.
Form’ > 1,

Tf = {(t.2) € C?| 12" + |22 = 1)

is no longer a sphere, but remains the border of a bounded Stein don@dn Nbticing that
X} may be approximated by a strictly pseudoconvex hypersurface (for example, of equation
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glt]2 + 112" + |z212 = 1) it is possible to use the same arguments as in [2] in order to get a
contracting holomorphic germ and hence a GSS'on

In particular, whenS has a GSS$’ has exactlyb2(S") = —Kg, rational curves. But
since for a special surfacg the dual graph of the curves is the same as for some surface with
a GSS, and since the intersection matrix of the curve$ dfepends only on this graph, we
see that outs” also ha,(S) = —Kg, rational curves. Thu$’ is special under the weaker
condition thatS is special (of intermediate type). Finally, it is not difficult to show (cf. [4])
that quotients of GSS surfaces by the actions dfifiayclic groups of automorphisms remain
GSS surfaces. Thus # has a GSS, thefi will also have one. O

2. Existence of a twisted logarithmic 1-form. In this section we shall consider a
special surface of intermediate type and prove that it always admits a twisted logarithmic
1-form. LetD = Dmax= Y ;_; Ci be the maximal reduced divisor §f

LEMMA 2.1. If S hasindex m(S) = 1, then the numerically anticanonical divisor
satisfies D_x > D. In particular, for every flat linebundle L on S, HOYS,Ks® L) =0.

PROOFE Suppose thaD_k does not contain all the curves 8f Since by [16] the
maximal divisorD is connected, there exists an irreducible cuévvhich is not contained
in D_g but such that sug®_x) N C # . ThenKs.C = —D_g.C < 0, which gives a
contradiction to the adjunction formula. Thils_ ¢ > D. But the equalityD_x = D would
imply D? = —b(S), which may happen only on Inoue-Hirzebruch surfaces by [16]. But
Inoue-Hirzebruch surfaces are not of intermediate type, so in our case wd®hagweD. O

LEMMA 2.2. Forevery L € Pic(S) wehave I'(S, 21 ® L) = 0.

PROOFE We may supposé # 0. Using the exact sequence of sheaves
0—>dOL) > 219 L - 2°® L — 0,

we get
r@R'eL)y=rdow)).

Take noww € I'(dO(L)) and denote byp its pull-back on the universal coverirfg
of S. Theng*® = A®, whereg is a generator ofr1(S) >~ Z anda is the twisting factor
which corresponds td. € Pic’(S) ~ C*. Let f be a primitive of& andc € C such that
fog=Af+c. Replacingf byh := f +c¢/(A — 1), we geth o ¢ = Ak, which means that
h induces a section it (S, O(L)). By our assumption of, & has then to be the zero section
and thusy = 0. O

LEMMA 2.3. Anon-trivial twisted logarithmic 1-formon S is always closed and has
poles along each curve of S.

PROOF Let0 # w € I'(S, 2%(logD) ® L) for a flat line bundleL. Thendw e
(S, 22(D) ® L). If dw # 0, then its associated divisdt satisfies 0< —I" < D, which
contradicts Lemma 2.1. Thug» = 0. By Lemma 2.2, the pole divisdD, of w is non-
trivial. Then Dy, must contain the cycle of rational curves$fotherwise one could write
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as a non-trivial logarithmic 1-form in a neighborho¥dof D+, and since the dual graph of
Do, would be contractiblep would be holomorphic ofv by [17].

So let nowC7 be an irreducible component @f.,, and suppose there exists a rational
curve C2 not contained inD, such thatd # C1 N C2 = {p}. Choose coordinate31, z2)
locally aroundp such thatC; = {z; = 0},i = 1, 2, and write

dz1
o =oa1— +axdz2
1

in these coordinates. Since

d d d
O=do=2a0n &2 L 22400 Ndzo,
072 z1 071

we see tha; must have the form
@1(z1, 72) = B(z1) + z122¥(21, 22) -

If B(0) # 0, then the restriction ab to C2 would have, as its only pole, a simple polezn
which is impossible. Thereforg(0) = 0 and

w= <ZE + zzy) dz1 4+ axdzo
1

has no pole alon@’1, which gives a contradiction. Thud,, = D. O

LEMMA 2.4. Two logarithmic 1-formswi, w2 on S twisted by flat line bundles L1, L2
are necessarily linearly dependent.

PrROOFE If w1, w2 were not linearly dependent, then their exterior produch wy €
I'(S, 2%(D) ® L1 ® L) would be non-identically zero. This contradicts Lemma 2.1.0

LEMMA 2.5. If Lisaflatlinebundlieon S and I"(S, 21(logD) ® L=1) = 0, thenthe
mor phism
HA(S, Cs(L)) - H?(D, Cp(L))
induced by restriction is bijective.
PROOFE We may supposé to be non-trivial, since otherwise the conclusion holds by
our hypotheses ofl. The long exact cohomology sequence of the diagram

0 —> Cp(L) —> Op(L) -5 @,2c,®L —> 0

(1) Trestr Trestr Trestr

0 —> Cs(L) —> Os(L) -5  dOg(L) —> 0
gives

HYOp(L)) — HYP!_,2¢, ® L) — H?Cp(L)) —> H?*Op(L))

I I I I

HYOs(L)) —  HYdOs(L)) — H?*Cs(L)) —> H?*Os(L)).
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Using the identities
H?Os(L)) =0, H%Os(L)) =0, H*Op(L) =0, H%Op(L) =0

and the theorem of Riemann-Roch, we §t(Os(L)) = 0 andH1(Op (L)) = 0. Thus our
task comes to showing the bijectivity of the morphism

n
HYdOs(L)) — Hl( P e ® L) .
i=1
On the other hand, the commutative triangle
@:'l:l ¢, ® L
y w
dOs(L) 24w,

the long exact cohomology sequence associated to

2) 0— dOs(L) — QL) - 23(L) - 0
and the fact thaHO(.Qg(L)) = 0, allow us to get the commutative triangle
Hl( @Ll R2¢; ® L)

T

H(dOs(L)) HY(2YL)),

where the horizontal arrow is an isomorphism. Thus, we have only to prove that the morphism

3) HY(QYL) — Hl(@gq ® L)

i=1
is bijective.
We examine the dimensions first.
dim Hl(@ Q¢ ® L) = Z dmHY2c, ® L) =n
i=1 i=1
and
dimHY(2NL)) = —x(2Y(L) + °R2NL)) + h2(2Y(L))
=—x(2YL) = —x (@Y = b2,

since we know that%(21(L)) = h9(21(L~1)) = 0. By assumptionh, = n, so it is enough
to show only the surjectivity of the morphism (3). In order to do so, let us compute the kernel
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N of the surjective morphism

n
25— P 2, -
i=1
Locally around a poin€y N Cz, whereC; = {z; = 0}, this morphism is given by

fidzi + fadzo — (f1(z1, 0)dz1, f2(0, z2)dz2) .

Thus a section of the kernel must have the fapgmdz1 + z19dz2, whereg 4, g» are holo-
morphic functions. Therefore we get the duality

N ® 2klog D) > 22,

mapping

h h
<zzgle1 + z190dz2, Z—ldm + Z—Zdzz) > (g1h2 — goh1)dzi Ndz2,
1 2

proving that

N =~ 2ilogD)” ® 22.

In order to finish the proof we consider now the long exact cohomology sequence of

n
O—>N®L—>!251®L—>@.Qci®L—>0,
i=1

and use the fact thati2(\V ® L) = H%(2i(logD) ® L~1)* = 0 which is ensured by
hypothesis. O

THEOREM 2.6. Let S be a special surface of intermediate type and k := k(S). Then
there exists a choice of a generator of 71(S) ~ Z such that S admits a closed logarithmic
1-form twisted by the flat line bundle LX.

PROOF By [16] there exists a surfacg with a GSS such that the dual graph of the
maximal reduced divisab’ of S’ coincides with that o. By [5] and [9, Thm. 1.2.24], we
may choose the generator of(S’) ~ w1(D’) such thatr"(§’, 21(log D’) ® L*) # 0. We
further fix the generator of1(S) ~ 71(D) ~ Z >~ 71(S’) >~ 71(D’) to be the same as above.
We may now suppose thaws, £21(log D)®LY/*) = 0, otherwise we change the generator of
71(S). We shall identify sections of sheaves®twisted byL* with sections of the pullback-
sheaves on the universal cov@mnf S which respect the representatipn: 71(S) — C*
definingL*. We start with the exact sequence
(4) 0— dO(L¥) — dO(log D) ® L' — P Og ®LF =0,

i=1
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whereC; are the normalisations of the curv&s c S and with a certain element
n 0 0
ae F(S, Pog Lk> = F(S, oy 05’)
i=1 i=—00

to be defined below. Seen as an element in

o]

F(S, ) 0@) ~ P s, 0,

i=—00 I=—00

a becomes a vector i68Z with the property; ., = ka; foralli € Z.
Choose a non-trivial element

o e, 2%ogD)® L")

/
a,ﬁ:/a),
Vi

wherey; is a small path around; C D’. We denote again by’ the pull-back ofw’ to the
universal coveS’ of §’. The Camacho-Sad formula for the foliation definedyives

G- x

a
i#] J
CiNCj#0

and put

see [7]. Moreover we have seen in [7] thdtmay be chosen such thate Z[1/k]%. For such
a choice let furthe/; be small neighborhoods of the curv€s on S and consider divisors
D; in these neighborhoods of the form

D;:= k”(ajCj + Z a,'C,') ,
i#]
C;NCj#0

for somev e N which is sufficiently large. Sinc®;.C; = 0, D; is the zero divisor of some
holomorphic functionf; € O(U;). Put then
afi

7
One may choose the functioifs € O(U;) such that

e I'(Uj,dO(log D)).

e 7V
wj =k

*
9 Wjin = ko,

holds for allj € Z; hereg € m1(S) denotes the “positive” generator of(S). There exist

local coordinate functions;, z; which define the curve§;, C; such that around; N C; we
have

dz; dz;

wj=aj— +a;i—

9

Zj Zi
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and around points of ; away from any other compact curve

w; =daj di .
Zj

We look now at the situation obi; N U;. Herew; — w; is a closed holomorphic 1-form
and thus exact if/; NU; is simply connected, which we shall always suppose. Indegd w;

has the form

aj dﬂ + a; 49;
gj 9i
with g;, gj € O*(U; NUj). LetU be the covering of which consists of the open sdts

and of S\ D. We setw = 0on§ \ D. Then we get a cocyclen; — w;);; € H*U, dO(LF))
which represents the imageothrough the canonical connecting homomorphism associated
to the sequence (4). We follow this image further through the isomorphism

HYdo(Lb)) = H*(C(LY)),
which comes from the short exact sequence
0— C(LY - O(L% — dO(L*) — 0.

In order to do this, we pass to a finer coverig= (V,), which has the property that the sets
Vi =V, NV, are simply connected. Let be the refinement map and sgt := w,,,)|v,

for v, C U, (). Sincew, — w, is exact onV,,,, we may choose primitiveg, .. This is done
such that

’

Sou=0 if y(u)y=y() and
fv,u = fy(v)y(p.) if y(n) #yQ©) and yw), y(v) e Z.
The cocycle
((f,uv - f)\u + f)»p.)|V~AW)A,uv

is the desired element iH2(V, C(L*)). But we remark now that the trace of this cocycle on
D is zero and thus its image 2(D NV, C(L¥)) by the restriction morphism will be zero as
well. One sees this by checking the different possibilities.fqr, v, such thaﬁ/mmf) + 0

(i) wheny () = y(u) = y(v), all primitives are zero,

(i) wheny ) = y(n) # y(v), one gets agaitfy, — fov + fiulv,,, =0.
Notice that at least two elements amaongh), y (1), ¥ (v) must be equal. Now Lemma 2.5
shows that the class of our cocyclefiff(S, C(L¥)) vanishes. Hence there exists a non-trivial
elementw in I"(S, dO(log D) ® L*) which maps onter € I'(S, @}_; O¢, ® LY). O

COROLLARY 2.7. The only singularities of the foliation associated to w €
'S, 21(log D) ® L¥) are simple and are located at the intersection points of the ratio-
nal curves of S. The rational curves are invariant with respect to this foliation and their
Camacho-Sad indices are rational numbers.

PROOFE Let F denote the foliation associated 40 Lemma 2.3 implies that every
rational curve ofS is invariant forF. This shows already that tlte intersection points of the
rational curves are singularities of the foliation. On the other sidedenotes the complex
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subspace of the singularities 8% we can compute its length out of the following short exact
sequence induced hy

0> O0-D)e LY > @' 5 1¥® 7, ® Ks(D) — 0.

We geth, = c2(221) = length(Z) — D.Ks — D2. But it is easy to check using the adjunction
formula that in our cas®.Ks + D? = 0, soF has exactlyb, singularities counted with
multiplicities. Thus the intersection points dfet rational curves are the only singularities of
the foliation and they are simple.

Next we prove the rationality of the Camacho-Sad indices of the curves with resgect to
If wis obtained as in the main part of the proof of Theorem 2.6, then the associated Camacho-
Sad indices are;/aj, i.e., the same as those associated’ton §’, and thus rational. But
if w e I'(S, 21(log D) ® LY*), where the orientation ony(S) andx1(S’) is chosen to be
the same, we have to reconsider the Camacho-Sad equations of the compprdrids Let
C1, C2 be two such components which intersecpatind(z1, z2) local coordinate functions
aroundp such thatC; = {z; = 0} fori = 1, 2. We may writew aroundp as

whereg 1, g, are holomorphic functions igy, z».
Consider now small pathg; turning aroundC;, contained say in the local curve
{z3—i = c3—;}, for two constantg1, ¢ € C. Sincew is closed, the integrals

/ w = 2niRe§1:0(a)|Z2=Cz) = 2711'91(0, c2),
Y1

/ o = 2niRes,—o(w|;;=¢;) = 2migy(cy, 0)
2

are independent @f;, c2. Moreover, since has true poles of order one alo6gandCa, both
integrals are non-zero; in particular; (0, 0) # 0 # ¢,(0,0) and p is a simple singularity
for 7. Now the foliationF is defined locally aroung by the kernel of the form2g,dz1 +
219 0dz2 and the Camacho-Sad indexBfwith respect taC> is by definition

9 Zzgl) ) < 91(z1,0) )
CS(F. C2.p) :=Res—o 57— = 77 ) |co ) =Resy—o| — 7~ =0
S C2.p) = 0(8z2< 2192) | =0\ T 0,61 0)

=_91(0,0)=_/ w// »
92(0’0) ) Vi

and similarly forC;1. As a consequence, all Camacho-Sad indiceB afong the curves of
are non-zero.

Now recall that the maximal divisob of § consists of a cyclg ;" ; C; of rational
curves, to which a non zero number of trees of rational curves is attached. It is easy to see
that the Camacho-Sad indices associated to tinees of the trees are all rational. Indeed, if
Bi1,..., Bin isthe tree with rooC;, and if—ij =:b; ;, we get:

C&j:, Bi,m; s Bi,m; N Bi,m,‘fl) = _bi,m;
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for the top,
CS(F, Bim;—1, Bim; N Bim;—1) = — ! ;
bim;
CS(F, Bim; -1, Bi,mj—1 N Bim;—2) = —bj m;—1 + Do
and so on. Setting as in [7h; := —CS(F,C;, C; N Bi1), di := —C? — b; anda; =

—CS(F,C;,Ci—1NCy), i =1,...,m,we get the equations

o + =d;, for 1<i<m-1

Qi1
and

m + — =dp .
ay

Eache; is the solution of a quadratic equation witlitional coefficients, and since we know
already that a rational solution exists by working withon §’, the other solution has to be
rational as well. O

COROLLARY 2.8. A special surface of intermediate type of index 1 possesses a non-
trivial holomorphic vector field 6 twisted by some flat line bundle and its vanishing divisor
Dy contains all the curves of D except perhaps certain summits of the trees. In particular, 6
vanishes on all the curves of the cycle of D and 6 has no isolated zeroes.

PROOFE Let S be a special surface of intermediate type, andek be the (unique)
numerical anticanonical divisor afti This means that there exists a torsion fagtos C*
such that
O(D_g) =K' @ L~
Letnow 0# w e I'(S, 2Y(log D) ® L¥) and Z the subspace of the intersection points of
the curves ofS. By Corollary 2.7 this is exactly the space of singularities of the associated
foliation tow. Thusw induces an exact sequence

0 O0-D)LY* > @' 5 L*® 7, O(D - D_g) — 0,
and by duality we get a non-trivial section
6 eI(S, 05 LK)

vanishing precisely oDy := D_g — D. We know by Lemma 2.1 thaDy > 0. Let now
C1 ¢ supfDy) such thatCy intersects an irreducible curv& C Dy. Sincef defines
the same foliation a& the curveC; is 6-invariant. On the other hand, sin€a N C is a
singularity of this foliation and vanishes orCy, the vanishing order of the restriction éf

to C; is at least two. But then sinag; is rational, this order is exactly two an@y cannot
intersect another curve d@. ThusC1 is the summit of a tree of rational curves. This implies
our statement. O

3. Theuniversal covering of the complement of thecurves. From now on we shall
consider a special surface of intermediate type which admits a numerical anticanonical
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divisor. We have seen that in this ca$gossesses a non-trivial twisted logarithmic 1-form
o with twisting factork = k(S) and a non-trivial twisted holomorphic vector fieddwith
twisting factor, say. € C*. The case. = 1, i.e.,f is a holomorphic vector field of, was
considered and completely understood in [6] and [7]. In this section we prove that in the
general case, as in the case= 1, the universal covering of \ D is isomorphic toH x C,
whereH denotes the complex half-plane.

Let U be a small open neighborhood bfsuch thatD is a deformation retract df. We
have

m1(U) =m71(D) =71(S) =Z,

and we denote as before lgya generator of this group. There is a fundamental dorbviain
for the action ofZ in the inverse imagé of U in the universal cove$ of S, such that the
border ofUg in U cutsD in a componenE€o and in its translated (Co) along a circles®. Set
Yo := U,~09"(Uo). We keep the notatios for the logarithmic 1-form one gets ah

LEMMA 3.1. Thereisanormalization of w such that the representation

p:m(S\ D) — C,

yi—)/w,
14

has as image 27iZ[1/k] c C. Furthermore, one can choose this normalization such that
p(m1(Yo\ D)) = 2miZ.

which maps

PROOF  SinceS is simply connected, the groug (S \ D) is generated by small paths
around the irreducible componentsf Thus keeping the notations of the previous section,
we see thap (w1(S \ D)) is aZ[1/k]-module generated by

2m'a0=/ w,... ,Zm'a,,_lzf w,
Yo Yn—-1

whereyy, ... , y,—1 are small paths around the cun@s ... , C,—_1 in Up. Using Corollary

2.7 and the way we computed the Camacho-Sad indices, we see that we can normalize the
form w such that the numbers, ... , a,—1 are non-zero integers with g.c.d. equal to 1; so
p(m1(S\ D)) is free of rank 1 aZ[1/k]-module. In a similar way, the groyp(1 (Yo \ D)) is
generated as&module by small paths around the irreducibles componeniswhich meet

Up, and we get the announced result. O

In what follows, we suppose to be normalized such thai(71(Yo \ D)) = 27iZ. This
is the same as to say tha, . .. , a,—1 are non-zero integers with g.c.d. equal to 1. Adte
a fundamental domain for the action®bn S andXg := szogj(A). Translating byy, we

may suppose thdd N Xg C Yo. We remark that after such a translation we have

p(m1((YoU Xo) \ D)) = p(1(Yo \ D)) = 2miZ.
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Fix zo € Ug. We define a holomorphic functiofion (Yo U Xo) \ D by

z 1 9(zo0)
f(z)=eXp</ o+ — a))
. k—=1J,

.0
One verifies easily thaf is well-defined and that

h fg@) = f*@)

forz € (YoU Xo) \ D.

Let C be the smooth part ib of an irreducible component @ NYy. Sincew is a closed
logarithmic 1-form, an easy computation shows that one can extemeromorphically across
C such thatC belongs to the zero or to the polar set of the extensiofi.oBy replacingw
with —w if necessary, one finds at least one preimage @i a component of the cycle of
D in the zero-set off. This means that the connected components of the polar sebod
exeptional divisors ifp. Thus the polar set is empty, see [17], afganishes oD N Yo. In
particular, we see that the integess . . . , a,—1 are positive.

LEMMA 3.2. |f(z)| < 1foranyz € Yo U Xo.

PROOF Remark first that one can extend the functigh to the whole ofS. The
extended function is still denoted by|. Then the statement of the Lemma can be rephrased
by saying that the image ¢f| is the intervallO, 1[. Suppose now that this is not so. Then
| | has as imag¢0, oo, since|f| o ¢ = |f|¥. We consider the real hypersurfaée :=
| £171(1), which is71(S)-invariant and thus descends to a compact real hypersutfames.
Obviously,H is a (compact) leaf of the foliation defined iy . Remark that the morphism
m1(H) — m1(S) is non-trivial. Otherwise the connected componentéuf/ould be compact
and their intersection withf ~1(1) would give compact analyticurves in the complement of
D, which is absurd. By passing to a finite unramified covering ofve may even suppose
thatm1(H) — m1(S) is surjective.

Next we prove thai» must have non-vanishing periods @h If not, consider ar(S)-
invariant neighborhood of A which is the preimage of a neighborhotdbf H in S and on
which w has no periods; thus|; is exact. We define the following holomorphic function on

V.
z 1 9(zo0)
h(z) :=/ w4+ — w,
20 k—1 20

wherezg € V is a fixed base point, € V and integration is done along paths¥in We have
h(g(z)) = kh(z) for all z € V. The functions does not take the value 0, because the set
{h = 0} would then be ar1(S)-invariant analytic curve giving rise to a compact curve in the
complement oD in S, which is absurd. Hence one may consider the 1-fé¢tog |/|), which

is closed and descends to a closed non-twisted forrif oithis form obviously defines the
same foliation asie w. But this means that this foliation has trivial holonomy. This implies
that the leaves nedf are also compact. In particular, they are contained inThe inverse
images of these leaves are leaves of the foliation defingd ogn S. On the other hand, they
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are completely contained ivi and intersect all the sets’(S \ Xo), v € Z. But the relation
f(g(2)) = f*(z) and the choice o’ imply that

(N 1£1(g"(V\ X0) = {1},
veZ
giving a contradiction. Thus|; has non-vanishing periods.
The next point is to show that may be extended holomorphically to

Ur =171, 00D).

In order to do this we consider the sets
Uy := | f17*(la, 00l)
fora > 1and
M := {a > 1| f admits a holomorphic extension &g,} .

ThenM is non-empty, sincé/, C Xo for @ > maxcyx,| f(z)|. Furthermore, the s/ is
closed in]1, oo, sincel,, = Ua>a0 U, for eachag. It remains to check tha¥ is open as
well. Leta € M. There exists some € N such thatl/, ¢ ¢~"(Xp). Ong~"(Xp) one can
extendf*" holomorphically. Take now a finite open coverikig . . . , V, of (dUy) \ Xo such
that eachV; intersectd/, and that orV/; ak’-th root of f*" is defined. Consider next on each
V; thatk-th root of £¥" which coincides withf on V; N U,. This gives an extension ¢f to

0
Uy UXoU U V.
i=1
Remark that this set will contain sonig with § < .
We finish the proof of the Lemma by considering a patlt U; such thatfy w # 0,
which is possible, since has non-vanishing periods @h. But for v sufficiently large

/ w = kiU/ w,
g~ Voy Y

cannot be a multiple ofs2i, which is incompatible with the definition of on the whole of
Ui. O

PROPOSITION 3.3.  The holomorphic vector field & € I"(S, ©5) induced by 6 is com
pletely integrableon S.

PROOF  We consider the integrability & along a leafF of the foliation. It suffices to
show that one can find a local integration radius which is uniform foFall

We setAg := XoU Yg \ ¢(Xo U Yo). The setdq intersectsD along a curveCo and its
translated by, C,. There is a constant]0, 1] such thatF c | f|~1(c). Using the relation
| flog = | f|¥ again and Lemma 3.2, we see thatJim | f| o g* = 0 uniformly on compact
sets. Hence there existyig e N such that" N J,..,, 9"(Ao) = . On the other side there

exists av1 € N such thatF N (| ¢~"(Ag) C U. By passing to a suitable translation, we

v=v1
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may assume that; = 0. We may further assume that aroutid) 9 Ag we have coordinate
functions(zo, z1) such thatCo = {zo = 0},
dzo
w=dap—
20
with ag € N* and

- 0
0 = a(z0, 21)2)—
(zo, z1) 0321

with s € N* anda a nowhere vanishing holomorphic function. Here we hag®), z1) = ng.

Thus
(z0.21) € F N a( U g“(A0)>

v>0
implies that|zo/® = c¢. But since F N {J,-09"(Ao) is contained in the compact set
U:"ZO ¢"(Ao), the integration radius @f at points of

FnlJg" A0

v>0

is at least as large as the integration radiué af

v
Fn a(U g”(Ao)> =Fn a(U g”(Ao)> ,

v=0 v>0

and this is the minimal integration radius@fzo, z1)zgd/9z1 at points(zo, z1) with |zo|*® =

c. Looking now a® on
Fn 8( U g”(Aa))

v>—r
for r € N, we see, by applying’, that the integration radius at these points will be at
least as large as the minimal integration radius\af(zo, z1)zgd/dz1 at points(zo, z1) €
Fn 3(Uvzo g"(Ao)) with |z0|% = ¢*". But the sequence of velocities

A"t/ suplal

is obviously bounded and thus there is an uniform integration radiusdarF . O
The kernel kep defines a covering

7:X — S\D.
One checks immediately that tHeaction induced by onz1(S\ D) stabilizes kep and thus
induces &-action onX’. We denote again by a lift of ¢ on X’. Thus we get an action of the
semi-direct producZ x Z[1/k] on X’ whose quotientis\ D. Lete’ = n*wandg : X' — C
be a primitive ofw’ on X’ such that ex@) and f o = coincide on a connected component
of the r-preimage of(Yo U Xo) \ D. Since¢ o ¢ = k¢, the image ofp is invariant under
the action of the multiplicative grougg”|v € Z}; this image is also invariant under the action

of the additive group2iZ[1/k]. Sincef takes its values in the unit disk by Lemma 3.2, we
see now tha (X’) must coincide with the left half pland; := {w € C|Rew < 0}. The



300 G. DLOUSSKY, K. OELJEKLAUS AND M. TOMA

functiong : X’ — H; is a surjective holomorphic submersion siiceas no zeroes ofi\ D.

The connected components of its fibers asvés of the inverse image foliation induced by

F. For the proof of the next Proposition the reader is referred to [7, Prop. 2.2]. Note that the
Camacho-Sad indices of our foliation here, are positive integers, just as in [7].

ProrPosITION 3.4. Thefibersof ¢ are connected.
COROLLLARY 3.5. Thefoliation defined by 6 on § \ D hasno closed |eaf.

PrROOF If F were a closed leaf ofi \ D, its preimager ~1(F) in X’ would also be
closed. But since |, (r) is trivial, the groupZ[1/ k] operates oX’ by permuting components
of 7 ~1(F). Using the previous Proposition, the non-discreteness of th&[2/ k]-orbits in
H; and the fact thap is a submersion, we get a contradiction. O

LEMMA 3.6. Thefibersof ¢ areisomorphicto C.

PROOF.  Sinced is completely integrable, there is a holomorpBi@ction onS \ D.
The fixed point set of a non-trivial element 6fis a closed analytic subset 8f\ D which
is a union of leaves of the foliation. By the previous Corollary, such a fixed point set cannot
have dimension 1. Hence it is either empty or the whole spac®. We must exclude the
second case. In this situation tBeaction factorizes to &£*-action. Thus all fibers of are
isomorphic toC*. Moreover theC*-action lifts to X’ making¢ : X’ — H; into a principal
C*-bundle. But such a bundle ovEl; is always trivial. We may therefore seeas the first
factor projection

X' ~H; xC* = Hj.

If (w, z) denote coordinate functions ¢iy x C*, then the pull-back of the vector field has
the forma (w)zd/dz for somex € O*(H;). We now consider generatofs, f, of the groups
Z andZ[1/k] acting onH; x C*.

By passing to a double covering §f we may assume thgf, acts on theC*-fibers by
homotheties. Suppose that the same holdgforThen we have

fow, 2) = (kw, B(w)z),
f]/(wa Z) - (w + 27117 V(w)z)
for someg, y € O*(H;). The compatibility with the pulled-back vector field implies that
atkw) = a(w), o(w+27i) =a(w)

for all w € H;. The second relation implies thatis the composition of a functiom on the
punctured unit disc with the exponential. Then the first relation translates into

u(@® =) forall ¢ e A*;

(by A we denoted the unit disk iB). By comparing the Laurent expansion of this equality at
0, one sees thatis constant and = 1. Hence we obtain an effecti¥&*-action onS, which
is excluded by [10].
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When f, is composed with an inversion a similar argument applies, working whth
instead ofx for instance. Thus th€-action is effective and the fibers ¢fare isomorphic to
C. O

Using now the lift of theC-action onX’, we get aC-principal bundle structure oX’
overH;. Again, such a bundle is holomorphically trivial. In conclusion we have proven the
following

THEOREM 3.7. Theuniversal coveringof S\ D isisomorphictoH; x C.

4. The action of the fundamental group. We consider a system of holomorphic
coordinategw, z) in H; x C >~ S/ﬁ. The integrable vector field induced heredbhas no
zeros and is therefore constant on each fiber of the projectibin ®fC onH;. Consequently,
this vector field is of the fornx(w)d/9z onH; x C, wherea € O*(H;). Conjugating by the

automorphism

1

(w,Z) = (wsai 'Z)s

one getsx = 1.
Lety e m1(S\ D) be a closed path i \ D with p(y) = 2ri. Denoting byg,, the
automorphism oH; x C ~ ETB corresponding tgr, we have:

gy (w,2) = (w+2ri,z+ fy(w)),
g(w,z) = (kw, Az + fg(w)).
The case. = 1 was treated in [7]. From now on we shall therefore assumeithat
C\ {0, 1}.
The automorphismg,, generates an action @onH; x C, which induces a holomorphic
C-principal bundle

H; x C/Z — H;/Z ~ A*.
The triviality of this bundle proves the existence of a holomorphic fundtiofd; — C such
that
h(w + 2mi) — h(w) = f, (w),
and conjugation byw, z) — (w, z + h(w)) gives us the new form

g, (w,2) = (w+2mi, z).

In what follows we suppose therefore thgt= 0. We have

1 k
9y -

gog,og
which gives a group isomorphism

1
(9,,9) :ZKZ[%} ~mi(S\ D)

on the one hand, and ther 2periodicity of the functionf,;, on the other hand.
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Factorizing by exp H; — A*, w — e¥ =: ¢, gives a Laurent series expansion
fow) =Y " ane™ =Y ant™.
meZ meZ
A conjugation by
(w,2) = (w,z+ p(w)),
whereg is a 2ri-periodic function orH;, does not change the form gf,, but replaceg, by

w > fg(w) + Blkw) — AB(w) .
Let
h(@) =) ang™, hy(@) =) am™.
meZ m>0
The series X, A=V, (z4') converges uniformly on compact setsdn. To see this,

it is enough to writeh . (¢) = ¢(¢~th(¢)) and to remark thag ~14, (¢) is holomorphic in
0. Let

x(@) =Y G h
1=0
Then we have
(@) = x (&) =hy ().
If we setB(w) := x(e¥) + ag/(A — 1), then we get

fgw) + Blkw) = 1B(w) = D ape™” .

m<0

We can therefore suppose thgt(w) = h(e”), whereh € O(P1(C) \ {0}) andi(oo) = 0.
One still has the possibility to conjugate with, z) — (w, z + x(e")), wherey €
O(P1(O) \ {O}).
For a function
h(@) =Y ant"

m<0
and! € N*, we consider

h@) = Y ant"

kl\m, m<0
and
ho := h.
Eachh; is of the formh;(¢) = fl(g"'), for a certain functionf;. Let x be the formal series
=Y ;21 M 71 f;. Formally one has:

R(Z) + x (&%) = ax (@) = Q) — fER) + 1(f1(0) = £2E5)) + 22(f2(0) — faCF) + -+
=Y M) — frra@)

>0
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and each term contains in its Laurent series expansigromly termsb,,¢™ with k 4 m. For
O<R<1 I>1and|> Ronehas:

m l_ 1_
A1 <D lan|RE <Y lam R™ 7 < RETEY " a,, R

klm Km m=<0
m<0 m<0

which shows that the series definipgs uniformly convergent on compact setsf(C) \ {0}.
One gets the following normal form far.

h(@) = ang™.

m<0
ktm
Remark that ifz is of this form, any modification of(¢) by conjugation gives
h(@) + x (&5 = x(©),

which is in normal form if and only if the function — x(¢%) — Ax(¢) is identically zero.
To see it, write the power series expansions of these functions:

X = bat"™, —xEH+rx@) =Y ™.

m<0 m<0
If there existed @, # Oforr € Z_, thenk 1 r, Ab, = ¢y, Abgy = Cir + by = 21, A3bk2r =
A2ci2, + A%bgr = cr, ..., and the seried,, o b ¢™ would not converge o1 (C) \ {0},

which one verifies by putting = |A| or ¢ = 1. Hence we get a contradiction.
We are now in the following normalized situation:

PROPOSITION 4.1. The action of the fundamental group 1(S \ D) >~ Z x Z[1/k] on
the universal cover H; x Cof S\ D is generated by the two automor phisms:
9, (w, 2) = (w+ 2ri, 2),
g(w, z) = (kw, Az + fg(w))
with £ (w) = h o explw) = H o exp(—w), where
H@) =) Ant™. Ap=a_pn.

m>0

ktm

The elementg; , :=g™" o gg, og"forn eN, [ € Z formasubgroug” of 71(S \ D)
isomorphic taZ[1/k]. Explicitly, we have

n—1
T ) = (“’ +2milk ™ 2+ Y AT T Sy (K w) = fy Kw + 2m'1kf'")>)
j=0

with f; (w) = H o exp(—w), whereH is of the form
H(é‘) = Z Amgm .

m>0
ktm
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We know thatl™ acts properly discontinuously. Therefateis non-trivial. One verifies easily

thatifn >m, g, ,09,m = 9 ptrgkn—mn-
Fori =1, let

Gu ()= HCY) — HCY exp(—2rik/™), 0<j<n,
F@) =Y 277G, @),

O<j<n

With these and putting = exp(—w), we have

n—1 n—1

D AT SR w) = fo (w4 2mik/ ™) =Y AT TG, () = Fa(@),

j=0 j=0
and

2mi
gl,n(ws Z) = <w + Fv Z + Fl’l(;)) .

The rest of this section is devoted to the proof of the following
THEOREM 4.2. Thefunction H isa non-constant polynomial.

This theorem generalizes the similar statement of [7], whose proof we owe to Alexander
Borichev. In what follows we use the notation:

rT (resp. rD) denote the circle (resp. the open disc) of radius 0 andK the com-
pact setiz € C | 3 < |z| < 3¥}. The different circles'T are equipped with the normal-
ized Lebesgue measutien (), for which [ . dm(¢) = 1. If f is holomorphic on B, then
wind( /) denotes the number of zeros pin 3D.

The proofs of the following lemmas are left to the reader; see however [7] for the case
A=1.

LEMMA 4.3. Let f be a holomorphic function on the closed unit disc 3¥D such that
for all z € K | f(z)| > 1. Then one hastherelations

/In|f(¢>cfw‘”d<f>|dm<;)=/ In|£()¢ "D dm(¢),
3T 3F*T

/ |n|f(€)|dm(C)=f In[f()ldm (&) — (k — 1) wind(f) In3.

3T 3T

LEMMA 4.4. Forall a,b € C, suchthat |a| > 2and || < 1, one has
Inla + b| > In(la]) — |b] .

LEMMA 4.5. Let f beaholomorphic function defined in a neighborhood of the closed
disc 3D. If we set

A= /ﬂanr [f(1dm(),
then thereisa constant C > 0, independent of f, for which

In/ |f () dm(f) < CA.
2T
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(HereIn™ := max(In, 0).)

LEMMA 4.6. Letf =3} f(s)z* be a holomorphic function in a neighborhood of
the disc 2D. Then, for all s € N,

1f ()l = ‘f F@¢5dm()
2T

< z—S/ @) dm@).
2T

LEMMA 4.7. For all n > 0we have

AFu41(¢) = Gnp1,0(0) + Fu(25).

LEMMA 4.8. Foreveryv > 1,
Fook™™h =27"A,(1 — exp(—2riv/k)) .

In particular,

— A
|Fp (vk" Y| > Mr"'k—”'.

PROOF OFTHEOREM 4.2. Since" acts properly discontinuously, the imaggs, (K)
of the compact tend to infinity. Since the first component ¢f , (w, z) converges, this

implies that the sequencgF;,|) converges uniformly oK to +oo.
SinceH isC! on K, there is a constant> 0 independent of for which

Bn = SUP|Gn0(¢)| = SUP|H () — H({ exp(—2mik™))| < ck™ .
tek tek

Fix a positive integeN such that

(%) forall ce K, n>N, |F,¢)|>2
and
(+5) Y =1

n>N

SetW := wind(Fy) andF (¢) := Fy(¢¥). Using(x), we get windF) = kW. We recall
that A Fn1+1(¢) = F(¢) + Gn+1,0(¢). Combine now Rouché’s Theorem appliedRcand
G y+1.0 With the inequalitiegx) and (xx) to obtain windFy+1) = kW. By induction, one
shows that fop € N,

wind(Fy4,) = k"W

The Lemmas 4.3 and 4.7 imply that

/'anN(i)Idm(§)=/ IN|Fn (@) dm() — (k—1WIn3
3T 3T
2/ In|Fy (5 dm@) — (k—1)Win3
3T

= /3T IN[AFN+1(8) — Gny1,0(6)dm(E) — (k —DHWin3.
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Applying Lemma 4.4 and the inequalitiés) and(x*), one gets

/3T|n [Fn(O)ldm(g) = /3T(|n | AFN11(0)] = | Gyyr0(6)Ndm () — (k—1)Win3

z/STIn MFy11(0)|dm(@) — Bys1 — (k— DWIn3,
and furthermore
/3T I A Fys1(0)] dm (@) < /3T IN|Ey (O] dm(@) + Byss+ (k — HWn3.

Induction gives the inequalities

[ niEve,@1dne) < [ i a3
3T 3T

N<s<N+p
(th +*k—=DWIn3 Y~ k' — pinji|
O<s<p
<C+ WkPIn3— pln|A|,
for a certain constar@ > 0 independent op € N. Lemma 4.5 and the inequaliti¢s) and
(t1) give the existence of a constafit > 0 independent op such that

|n/2 | Fn1p(5) | dm(g) < C1+ Cak? .

-

If H isnot a polynomial, one can find an integerverifying
v>Ckt™/In2, and A, #0.

But now, on the one hand Lemma 4.6 gives
In[Fy 4, k"7~ h) < In / |Fxnyp (@) dm(z) — vkN P~ In2
2T

< C1+ C1k? —vkV*P=1n2
=C1— (k" "tIn2 — Cy)kP.
On the other hand, by Lemma 4.8,

— A
Py kNP1 > IAI’N”’|k—”| -0,

and therefore Ith/NJr\p(ka“"l)l > C2 — C3p for some constant§, andC3 independent
of p. This is a contradiction. O

5. The contracting germ. We have seen that the action of the grougS \ D) on
H; x Cis generated by the two automorphisms
g(w,z) =(kw,rz+ H(e™)),

whereH (¢) = Y5 _1 An¢™ is a polynomial in normal form, i.e4,, = 0 for allm > 0 with
klm andAy # 0.
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Let! := [s/k] + 1. We will conjugate our group by
-1

p(w,2) = <w, 217ty Ame—’"W> :

This has no effect op,,, but "
pogog tw.2) = (kw Az + Q™).
whereQ(¢) = H(¢) — Y04 Apc™ + 27101 A,,¢F is a polynomial of degree with
gm0 .

Iterating this procedure if necessary, we end up with a polynomiaf degrees such that
cNO@). LetQ(¢) := X0 _ by¢™ andd := g.c.d.{k, m | by, # O}.
We conjugate now witlp (w, z) = (dw, z2):
$pog, 00 (w,2) = (w+2rid,2),
$pogodt(w, 2) = (kw, Az + Qe /).
One verifies directly that the group generated is the same as the Gf@gnerated by
(w,z2) = (w+ 2mi, 2),
(w,2) > (kw, hz + Q™).
Let now
I':=[s/kd]+1
and )
Q)= but"".

m=l
Using the inequality/[x/d] < [x] + 1,d € N*,x € R and the fact that the indices of the
non-vanishing coefficients of’ are divisible byd, one verifies easily that’ |Q’(¢). We
conjugate now withw, z) — (w, ¢"z) and the generators af’ become

(w,2) = (w+ 2mi, z),
(w,2) = (kw, ae" ED0z 4 Pe")),
whereP is the polynomial defined by
PE) =¢£"0'¢™Y.

Remark that def < I'(k — 1) and thatP(0) = 0. Let

I'(k—1)

PE) = > cmé"

m=1

We have gc.d.{k, m | ¢,y # 0} = 1. This relation implies that the contracting germ
f:A"xC— A*x C,
f& ) =& 2" V4 PE)
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is locally injective around0, 0): If f(£1,z1) = f (%o, 20), then&l = &f and)ug(l)/(kfl)zoJr

P(&0) = 2L © 2y + P(&1). Pute := £1/&. One has* = 1 and

U'(k—1)
a=2é [zo A R S - U gm)} :

m=1
If ¢ = 1, one hagy = zo. Otherwise, takeno the smallest index such that,, # 0 and
g™o £ 1. The existence of such an index is ensured by the relation

g.cd.fk,m|cm #0 =1.

We write now
) I'(k—1)
a=¢ [Zo +27 2y ("‘”+’"°(cmo(1 —e") Y gy (- e'"))}

m=mg+1
and we see that farg andép sufficiently small,z1 stays away from 0. The local injectivity
follows now directly.
By Proposition 1.2.8 of [9], we see thgtis a defining germ for a minimal GSS surface

S’ whose maximal divisor we denote liy. One can verify that the quotient &f; x C by
the action ofG’ is the same as the one df* x C by the equivalence relatiom ~ u» :
there existi1, np € N such thatf°"1(u1) = f°"2(u2). It follows by construction thaf \ D
and S’ \ D’ are isomorphic. Since the intersection matricesboénd of D’ are negative-
definite and neitheb nor D’ contain exceptional curves of the first kind, this isomorphism is
extendable to an isomorphism &fonto S’. This completes the proof of the Main Theorem.

O
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