RIGID BRAID ORBITS RELATED TO $PSL_2(P^2)$ AND SOME SIMPLE GROUPS

TAKEHITO SHIINA

(Received May 23, 2001)

Abstract. We apply the braid orbit theorem to projective semilinear groups over the finite fields with p^2 elements and some almost simple groups of Lie type. The projective special linear groups $PSL_2(p^2)$ with $p \equiv \pm 3 \pmod{8}$, the Tits simple group, and some small simple groups occur regularly as Galois groups over the rationals.

Introduction. Let G be a finite group with trivial center and $C = (C_1, ..., C_s)$ a rational class vector of G. We denote by $\Sigma(C)$ the set of generating s-systems in C:

$$\Sigma(\mathbf{C}) := \{ \boldsymbol{\sigma} = (\sigma_1, \dots, \sigma_s) \mid \sigma_i \in C_i, \ \sigma_1 \cdots \sigma_s = 1, \ \langle \sigma_1, \dots, \sigma_s \rangle = G \}.$$

The inner automorphism group $\operatorname{Inn}(G) \cong G$ naturally acts on $\Sigma(\mathbf{C})$ and the *pure Hurwitz braid group H_s* acts on the orbit space $\Sigma(\mathbf{C})/\operatorname{Inn}(G)$. An H_s -orbit in $\Sigma(\mathbf{C})/\operatorname{Inn}(G)$ is called a *braid orbit*. In his *rigid braid orbit theorem* [7] Matzat determined certain conditions on a braid orbit for the existence of a regular extension N over the rational function field $\mathbf{Q}(T)$ with Galois group G and with ramification structure \mathbf{C} .

Przywara [9] applied this theorem to the almost simple group $P\Sigma L_2(25)$ with class vector $\mathbf{C} = (2A, 2C, 2D, 12A)$ and proved that the projective linear group $PSL_2(25)$ occurs regularly as Galois group over \mathbf{Q} .

In this paper we take another class vector $\mathbf{C} = (2C, 2D, pA, pB)$ of $P\Sigma L_2(p^2)$ for any prime number $p \equiv \pm 3 \pmod{8}$ and obtain the following theorem.

THEOREM 0.1. The projective linear group $PSL_2(p^2)$ occurs regularly as Galois group over Q for any prime number $p \equiv \pm 3 \pmod{8}$.

Concerning Galois realizations of such simple groups, Feit [4] and Mestre [8] showed in different ways that $PSL_2(p^2)$ occurs regularly as Galois group over Q for $p \equiv \pm 2$ (mod 5). Furthermore, there are several works in the theory of modular forms. First, Ribet [11] proved that $PSL_2(p^2)$ occurs as Galois group over Q for any prime p if 144169 is a nonsquare modulo p. Reverter and Vila [10] extended this result for primes p such that one of the integers 18209, 51349, 144169, 2356201, 18295489, 63737521 is a nonsquare modulo p. Moreover, Dieulefait and Vila [2] obtained similar result in the case which a prime less than 20 is a nonsquare modulo p. Hilbert's irreducibility theorem assures that if a group G occurs regularly as Galois group over Q, then there exist infinitely many linearly disjoint Galois

extensions over Q with Galois group G. So our theorem is a generalization of the case which 2 is a nonsquare modulo p in their result.

In another direction we explicitly compute some braid orbits of small almost simple groups of Lie type. Using the computer algebra system GAP [13], we find suitable braid orbits for the Tits simple group ${}^{2}F_{4}(2)'$, the smallest Steinberg triality group ${}^{3}D_{4}(2)$, and some small almost simple groups.

Theorem 0.2. The following simple groups of Lie type occur regularly as Galois groups over Q:

$$S_4(4)$$
, $U_4(3)$, $L_5(2)$, $U_5(2)$, ${}^2F_4(2)'$, $L_3(9)$, ${}^3D_4(2)$, $G_2(4)$, $S_6(3)$, $U_6(2)$.

1. Rigid braid orbit theorem. The *full Hurwitz braid group* \tilde{H}_s is generated by elements $\beta_1, \ldots, \beta_{s-1}$ with the following relations:

$$\beta_i \beta_j = \beta_j \beta_i \quad \text{for } |i - j| > 1,$$

$$\beta_i \beta_{i+1} \beta_i = \beta_{i+1} \beta_i \beta_{i+1} \quad \text{for } 1 \le i \le s - 2,$$

$$\beta_1 \cdots \beta_{s-2} \beta_{s-1}^2 \beta_{s-2} \cdots \beta_1 = 1.$$

There exists a surjective homomorphism $q_s \colon \tilde{H}_s \ni \beta_i \longmapsto (i, i+1) \in S_s$, where S_s is the symmetric group on s letters and (i, i+1) is a transposition. We denote the kernel of q_s by H_s , which is a normal subgroup of \tilde{H}_s and has generators

(1.1)
$$\beta_{ij} := (\beta_i^2)^{\beta_{i+1}^{-1} \cdots \beta_{j-1}^{-1}} = (\beta_{j-1}^2)^{\beta_{j-2} \cdots \beta_i} \quad \text{for } 1 \le i < j \le s.$$

The group H_s is called the *pure Hurwitz braid group*.

Let G be a finite group with trivial center and $\Sigma_s(G)$ the set of all generating s-systems of G:

$$\Sigma_s(G) := \{ \boldsymbol{\sigma} = (\sigma_1, \dots, \sigma_s) \mid \sigma_1 \cdots \sigma_s = 1, \langle \sigma_1, \dots, \sigma_s \rangle = G \}.$$

The group \tilde{H}_s acts on the orbit space $\Sigma_s(G)/\mathrm{Inn}(G)$ in the following way.

$$[\sigma_1, \dots, \sigma_s]^{\beta_i} = [\sigma_1, \dots, \sigma_{i-1}, \sigma_i \sigma_{i+1} \sigma_i^{-1}, \sigma_i, \sigma_{i+2}, \dots, \sigma_s].$$

Then the subgroup H_s acts on $\Sigma(\mathbf{C})/\mathrm{Inn}(G)$, where $\mathbf{C} = (C_1, \dots, C_s)$ is a given class vector of G. The number $l(\mathbf{C}) := |\Sigma(\mathbf{C})/\mathrm{Inn}(G)|$ is called the *class number* of \mathbf{C} . We denote by $B = B(\sigma)$ the H_s -orbit of $[\sigma]$ under this action and call B a *braid orbit*.

Let H_{σ} be the stabilizer of $[\sigma] \in \Sigma(\mathbb{C})/\mathrm{Inn}(G)$ in H_s . A braid orbit $B = B(\sigma)$ is said to be rigid when for each $[\tau] \neq [\sigma]$ there exists no automorphism α of H_s with $H_{\tau} = H_{\sigma}^{\alpha}$. Let π_B be the permutation representation of H_s on a braid orbit B and c_i the number of cycles in $\pi_B(\beta_{is})$. Then we can define the *braid orbit genus* $g_s(B)$ of B by

$$g_s(B) := 1 - |B| + \frac{1}{2} \sum_{i=1}^{s-1} (|B| - c_i).$$

Additionally, we consider the following oddness condition.

 (O_s) In the permutation representation on B, one of the cycle lengths occurs an odd number of times in some β_{is} .

Let $Q_{\mathbb{C}}$ be the number field generated by the values of irreducible characters of G at C_1, \ldots, C_s over the rationals. The class vector $\mathbf{C} = (C_1, \ldots, C_s)$ is said to be *rational* if $Q_{\mathbb{C}} = Q$, or equivalently if $(C_1^m, \ldots, C_s^m) = \mathbb{C}$ for any integer m prime to |G|. Then we can describe the *rigid braid orbit theorem* as follows.

THEOREM 1.1 (Matzat [7]). Let G be a finite group with trivial center and $\mathbf{C} = (C_1, C_2, C_3, C_4)$ a class vector of G. Further assume that $\Sigma(\mathbf{C})/\mathrm{Inn}(G)$ has a rigid H₄-orbit B which has genus $g_4(B) = 0$ and satisfies the oddness condition (O₄). Then there exists a regular extension over $\mathbf{Q}_{\mathbf{C}}(T)$ with Galois group G and with ramification structure \mathbf{C} .

Although this theorem was stated for arbitrary s in [7], here we restrict it to s=4 for simplicity. See Matzat [7] or Malle and Matzat [6] for the proof of the theorem.

From (1.1) and (1.2) the action of β_{i4} on $\Sigma(\mathbf{C})/\mathrm{Inn}(G)$ can be described explicitly as follows.

$$\begin{split} & [\sigma_1, \sigma_2, \sigma_3, \sigma_4]^{\beta_{14}} = [\sigma_1^{\sigma_2 \sigma_3}, \sigma_2, \sigma_3, \sigma_4^{\sigma_2 \sigma_3}] \,, \\ & [\sigma_1, \sigma_2, \sigma_3, \sigma_4]^{\beta_{24}} = [\sigma_1, \sigma_2^{\sigma_3 \sigma_1}, \sigma_3, \sigma_4^{\sigma_1 \sigma_3}] \,, \\ & [\sigma_1, \sigma_2, \sigma_3, \sigma_4]^{\beta_{34}} = [\sigma_1, \sigma_2, \sigma_3^{\sigma_1 \sigma_2}, \sigma_4^{\sigma_1 \sigma_2}] \,. \end{split}$$

If there exists an automorphism $\alpha \in \operatorname{Aut}(H_s)$ with $H_{\tau} = H_{\sigma}^{\alpha}$, we have

$$|B(\tau)| = |H_s: H_{\tau}| = |H_s: H_{\sigma}| = |B(\sigma)|.$$

Consequently, in the case which $\Sigma(\mathbf{C})/\mathrm{Inn}(G)$ has a unique H_s -orbit B of length I, the orbit B is rigid. In particular, if I=2 (resp. I=1), the rigid orbit B has genus $g_4(B)=0$ and satisfies the oddness condition (O_4) . Hence we obtain the following corollary.

COROLLARY 1.2. Under the condition of the theorem, if $\Sigma(\mathbb{C})/\mathrm{Inn}(G)$ has a unique H_4 -orbit B of length 2 (resp. 1), there exists a regular extension over $Q_{\mathbb{C}}(T)$ with Galois group G and with ramification structure \mathbb{C} .

2. The groups $P\Sigma L_2(p^2)$. The *p*-Frobenius map $F_{p^2} \ni s \longmapsto \bar{s} := s^p \in F_{p^2}$ induces the following automorphism of the projective linear group $H := PSL_2(p^2)$.

$$\varphi \colon H \ni \rho = \begin{pmatrix} s & t \\ u & v \end{pmatrix} \longmapsto \begin{pmatrix} \bar{s} & \bar{t} \\ \bar{u} & \bar{v} \end{pmatrix} =: \bar{\rho} \in H .$$

We define the projective semilinear group $G:=\mathrm{P}\Sigma\mathrm{L}_2(p^2)$ by the semi-direct product of H with this automorphism φ . Hereafter p denotes a fixed prime number with $p\equiv\pm3\pmod{8}$. In this case, 2 is a nonsquare of F_p , so we have $F_{p^2}=F_p(\sqrt{2})$, where $\sqrt{2}$ is a root of $x^2-2\in F_p[x]$. We can easily check that $\sqrt{2}=-\sqrt{2}$ and $r:=-2+\sqrt{2}$ is a nonsquare of F_{p^2} . The conjugacy classes 2C, 2D, pA, pB in G are defined as the classes of the following

elements, respectively.

$$\varphi$$
, $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \varphi$, $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ r & 1 \end{pmatrix}$.

We take the rational class vector $\mathbf{C} = (2C, 2D, pA, pB)$.

REMARK 2.1. Here we follow from the notation of $PSL_2(25)$ in ATLAS [1]. In the character table of $PSL_2(9) \cong A_6$, however, the notation in ATLAS is somewhat different. Indeed, our classes 2C and 2D correspond to 2B and 2C in the table of $PSL_2(9)$.

LEMMA 2.1.

(i)
$$2C = \left\{ \begin{pmatrix} c_1 & c_2 \\ c_3 & \bar{c}_1 \end{pmatrix} \varphi \middle| c_2, c_3 \in \mathbf{F}_p \sqrt{2}, c_1 \bar{c}_1 - c_2 c_3 = 1 \right\},$$

where $\mathbf{F}_p \sqrt{2} := \{n\sqrt{2} \mid n \in \mathbf{F}_p\} = \{s \in \mathbf{F}_{p^2} \mid s + \bar{s} = 0\}.$

(ii)
$$2D = \left\{ \begin{pmatrix} d_1 & d_2 \\ d_3 & -\bar{d}_1 \end{pmatrix} \varphi \middle| d_2, d_3 \in \mathbf{F}_p, d_1\bar{d}_1 + d_2d_3 = -1 \right\}.$$

(iii)
$$pA = \left\{ \begin{pmatrix} 1 + a_1 a_2 & a_1^2 \\ -a_2^2 & 1 - a_1 a_2 \end{pmatrix} \middle| (a_1, a_2) \neq (0, 0) \right\}.$$

(iv)
$$pB = \left\{ \begin{pmatrix} 1 + b_1b_2r & b_1^2r \\ -b_2^2r & 1 - b_1b_2r \end{pmatrix} \middle| (b_1, b_2) \neq (0, 0) \right\}.$$

PROOF. (i) Conjugating φ by $\rho = \begin{pmatrix} s & t \\ u & v \end{pmatrix} \in H$ and $\rho \varphi$, we get

$$\rho^{-1}\varphi\rho = \rho^{-1}\bar{\rho}\varphi = \begin{pmatrix} \bar{s}v - t\bar{u} & \bar{t}v - t\bar{v} \\ \bar{s}u - s\bar{u} & s\bar{v} - \bar{t}u \end{pmatrix}\varphi,$$
$$(\rho\varphi)^{-1}\varphi(\rho\varphi) = \varphi^{-1}\rho^{-1}\varphi\rho\varphi = \bar{\rho}^{-1}\rho\varphi.$$

Hence $2C \subseteq \left\{ \begin{pmatrix} c_1 & c_2 \\ c_3 & \bar{c}_1 \end{pmatrix} \varphi \middle| c_2, c_3 \in \mathbf{F}_p \sqrt{2}, \ c_1 \bar{c}_1 - c_2 c_3 = 1 \right\}$. Since the centralizer of φ is

$$C_G(\varphi) = \left\{ \begin{pmatrix} s & t \\ u & v \end{pmatrix} \middle| s, t, u, v \in \mathbf{F}_p \text{ or } s, t, u, v \in \mathbf{F}_p \sqrt{2} \right\} \cdot \langle \varphi \rangle \cong \mathrm{PGL}_2(p) \cdot \langle \varphi \rangle,$$

the cardinal of 2C is

$$|2C| = \frac{|P\Sigma L_2(p^2)|}{2|PGL_2(p)|} = \frac{p^2(p^2 - 1)(p^2 + 1)}{2p(p - 1)(p + 1)} = \frac{p(p^2 + 1)}{2}.$$

Using $|\{c_1 \in \mathbf{F}_{p^2} \mid c_1\bar{c}_1 = 1\}| = p + 1$, we can count the elements of the right-hand side of (i), namely,

$$\left| \left\{ \begin{pmatrix} c_1 & c_2 \\ c_3 & \bar{c}_1 \end{pmatrix} \varphi \, \middle| \, c_2, c_3 \in \mathbf{F}_p \sqrt{2}, \ c_1 \bar{c}_1 - c_2 c_3 = 1 \right\} \right| = \frac{p(p^2 + 1)}{2} = |2C|.$$

Hence the equality (i) holds. Other cases (ii), (iii), (iv) are similar.

Let U be the union of $\{0\}$ and a representative system of $\mathbf{F}_p^{\times}/\{\pm 1\}$ with $1 \in U$ and V the following subset of U.

$$V := \{ u \in U \mid -2 + u\sqrt{2} \notin \mathbf{F}_{p^2}^{\times 2} \} = \{ u \in U \mid 2 - u^2 \in \mathbf{F}_p^{\times 2} \}.$$

LEMMA 2.2. Each $[\sigma] \in \Sigma(\mathbb{C})/\text{Inn}(G)$ is represented by $\sigma = (\sigma_1, \sigma_2, \sigma_3, \sigma_4)$ with

(2.1)
$$\sigma_{1} = \begin{pmatrix} s + u\sqrt{2} & -u\sqrt{2} \\ (2u - sv)\sqrt{2} & s - u\sqrt{2} \end{pmatrix} \varphi, \quad \sigma_{2} = \begin{pmatrix} t + u\sqrt{2} & -t \\ t - s & -t + u\sqrt{2} \end{pmatrix} \varphi,$$
$$\sigma_{3} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \qquad \sigma_{4} = \begin{pmatrix} 1 & 0 \\ -2 + v\sqrt{2} & 1 \end{pmatrix}.$$

Here $s, t \in \mathbf{F}_p$, $u \in U$, $v \in V$ are unique for each $[\sigma]$ and satisfy following relations.

$$s + t = 2uv, \quad st = 2u^2 - 1.$$

PROOF. By conjugation we put

$$\sigma_1 = \begin{pmatrix} c_1 & c_2 \\ c_3 & \bar{c}_1 \end{pmatrix} \varphi , \quad \sigma_2 = \begin{pmatrix} d_1 & d_2 \\ d_3 & -\bar{d}_1 \end{pmatrix} \varphi , \quad \sigma_3 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} ,$$

$$\sigma_4 = \begin{pmatrix} 1 + b_1 b_2 r & b_1^2 r \\ -b_2^2 r & 1 - b_1 b_2 r \end{pmatrix}$$

as in Lemma 2.1. Here we may assume that $b_2 \neq 0$. Indeed, if $b_2 = 0$, we have

$$\begin{pmatrix} d_1 & d_2 \\ d_3 & -\bar{d}_1 \end{pmatrix} \varphi = \begin{pmatrix} c_1 + c_3(1 + b_1^2 r) & c_2 + \bar{c}_1(1 + b_1^2 r) \\ c_3 & \bar{c}_1 \end{pmatrix} \varphi$$

from the equation $\sigma_2 = \sigma_3 \sigma_4 \sigma_1$. This means that $c_3 \in \mathbf{F}_p \cap \mathbf{F}_p \sqrt{2} = \{0\}$, so the equation cannot hold. Hence we can take $\tau = \begin{pmatrix} 1 & -b_1 b_2^{-1} \\ 0 & 1 \end{pmatrix}$. Then

$$\sigma_3^{\tau} = \sigma_3, \quad \sigma_4^{\tau} = \begin{pmatrix} 1 & 0 \\ b_1 b_2 r & 1 \end{pmatrix}.$$

Now we can rewrite

$$\sigma_1 = \begin{pmatrix} c_1 & c_2 \\ c_3 & \bar{c}_1 \end{pmatrix} \varphi \,, \quad \sigma_2 = \begin{pmatrix} d_1 & d_2 \\ d_3 & -\bar{d}_1 \end{pmatrix} \varphi \,, \quad \sigma_3 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \,, \quad \sigma_4 = \begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix} \,.$$

Since $\sigma_2 = \sigma_3 \sigma_4 \sigma_1$, we get

$$\begin{pmatrix} d_1 & d_2 \\ d_3 & -\bar{d}_1 \end{pmatrix} \varphi = \begin{pmatrix} (1+b)c_1 + c_3 & (1+b)c_2 + \bar{c}_1 \\ bc_1 + c_3 & bc_2 + \bar{c}_1 \end{pmatrix} \varphi \,.$$

Here we put $d_1 = t + u\sqrt{2}$, $d_3 = t - s$ for $s, t, u \in \mathbf{F}_p$ and solve this equation:

$$c_1 = s + u\sqrt{2}$$
, $c_2 = -u\sqrt{2}$,
 $d_1 = t + u\sqrt{2}$, $d_2 = -t$, $d_3 = t - s$.

Then $b = -2 + v\sqrt{2}$ with $v \in V$ and $c_3 = (2u - sv)\sqrt{2}$, where s, t, u, v satisfy the above relations. To exclude multiplicity of ± 1 we may assume that $u \in U$. Then s, t, u, v are unique for each $\lceil \sigma \rceil$. Indeed, when

$$(\sigma_1, \sigma_2, \sigma_3, \sigma_4)^{\tau} = (\sigma_1', \sigma_2', \sigma_3', \sigma_4') \quad \text{for}$$

$$\sigma_3 = \sigma_3' = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \sigma_4 = \begin{pmatrix} 1 & 0 \\ -2 + v\sqrt{2} & 1 \end{pmatrix}, \quad \sigma_4' = \begin{pmatrix} 1 & 0 \\ -2 + v'\sqrt{2} & 1 \end{pmatrix},$$

we can see that $\tau=1$ by the definition of V, and hence $(\sigma_1,\sigma_2,\sigma_3,\sigma_4)=(\sigma_1',\sigma_2',\sigma_3',\sigma_4')$.

Conversely, the elements in (2.1) actually generate the projective semilinear group G for such $s, t \in F_p$, $u \in U$, $v \in V$. This fact follows from Dickson's classical theorem:

THEOREM 2.1 (Dickson [3]). For any prime number p, if $(p, n) \neq (3, 2)$, then

(2.2)
$$\operatorname{PSL}_{2}(p^{n}) = \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ r & 1 \end{pmatrix} \right).$$

Here r is any generator of $\mathbf{F}_{p^n}/\mathbf{F}_p$.

Dickson's theorem makes an exception of (p, n) = (3, 2), but even in such a case, if r is a nonsquare of F_{p^n} , then (2.2) holds. A proof of the theorem is found, for example, in [5, Th. 8.4]. By elementary number theory there exist $(p - \varepsilon)/4$ choices for $v \in V$ and $(p - \varepsilon)/2$ choices for $s, t \in F_p$, $u \in U$, where $\varepsilon = (-1)^{(p-1)/2}$. So the class number of \mathbb{C} is

$$l(\mathbf{C}) = \frac{(p-\varepsilon)^2}{8} .$$

3. The orbits of length 2. Let Q^+ (resp. Q^-) denote the subgroup of G which is generated by φ and all upper (resp. lower) triangle matrices. Further, let P^\pm be the subgroup of Q^\pm which is generated by φ and all triangles whose diagonal elements are 1. Notice that P^+ is the centralizer of $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ in G.

LEMMA 3.1. In the action of H_4 , β_{24} and β_{34} have no fixed point on $\Sigma(\mathbb{C})/\text{Inn}(G)$.

PROOF. A G-orbit $[\sigma] \in \Sigma(\mathbf{C})/\mathrm{Inn}(G)$ is represented by $\sigma = (\sigma_1, \sigma_2, \sigma_3, \sigma_4)$ in the form as in Lemma 2.2. Suppose $[\sigma]^{\beta_{24}} = [\sigma]$. Then there exists $\tau_2 \in G$ such that $(\sigma_1, \sigma_2^{\sigma_3\sigma_1}, \sigma_3, \sigma_4^{\sigma_1\sigma_3}) = \sigma^{\tau_2}$. Since τ_2 and σ_3 are commutative, τ_2 belongs to the centralizer P^+ . If $\tau_2 \in H$, then the equality $\sigma_1^{\tau_2} = \sigma_1$ means $\tau_2 \in Q^+$. Further, if $\tau_2 \notin H$, the equality $\sigma_4^{\sigma_1\sigma_3\tau_2^{-1}} = \sigma_4$ leads $\sigma_1\sigma_3\tau_2^{-1} \in P^-$ and so

$$\begin{cases} \sigma_1 \in P^+ \\ \sigma_1 \sigma_3 \tau_2^{-1} = 1 \end{cases} \quad \text{or} \quad \begin{cases} \sigma_1 \in P^- \\ \tau_2 = \sigma_3 \varphi \end{cases}$$

by a brief calculation. In the latter case we have $\sigma_1 = \varphi$. Therefore σ_1 belongs to the upper triangles Q^+ in either case. Thus

$$2u = sv$$
, $s^2 - 2u^2 = 1$,

which means $s^2(2-v^2)=2$. This contradicts that $2-v^2$ is a square of \mathbf{F}_p .

Next we suppose that $[\sigma]^{\beta_{34}} = [\sigma]$. Then there exists $\tau_3 \in G$ such that $(\sigma_1^{\sigma_3\sigma_4}, \sigma_2^{\sigma_3\sigma_4}, \sigma_3, \sigma_4) = \sigma^{\tau_3}$. Since τ_3 commutes with σ_3 and σ_4 , Dickson's theorem shows that τ_3 commutes with any element of H, namely, $\tau_3 = 1$. Hence $\sigma_1^{\sigma_3\sigma_4} = \sigma_1$, and so σ_1 commutes with σ_2 . Thus $\sigma_3\sigma_4 = \sigma_2^{-1}\sigma_1^{-1}$ has order 2, but we can calculate that

$$(\sigma_3 \sigma_4)^2 = \begin{pmatrix} -1 + v\sqrt{2} & 1 \\ -2 + v\sqrt{2} & 1 \end{pmatrix}^2 = \begin{pmatrix} * & v\sqrt{2} \\ * & -1 + v\sqrt{2} \end{pmatrix},$$

which is a contradiction.

PROPOSITION 3.1. Let p be a prime number with $p \equiv \pm 3 \pmod{8}$ and $G = P\Sigma L_2(p^2)$ the projective semilinear group over \mathbf{F}_{p^2} . Then there exists a unique H_4 -orbit of length 2 in $\Sigma(\mathbf{C})/\mathrm{Inn}(G)$ for the class vector $\mathbf{C} = (2C, 2D, pA, pB)$ of G.

PROOF. From Lemma 3.1 and the identity $\beta_{14}\beta_{24}\beta_{34} = 1$, if $\Sigma(\mathbb{C})/\mathrm{Inn}(G)$ has an H_4 -orbit B of length 2, then β_{14} fixes each element of B. So we suppose that $[\sigma]^{\beta_{14}} = [\sigma]$, where σ is of the form as in Lemma 2.2. Then there exists $\tau_1 \in G$ such that $(\sigma_1^{\sigma_2\sigma_3}, \sigma_2, \sigma_3, \sigma_4^{\sigma_2\sigma_3}) = \sigma^{\tau_1}$. Since τ_1 and σ_3 are commutative, τ_1 belongs to the centralizer P^+ .

If $\tau_1 \in H$ and so $\sigma_2^{\tau_1} = \sigma_2$, then we have $\sigma_2 \in Q^+$ and so s = t = uv. Thus

$$2u - sv = u^{-1}(2u^2 - suv) = u^{-1}(2u^2 - st) = u^{-1}$$
.

We put

$$\boldsymbol{\tau}_{\boldsymbol{v}} := \left(\boldsymbol{u} \begin{pmatrix} \boldsymbol{v} + \sqrt{2} & -\sqrt{2} \\ \boldsymbol{u}^{-2}\sqrt{2} & \boldsymbol{v} - \sqrt{2} \end{pmatrix} \boldsymbol{\varphi} \,, \quad \boldsymbol{u} \begin{pmatrix} \boldsymbol{v} + \sqrt{2} & -\boldsymbol{v} \\ \boldsymbol{0} & -\boldsymbol{v} + \sqrt{2} \end{pmatrix} \boldsymbol{\varphi} \,, \quad \begin{pmatrix} \boldsymbol{1} & \boldsymbol{1} \\ \boldsymbol{0} & \boldsymbol{1} \end{pmatrix} \,, \quad \begin{pmatrix} \boldsymbol{1} & \boldsymbol{0} \\ -2 + \boldsymbol{v}\sqrt{2} & \boldsymbol{1} \end{pmatrix} \right) \,,$$

which is a fixed point of β_{14} .

On the other hand, if $\tau_1 \notin H$ and so $\sigma_4^{\sigma_2\sigma_3\tau_1^{-1}} = \sigma_4$, then we get $\sigma_2\sigma_3\tau_1^{-1} \in P^-$. Since $\sigma_3\tau_1^{-1} \in P^+$, we can see that σ_2 is of the form $\begin{pmatrix} 1 & * \\ * & * \end{pmatrix} \varphi$, and hence t = 1, u = 0. We put

$$\sigma_v := \left(\begin{pmatrix} 1 & 0 \\ -v\sqrt{2} & 1 \end{pmatrix} \varphi \,, \quad \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix} \varphi \,, \quad \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \,, \quad \begin{pmatrix} 1 & 0 \\ -2+v\sqrt{2} & 1 \end{pmatrix} \right) \,,$$

which is another fixed point of β_{14} .

Next we determine all pairs of these fixed points which are permuted by β_{34} . Since β_{34} maps $[\sigma_1, \sigma_2, \sigma_3, \sigma_4]$ to $[\sigma_1^{\sigma_3\sigma_4}, \sigma_2^{\sigma_3\sigma_4}, \sigma_3, \sigma_4]$, the uniqueness of representation (2.1) shows that

$$[\boldsymbol{\sigma}_{v}]^{\beta_{34}} \neq [\boldsymbol{\sigma}_{v'}], \quad [\boldsymbol{\tau}_{v}]^{\beta_{34}} \neq [\boldsymbol{\tau}_{v'}],$$

 $[\boldsymbol{\sigma}_{v}]^{\beta_{34}} = [\boldsymbol{\tau}_{v'}] \Longrightarrow v = v'.$

for any $v, v' \in V$. For $(\sigma_1, \sigma_2, \sigma_3, \sigma_4) := \sigma_v$ we calculate that

$$\sigma_2^{\sigma_3\sigma_4} = \begin{pmatrix} 1 + v\sqrt{2} & -1 \\ 2 - 2v^2 & -1 + v\sqrt{2} \end{pmatrix},$$

so if $[\sigma_v]^{\beta_{34}} = [\tau_v]$, then v = 1. Hence we obtain a unique H_4 -orbit B of length 2, namely,

$$B := \{ [\sigma_1], [\tau_1] \}$$

$$= \left\{ \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ -\sqrt{2} & 1 \end{pmatrix} \varphi, & \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix} \varphi, & \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, & \begin{pmatrix} 1 & 0 \\ -2+\sqrt{2} & 1 \end{pmatrix} \end{bmatrix}, \\ \begin{bmatrix} \begin{pmatrix} 1+\sqrt{2} & -\sqrt{2} \\ \sqrt{2} & 1-\sqrt{2} \end{pmatrix} \varphi, & \begin{pmatrix} 1+\sqrt{2} & -1 \\ 0 & -1+\sqrt{2} \end{pmatrix} \varphi, & \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, & \begin{pmatrix} 1 & 0 \\ -2+\sqrt{2} & 1 \end{pmatrix} \end{bmatrix} \right\}.$$

PROOF OF THEOREM 0.1. By the rigid braid orbit theorem and its corollary, there exists a regular extension N/Q(T) with Galois group $P\Sigma L_2(p^2)$ and with ramification structure $\mathbf{C}=(2C,2D,pA,pB)$. The intermediate field L corresponding to the normal subgroup $P\Sigma L_2(p^2)$ of $P\Sigma L_2(p^2)$ is a quadratic extension over Q(T). Here two ramification points corresponding to pA and pB are unramified at L/Q(T), since these classes are included in $PSL_2(p^2)$. Therefore the quadratic extension L is a rational function field over Q, say L=Q(T'). Thus we obtain a regular extension N/Q(T') with Galois group $PSL_2(p^2)$. \square

4. Some almost simple groups. Matzat improves the rigid braid orbit theorem for the class vectors which have some symmetries. This improvement is called the *twisted braid orbit theorem*. Using this theorem, we treat some finite simple groups listed in ATLAS.

Let $\mathbf{C}=(C_1,C_2,C_3,C_4)$ be a class vector of G with $C_1=C_2$. Then one of the generators $\beta_1\in \tilde{H}_4$ acts on $\Sigma(\mathbf{C})/\mathrm{Inn}(G)$. Now we put $\beta_1':=\beta_{14},\ \beta_2':=\beta_1,\ \beta_3':=\beta_{14}\beta_1$ and $H_4':=\langle H_4,\beta_1\rangle$. Let $B=B(\sigma)$ be an H_4' -orbit in $\Sigma(\mathbf{C})/\mathrm{Inn}(G)$ and c_i' be the number of cycles in the permutation representation of β_i' on B. Instead of the braid orbit genus $g_4(B)$, we use the *twisted braid orbit genus*:

$$g'_4(B) := 1 - |B| + \frac{1}{2} \sum_{i=1}^{3} (|B| - c'_i).$$

Additionally, the oddness condition (O_s) is replaced by the next condition.

(O') In the permutation representation on B, one of the cycle lengths, summed over all β'_i of the same permutation type, occurs an odd number of times in some β'_i .

Then we can state the twisted braid orbit theorem.

THEOREM 4.1 (Matzat [7]). Let G be a finite group with trivial center and $\mathbf{C} = (C_1, C_2, C_3, C_4)$ a class vector of G with $C_1 = C_2$. Further assume that $\Sigma(\mathbf{C})/\mathrm{Inn}(G)$ has a rigid H'_4 -orbit B which has genus $g'_4(B) = 0$ and satisfies the oddness condition (O'). Then there exists a regular extension over $\mathbf{Q}_{\mathbf{C}}(T)$ with Galois group G and with ramification structure \mathbf{C} .

We define the number $n(\mathbf{C}) := |\bar{\Sigma}(\mathbf{C})|/|\mathrm{Inn}(G)|$, where

$$\bar{\Sigma}(\mathbf{C}) := \{ \boldsymbol{\sigma} = (\sigma_1, \dots, \sigma_s) \mid \sigma_i \in C_i, \ \sigma_1 \dots \sigma_s = 1 \}.$$

This number $n(\mathbb{C})$ can be calculated only by the character table of G (cf. [12, Ch. 7.3]). Further we define the number $n_H(\mathbb{C}) := |\bar{\Sigma}(\mathbb{C}) \cap H^s| / |\mathrm{Inn}(G)|$ for any subgroup H of G. To determine the class number of \mathbb{C} , we use such numbers $n_H(\mathbb{C})$ of the maximal subgroups H.

EXAMPLE 4.1. The Tits simple group ${}^{2}F_{4}(2)'$.

We take the rational class vector $\mathbf{C} = (2A, 2A, 2B, 8C)$ of the Tits group $G := {}^2F_4(2)'$ in ATLAS notation. The centralizers of these classes 2A, 2B, 8C have order 10240, 1536, 16, respectively. The character table of ${}^2F_4(2)'$ shows that

$$n(\mathbf{C}) = \frac{17971200^2}{10240^2 \cdot 1536 \cdot 16} \left(1 - \frac{150}{27^2} - \frac{275}{325^2} + \frac{14397}{351^2} - \frac{3675}{675^2} \right) = \frac{227}{2}.$$

TABLE 4.1. Irreducible characters of ${}^{2}F_{4}(2)'$.

	17971200	10240	1536	16
	1 <i>A</i>	2A	2 <i>B</i>	8 <i>C</i>
χ1	1	1	1	1
χ4	27	-5	3	-1
Χ5	27	-5	3	-1
χ8	325	5	-11	-1
χ9	351	31	15	1

	1 <i>A</i>	2 <i>A</i>	2 <i>B</i>	8 <i>C</i>
X10	351	-1	-9	1
χ11	351	-1	-9	1
X15	675	35	3	-1
Χ18	1300	20	-12	2
X19	1300	20	-12	-2

The maximal subgroup of ${}^2F_4(2)'$ which intersects with these classes 2A, 2B, 8C is conjugate to one of the groups G_1 , G_2 , G_3 , G_3' of order 10240, 6144, 1440, 1440. The computer algebra system GAP provides the character tables of the Tits group and its maximal subgroups. Actually, we compute the number $n_{G_i}(\mathbb{C})$ as follows.

$$n_{G_1}(\mathbf{C}) = \frac{35}{2}, \ n_{G_2}(\mathbf{C}) = \frac{11}{2}, \ n_{G_3}(\mathbf{C}) = n_{G'_3}(\mathbf{C}) = 0.$$

Here any 4-system in $\mathbb{C} \cap (G_2)^4$ generates a subgroup of order 32, 64, or 128, which is also conjugate to a subgroup of G_1 . Hence the class number is

$$l(\mathbf{C}) = \frac{227}{2} - \frac{35}{2} = 96.$$

Further we compute the permutation representation of H'_4 on $\Sigma(\mathbf{C})/\mathrm{Inn}(G)$. Then we can verify that $B = \Sigma(\mathbf{C})/\mathrm{Inn}(G)$ is an H'_4 -orbit of length 96 and β'_i has the following permutation type.

permutation type
$$\beta'_{1} \quad 1^{2} \cdot 2^{2} \cdot 4^{10} \cdot 5^{10} \\
\beta'_{2} \quad 1^{4} \cdot 2 \cdot 4^{15} \cdot 5^{6} \\
\beta'_{3} \quad 2^{48}$$

Thus the orbit B is rigid and has genus

$$g_4'(B) = 1 - 96 + \frac{1}{2}(72 + 70 + 48) = 0.$$

By the twisted braid orbit theorem the Tits group ${}^2F_4(2)'$ occurs regularly as Galois group over Q.

EXAMPLE 4.2. The projective semilinear group $P\Sigma L_3(9)$.

We take the rational class vector $\mathbf{C} = (2A, 2C, 3A, 4E)$ of the group $G := P\Sigma L_3(9)$ in ATLAS notation. The sizes of their centralizers are 11520, 11232, 11664, 96 and two of the classes 2A and 3A are included in $PSL_3(9)$. Here we extract the character table of $PSL_3(9)$ in ATLAS.

		84913920	11520	11664		11232	96
		1 <i>A</i>	2A	3A		2 <i>C</i>	4E
	χ1	1	1	1	•••	1	1
	χ2	90	10	9	:	12	4
	Χ3	91	11	10	•••	13	-3
	X77	819	19	9	:	39	-1
	Χ84	910	30	19	:	26	2
ĺ	Χ89	910	-10	19	•••	26	-2
	Χ90	910	-10	19	:	26	-2

TABLE 4.2. Irreducible characters of PSL₃(9).

This table, however, contains the information of irreducible characters of $P\Sigma L_3(9)$. Each character in this table splits into two characters of $P\Sigma L_3(9)$. For example, the character χ_1 splits into $\tilde{\chi}_1$ and $\tilde{\chi}'_1$, where $\tilde{\chi}_1$ is the trivial character of $P\Sigma L_3(9)$ and $\tilde{\chi}'_1$ is defined by $\tilde{\chi}'_1(g) = 1$ for $g \in PSL_3(9)$ and $\tilde{\chi}'_1(g) = -1$ otherwise. Hence

$$n(\mathbf{C}) = \frac{84913920^2}{11520 \cdot 11232 \cdot 11664 \cdot 96} \cdot 2 \cdot \left(1 + \frac{4320}{90^2} - \frac{4290}{91^2} - \frac{6669}{819^2} + \frac{49400}{910^2}\right) = 106.$$

If a maximal subgroup H of $P\Sigma L_3(9)$ intersects with all classes of \mathbb{C} , then H is conjugate to one of the groups G_1 , G_1' , G_2 , G_3 of order 933120, 933120, 12096, 11232. We again use GAP to compute the number $n_H(\mathbb{C})$ for these maximal subgroups H:

$$n_{G_1}(\mathbf{C}) = n_{G'_1}(\mathbf{C}) = 32, \quad n_{G_2}(\mathbf{C}) = 3, \quad n_{G_3}(\mathbf{C}) = 19.$$

Here each 4-system in $\mathbb{C} \cap (G_3)^4$ generates a subgroup of order 864, 96, or 72, which is also conjugate to a subgroup of G_1 or G_1' . There exists a 4-system σ of $\mathbb{C} \cap (G_1)^4$ such that $\sigma_1, \sigma_2, \sigma_3, \sigma_4$ generate a subgroup which is conjugate to some subgroup of G_1' . The number of such 4-systems is exactly 3|Inn(G)|, where these 4-systems generate subgroups of order 96. Thus

$$l(\mathbf{C}) = 106 - (32 + 32 - 3) - 3 = 42$$
.

The group H_4 acts on $\Sigma(\mathbf{C})/\mathrm{Inn}(G)$ intransitively. Indeed, $\Sigma(\mathbf{C})/\mathrm{Inn}(G)$ has two H_4 -orbits of length 18 and length 24. We take the shorter orbit B of length 18. In the transitive action of H_4 on B, the permutation types of β_1 , β_2 , β_3 are given in the next table.

	permutation type
β_1	$1^6\cdot 2^2\cdot 4^2$
β_2	$4^2 \cdot 5^2$
β_3	$2 \cdot 3^4 \cdot 4$

The orbit B is rigid, since it is a unique H_4 -orbit of length 18 in $\Sigma(\mathbb{C})/\text{Inn}(G)$, and has genus

$$g_4(B) = 1 - 18 + \frac{1}{2}(8 + 14 + 12) = 0.$$

Here we choose the class vector \mathbb{C} such that just two classes 2A and 3A are included in $PSL_3(9)$, so we have a regular extension over $\mathbb{Q}(T)$ with Galois group $PSL_3(9)$, similarly as the proof of Theorem 0.1.

We continue similar computation for several simple groups G of Lie type and their extensions G.2 by outer automorphisms of order 2. Any group in the tables below has a rigid braid orbit B with braid orbit genus $g_4(B)=0$ (Table 4.3) or twisted braid orbit genus $g_4'(B)=0$ (Table 4.4). In the case which $\Sigma(\mathbf{C})/\mathrm{Inn}(G.2)$ decomposes into two or three orbits, we underline the length of the orbit which we choose (ex. $24+\underline{18}$). For the extension groups G.2 we take the rational class vectors \mathbf{C} such that just two classes of \mathbf{C} are included in G. Hence the subgroups G of G.2 also occur regularly as Galois groups over \mathbf{Q} . In conclusion we obtain the Theorem 0.2 stated in the first place.

TABLE 4.3. Rigid braid orbits of some (almost) simple groups I.

		class vector C	$l(\mathbf{C})$	types of	β_{14}, β_{24}	$, \beta_{34}$
S_4	(4)	(2A, 2B, 3A, 5E)	12	$1^2 \cdot 3^2 \cdot 4$,	2.5^{2} ,	2^{6}
$L_3(9)$	9).2	(2A, 2C, 3A, 4E)	24+ <u>18</u>	$1^6 \cdot 2^2 \cdot 4^2$,	$4^2 \cdot 5^2$,	$2 \cdot 3^4 \cdot 4$
S ₆ ((3)	(2A, 2A, 4A, 12C)	2	2,	2,	12
U_6	(2)	(2A, 2A, 4C, 12F)	6	1 ² ·4,	$1^2 \cdot 4$,	3^2

TABLE 4.4. Rigid braid orbits of some (almost) simple groups II.

	class vector C	<i>l</i> (C)	permutation types of β'_1 , β'_2 , β'_3		
$U_4(3).2$	(2B, 2B, 3B, 5A)	<u>10</u> +5+5	$2^2 \cdot 3^2$, $3^2 \cdot 4$, 2^5		
$L_5(2).2$	(2A, 2A, 4D, 6C)	56	$1 \cdot 2^2 \cdot 3^2 \cdot 4^2 \cdot 5^3 \cdot 6 \cdot 8^2$, $2^3 \cdot 3^6 \cdot 4^8$, 2^{28}		
$U_5(2).2$	(2A, 2A, 4D, 10A)	40	$3 \cdot 4 \cdot 5^3 \cdot 6^3$, $2^2 \cdot 3^{12}$, 2^{20}		
$^{2}F_{4}(2)'$	(2A, 2A, 2B, 8C)	96	$1^2 \cdot 2^2 \cdot 4^{10} \cdot 5^{10}, 1^4 \cdot 2 \cdot 4^{15} \cdot 5^6, 2^{48}$		
$^{3}D_{4}(2)$	(2A, 2A, 3B, 12A)	60	$3^2 \cdot 6^9$, $1^3 \cdot 3^{15} \cdot 4^3$, 2^{30}		
$G_2(4)$	(2A, 2A, 3A, 7A)	14	$1^2 \cdot 3^4, 4 \cdot 5^2, 2^7$		

REFERENCES

- [1] J. H. CONWAY et al., Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
- [2] L. DIEULEFAIT AND N. VILA, Projective linear groups as Galois groups over Q via Modular Representations, J. Symbolic Computation 30 (2000), 799–810.
- [3] L. E. DICKSON, Linear Groups with an Exposition of the Galois Field Theory, Teubner, Leibzig, 1901.
- [4] W. Feit, Rigidity of Aut(PSL $_2(p^2)$), $p \equiv \pm 2 \pmod{5}$, $p \neq 2$, In: Proceedings of the Rutgers group theory year, 1983–1984 (New Brunswick, N. J., 1983–1984), 351–356, Cambridge Univ. Press, Cambridge, 1984
- [5] D. GORENSTEIN, Finite Groups, Harper and Row, New York-Evanston-London, 1968.
- [6] G. MALLE AND B. H. MATZAT, Inverse Galois Theory, Springer-Verlag, Berlin, 1999.
- [7] B. H. MATZAT, Zöpfe und Galoissche Gruppen, J. Reine Angew. Math. 420 (1991), 99-159.
- [8] J.-F. MESTRE, Courbes hyperelliptiques à multiplications réelles, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), 721–724.
- [9] B. PRZYWARA, Die Operation der Hurwitzschen Zopfgruppe auf den Erzeugendensystemklassen endlicher Gruppen, Diplomarbeit, Karlsruhe, 1988.
- [10] A. REVERTER AND N. VILA, Some projective linear groups over finite fields as Galois groups over Q, Contemp. Math. 186 (1995), 51–63.
- [11] K. A. RIBET, On *l*-adic representations attatched to modular forms, Invent. Math. 28 (1975), 245–275.
- [12] J.-P. SERRE, Topics in Galois Theory, Jones and Bartlett, Boston, 1992.
- [13] The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.2, Aachen, St. Andrews, 1999.

MATHEMATICAL INSTITUTE TOHOKU UNIVERSITY SENDAI MIYAGI, 980–8578 JAPAN