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AND SOME SIMPLE GROUPS
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Abstract. We apply the braid orbit theorem to projective semilinear groups over the
finite fields with p2 elements and some almost simple groups of Lie type. The projective
special linear groups PSkp?) with p = +3 (mod 8, the Tits simple group, and some small
simple groups occur regularly as Galois groups over the rationals.

Introduction. Let G be a finite group with trivial center an@ = (C1,...,Cy) a
rational class vector afi. We denote by’ (C) the set of generatingsystems irC:

XC):={0o=(01,...,05) |o; €Cj, 01---05 =1, (01,...,0) = G}.

The inner automorphism group I(@) = G naturally acts on¥'(C) and thepure Hurwitz
braid group H; acts on the orbit spacE(C)/Inn(G). An Hg-orbitin X(C)/Inn(G) is called

a braid orbit. In hisrigid braid orbit theorem [7] Matzat determined certain conditions on
a braid orbit for the existence of a regular extensiwver the rational function fiel@(7)
with Galois groupG and with ramification structur€.

Przywara [9] applied this theorem to the almost simple grobp R25) with class vec-
tor C = (24, 2C, 2D, 12A) and proved that the projective linear group B&5) occurs
regularly as Galois group ov€y.

In this paper we take another class ve&@os (2C, 2D, pA, pB) of PELa(p?) for any
prime numberp = +3 (mod 8§ and obtain the following theorem.

THEOREM 0.1. The projective linear group PSLy(p?) occurs regularly as Galois
group over Q for any prime number p = +3 (mod 8.

Concerning Galois realizations of such simple groups, Feit [4] and Mestre [8] showed
in different ways that PS4(p?) occurs regularly as Galois group ov@rfor p = +2 (mod
5). Furthermore, there are several works in the theory of modular forms. First, Ribet [11]
proved that PSh(p?) occurs as Galois group ovexfor any primep if 144169 is a nonsquare
modulo p. Reverter and Vila [10] extended this result for primgesuch that one of the
integers 18209, 51349, 144169, 2356201, 18295489, 63737521 is a nonsquare modulo
Moreover, Dieulefait and Vila [2] obtainedmsilar result in the case which a prime less than
20 is a nonsquare modua Hilbert’s irreducibility theorem assures that if a gropccurs
regularly as Galois group oveé), then there exist infinitely many linearly disjoint Galois
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extensions ove@ with Galois groupG. So our theorem is a generalization of the case which
2 is a nonsquare modupin their result.

In another direction we explicitly compute some braid orbits of small almost simple
groups of Lie type. Using the computer algebra sys@AP [13], we find suitable braid
orbits for the Tits simple groupFs(2)’, the smallest Steinberg triality grou{®4(2), and
some small almost simple groups.

THEOREM 0.2. The following simple groups of Lie type occur regularly as Galois
groups over Q:

Sa(4), Ua(3), Ls(2), Us(2), °Fs(2), L3(9), *Da(2), G2(4), Se(3), Us(2) .

1. Rigid braid orbit theorem. Thefull Hurwitz braid group H; is generated by ele-
mentspy, . . ., Bs—1 with the following relations:

BiBj =pB;pi for |i —j|>1,
BiBi+1Bi = Bi+1BiBi+1 for 1<i <s—-2,
,31 co ,3.972,35271,3572 T ,31 =1.

There exists a surjective homomorphigm Hy > B; —> (i,i + 1) € S, whereS; is the
symmetric group on letters andi, i + 1) is a transposition. We denote the kernegoby
Hg, which is a normal subgroup @f; and has generators

(1.1) Bij == (BT = (B2 e for L<i<j<s.
The groupH; is called thepure Hurwitz braid group.
Let G be a finite group with trivial center anH; (G) the set of all generating-systems
of G:
X(G):={o =(01,...,05) | 0105 =1, (01,...,0) = G}.
The groupH; acts on the orbit spacE, (G)/Inn(G) in the following way.

; -1
(1.2) [01,...,051P =[o1,...,0i-1,0i01410, 1, 01, 0i42, ..., T%].

Then the subgroufl; acts onX'(C)/Inn(G), whereC = (C1, ..., Cy) is a given class vector
of G. The numbel(C) := | X (C)/Inn(G)| is called theclass number of C. We denote by
B = B(o) the Hy-orbit of [o] under this action and calt abraid orbit.

Let H, be the stabilizer ofo] € X (C)/Inn(G) in H,. A braid orbitB = B(o) is said to
berigid when for eachit] # [a] there exists no automorphismof H; with H, = HJ. Let
mp be the permutation representation/f on a braid orbitB andc; the number of cycles in
g (Bis). Then we can define tHeaid orbit genus g,(B) of B by

1 s—1
9,(B) :=1—|B|+ 5 ;am —ci).
Additionally, we consider the followingddness condition.
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(Oy) In the permutation representation @& one of the cycle lengths occurs an odd
number of times in somg;;.

Let Q¢ be the number field generated by thelues of irreducible characters 6f at
C1,...,Cs over the rationals. The class vector= (Cy, ..., Cy) is said to berational if
Qc = Q, or equivalently if(CY", ..., C}") = C for any integern prime to|G|. Then we can
describe theigid braid orbit theorem as follows.

THEOREM 1.1 (Matzat [7]). Let G be a finite group with trivial center and C =
(C1, C2, C3, Cy) a class vector of G. Further assume that X' (C)/Inn(G) has a rigid Hy-
orbit B which has genus g,4(B) = 0 and satisfies the oddness condition (O4). Then there
exists a regular extension over Qc(7') with Galois group G and with ramification structure
C.

Although this theorem was stated for arbitrarin [7], here we restrict it to = 4 for sim-
plicity. See Matzat [7] or Malle and Ma#t [6] for the proof of the theorem.

From (1.1) and (1.2) the action @4 on X (C)/Inn(G) can be described explicitly as
follows.

02

lok
[01, 02, 03, 041P% = [0} °1,

03 02
’ 021 037 04

030" 010
[01, 02, 03, 341724 = [01, 05°7, 03, 5471,

010" 010
[01, 02, 03, 0417 = [01, 02, 05272, 547277].

If there exists an automorphisme Aut(Hy) with H; = HJ, we have
|B(t)| = |Hs : Hy| = |Hs : Hg| = |B(0)].

Consequently, in the case whiélC)/Inn(G) has a uniquéi;-orbit B of lengthl, the orbit
B is rigid. In particular, ift = 2 (resp./ = 1), the rigid orbitB has genug ,(B) = 0 and
satisfies the oddness conditit@s). Hence we obtain the following corollary.

COROLLARY 1.2. Under the condition of the theorem, if X (C)/Inn(G) has a unique

Hy-orbit B of length 2 (resp. 1) there exists a regular extension over Q¢ (7') with Galois
group G and with ramification structure C.

2. The groups PZLo(p?). The p-Frobenius mag,2 > 5 —> § =57 € Fp
induces the following automorphism of the projective linear gréup= PSLo(p?).

st 51 _
go.Hap_<u U)»—><IZ )_.pEH.

We define the projective semilinear groGp:= P L2(p?) by the semi-direct product off
with this automorphisnp. Hereafterp denotes a fixed prime number with= +3 (mod 8.
In this case, 2 is a nonsquare Bf,, so we haverz = Fp(ﬁ), where+/2 is a root of

x? — 2 € F,[x]. We can easily check that2 = —+/2 andr := —2+ +/2 is a nonsquare of
F 2. The conjugacy classe€22D, pA, pB in G are defined as the classes of the following

<
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elements, respectively.

0 1 11 10
¢ \-1 0)/% \o 1)° \» 1)-
We take the rational class vect©r= (2C, 2D, pA, pB).

REMARK 2.1. Here we follow from the notation of P${25) in ATLAS [1]. In the
character table of PSI9) = Ag, however, the notation iATLAS is somewhat different.
Indeed, our classex2and 2D correspond to 2 and Z in the table of PSk(9).

LEMMA 2.1.

0 2c={(2 2)o

whereF,v/2:={nv2|neF,} ={s €F 2 |s+35=0}.
. N
(i) 2D = (d3 —6?1> 10

_ 1+ aiar a%
(i) pA = < —a% 1—aiaz

c2,C3 € Fp\/z c1C1 — €2¢3 = 1} ,

do,d3 € F, did1 + dod3 = _1} .

(a1, az) # (0, 0)} .

2
V) pB = <1 + b1bor bir

Lhkr 1o b1b2r> ‘ (b1, b2) # (O, 0)} .

ProoOFE (i) Conjugatingy by p = (fl f}) € H andpg, we get

_1 P Sv—tu tv—1tv
povP=0 PC=\Gu—si so—iu)?
(pe) o (pp) = o0 ppp = 5 pg .

Hence  C {(Cl €2> @

3 1

Colp) = {(; f))

the cardinal of Z is

c2,c3 € Fpﬁ, 101 — C2c3 = 1}. Since the centralizer @f is

s,t,u,veF,ors, t,u,ve pr/é}- (p) = PGL2(p) - {p),

PELa(p®)] _ PP - D+ _ p(pP+1D)
2IPGL2(p)l  2p(p—D(p+1) 2
Using|{c1 € F 2 | cac1 = 1}| = p + 1, we can count the elements of the right-hand side of

(i), namely,
‘1 62 ¢lco,c3€eF V2, c1c1 —ccz3 =1 = —— =|2C]|.
3 1 b 2

Hence the equality (i) holds. Other cases (ii), (iii), (iv) are similar. d

12C| =

_p(p®+ 1)
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Let U be the union of {0} and a representative systeanf/{:Izl} with1 e U andV
the following subset ot/.

Vi={ueU|-2+uv2¢Ff)=uel|2-u’cF;?).

LEMMA 2.2. Each[o] € X(C)/Inn(G) isrepresented by o = (01, 02, 03, 04) With

o1 — s—i—u\/z —u\/i o — t—i—u\/ﬁ —t
1= (Qu — s)V2 s —u~2 oo2=1 —t +u2 ¢

(11 (1 0
03 = 0 1 ) 04 = —2+U\/§ 1 .

Heres,t € Fp,u € U, v € V areunique for each [¢] and satisfy following relations.

(2.1)

s+t =2uv, st =2u?—1.

PROOF By conjugation we put

O:clcz Ozzdl dg g:ll
1 c3 El @, d3 _dl @, 3 0 1 )

s — (LH02b2r  bir
YT b 1—bibor

as in Lemma 2.1. Here we may assume tha¥ 0. Indeed, ifb, = 0, we have

di  d2 _ f(e1+c3(1+ b%r) co+c1(1+ b%r)
ds —di)? ™ c3 ¢1 ¢

from the equatiow, = o30401. This means thatz € F, N Fpﬁ = {0}, so the equation

—1
é —b1by ) Then

. . 1 0
8T8 94T \pibor 1)

cannot hold. Hence we can take= <

Now we can rewrite
G_Clcz a—dl dg G—ll 0__10
Sinceoy = g30401, We get

di d2 (A 4+Db)er+c3 A+Db)ca+c1
d3 —di o bc1 4+ c3 bco + c1

Here we putly =t + uv2,dz=1t—sfors, t,u e F, and solve this equation:

c1=s+ux/§, c2=—u\/§,
di=t+uv2, do=—t, dz=t—s.
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Thenb = —2 + vv/2 withv € V andces = (2u — sv)+/2, wheres, ¢, u, v satisfy the above
relations. To exclude multiplicity of1 we may assume thate U. Thens, ¢, u, v are unique
for each[o]. Indeed, when

(01, 02, 03,04)° = (07, 05, 03,04) for

11 /1 o , ( 1 0
03=03=\g 1) 9= 2402 1) 92 = —24vV2 1)°

we can see that = 1 by the definition ofV’, and hencéo, 02, 03, 04) = (07, 03, 03, 0).
O

Conversely, the elements in (2.1) actually generate the projective semilinear@rfoup
suchs,t € F,,u € U, v € V. This fact follows from Dickson'’s classical theorem:

THEOREM 2.1 (Dickson [3]). For any prime number p, if (p, n) # (3, 2), then

=33 (¢ 9)

Herer isany generator of F ,» /F .

Dickson’s theorem makes an exception(pf n) = (3, 2), but even in such a case,rfis a
nonsquare oF ,«, then (2.2) holds. A proof of the theorem is found, for example, in [5, Th.
8.4]. By elementary number theory there eXist— ¢)/4 choices fow € V and(p — ¢)/2
choices fors, t € F,, u € U, wheres = (—1)(?~D/2, So the class number Gfis

(p—e)?
I(C)y= ———.
©) 8
3. Theorbitsof length 2. Let QT (resp. 0~) denote the subgroup @ which is
generated by and all upper (resp. lower) triangle matrices. Furtherpiétbe the subgroup
of 0F which is generated by and all triangles whose diagonal elements are 1. Notice that

Pt isthe centralizero((l) D inG.

LEMMA 3.1. Intheaction of Hy, B24 and B34 have no fixed point on X (C)/Inn(G).

PROOE A G-orbit [6] € X (C)/Inn(G) is represented by = (o1, 02, 03,04) in
the form as in Lemma 2.2. Suppoge]’2 = [¢]. Then there exists, € G such that
(01,05°"*, 03,04'7%) = ¢™2. Sincer, andos are commutativer, belongs to the centralizer
PT. If .o € H, then the equality;? = o1 meansr, € Q*. Further, ifr, ¢ H, the equality

-1
01013T. —_ —
041 2 — oy leadsoy03T, le P~ andso

o1 € Pt or o1 € P~
0103t£l =1 T2 = 03¢
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by a brief calculation. In the latter case we haye= ¢. Thereforeo; belongs to the upper
trianglesQ in either case. Thus

2u=sv, s2—2u’=1,

which means?(2 — v?) = 2. This contradicts that 2 v? is a square oF .
Next we suppose thdt13 = [o]. Then there existss € G such that(o]>"*, 05°7,
03, 04) = 0 "3, Sincerz commutes witlrz andog, Dickson’s theorem shows thag commutes
0304

with any element of7, namely,73 = 1. Henceo;>™ = 01, and soo1 commutes withoy.
Thusosos = o, *o; * has order 2, but we can calculate that

B D: (2 25).

which is a contradiction. O

(0302)° = <

PrROPOSITION 3.1. Let p be a prime number with p = +3 (mod 8 and G =
PXL2(p?) the projective semilinear group over F 2. Then there exists a unique Hs-orbit
of length 2in X (C)/Inn(G) for the class vector C = (2C, 2D, pA, pB) of G.

PrROOFE From Lemma 3.1 and the identiB{ 4824834 = 1, if X(C)/Inn(G) has anH,-
orbit B of length 2, therBy4 fixes each element . So we suppose that 1714 = [o], where
o is of the form as in Lemma 2.2. Then there exigte G such tha(o;?”, 02, 03, 0,27%) =
o™, Sincer; andos are commutativer; belongs to the centralizé? ™.

If 71 € H and soo,* = 02, then we have, € 01 and sas = 7 = uv. Thus

2u —sv = u71(2u2 — suv) = 1471(2142 —st)=u"t.

We put

e (f( 2B (e () (Gl D)

which is a fixed point of14.
-1
On the other hand, ify ¢ H and soo,” > = o4, then we getosr; * € P~. Since

agr{l e P, we can see that, is of the form(i :) ¢, and hence = 1, u = 0. We put

oy = ((_vlﬁ 2)% @ :1)% <é D (—2—:-1)\/5 (1)>>

which is another fixed point gf14.
Next we determine all pairs of these fixed points which are permutetpySincess
0304 0304

mapslo1, 02, 03, 04] t0 [07°%, 0,°7%, 03, 04], the uniqueness of representation (2.1) shows
that

(0,17 # [0y], [1,07% # [7,],
[0, = [ty = v =1,
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foranyv, v’ € V. For (o1, 02, 03, 04) := o, we calculate that

00304_ 1+Uﬁ -1
2 T \2—202 —1+vV/2)°

s0 if [¢,]P3 = [1,], thenv = 1. Hence we obtain a unigués-orbit B of length 2, namely,

B :={lo1], [T1]}
(e Do G e 63 (e 9
[(14:/\2/2 1__\/%)% (Hoﬁ—l:ifz)‘”’ <é i) <—2i«/§ 2)“
O

PROOF OFTHEOREM 0.1. By the rigid braid orbit theorem and its corollary, there
exists a regular extensiavi/Q(T') with Galois group L2 (p?) and with ramification struc-
tureC = (2C, 2D, pA, pB). The intermediate field. corresponding to the normal subgroup
PSLy(p?) of PEL(p?) is a quadratic extension ov€¥(T). Here two ramification points
corresponding tpA and pB are unramified al./Q(T), since these classes are included
in PSLo(p?). Therefore the quadratic extensidnis a rational function field ove®, say
L = Q(T’). Thus we obtain a regular extensitfy Q(7") with Galois group PS@(pZ). O

4. Some almost simple groups. Matzat improves the rigid braid orbit theorem for
the class vectors which have some symmetries. This improvement is callend dted braid
orbit theorem. Using this theorem, we treat some finite simple groups listéXT IPAS.

Let C = (C1, C2, C3, C4) be a class vector off with C1 = C». Then one of the
generatorg; € Hy acts onX (C)/Inn(G). Now we putp; = Bra, By := P1. B3 = Puaf1
andH, := (Hy, p1). Let B = B(o) be anH -orbitin X(C)/Inn(G) andc; be the number of
cycles in the permutation representatiorgpon B. Instead of the braid orbit genys,(B),
we use thawisted braid orbit genus:

3
94(B) :=1—|B| + % > (Bl=c)).
i=1
Additionally, the oddness conditiai®y) is replaced by the next condition.
(O) In the permutation representation 8none of the cycle lengths, summed over all
B; of the same permutation type, occurs an odd number of times in gome
Then we can state the twisted braid orbit theorem.

THEOREM 4.1 (Matzat [7]). Let G be a finite group with trivial center and C =
(C1, C2, C3, Cy) a class vector of G with C1 = Ca. Further assume that X (C)/Inn(G)
hasarigid H,-orbit B which has genus ¢/, (B) = 0 and satisfies the oddness condition (O').
Then there exists a regular extension over Q¢ (7') with Galoisgroup G and with ramification
structure C.
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We define the number(C) := | X (C)|/|Inn(G)|, where
YC):={o=(o1,...,05) |0; €Ci, 01---05 =1} .

This numberm(C) can be calculated only by the character tableGofcf. [12, Ch. 7.3]).
Further we define the numbey; (C) := | X (C) N H*|/|Inn(G)| for any subgrouH of G. To
determine the class number®©f we use such numbeng; (C) of the maximal subgroupd .

EXAMPLE 4.1. The Tits simple groupF4(2)’.

We take the rational class vectdr= (24, 24, 2B, 8C) of the Tits groupG := 2F4(2)’
in ATLAS notation. The centralizers of these classas2B, 8C have order 10240536 16,
respectively. The character table?f,(2)’ shows that

2(C) = 17971208 < B @_ 275 n 14397_ 3675) _ @
1024@ - 1536- 16 272 32% 3512 67% 2
TABLE 4.1. Irreducible characters 8F4(2)/.
17971200| 10240| 1536 | 16
1A 2A 2B | 8C 1A | 2A | 2B | 8C
X1 1 1 1 1 x10| 351 | -1 | -9
X4 27 -5 3 -1 x11 | 351 | -1 | -9
X5 27 -5 3 -1 x15 | 675 | 35 3 -1
X8 325 5 -11 | -1 x18 | 1300| 20 | —12 | 2
X9 351 31 15 1 x19 | 1300| 20 | —12 | -2

The maximal subgroup 6#4(2)’ which intersects with these classe$,2B, 8C is conjugate
to one of the group&1, G2, G3, Gg of order 102406144 144Q 1440. The computer alge-
bra systenGAP provides the character tables of the Tits group and its maximal subgroups.
Actually, we compute the numbeg;;, (C) as follows.

ng,(C) = 3?5 ng,(C) = 1?1
Here any 4-system i N (G2)* generates a subgroup of order, 82, or 128, which is also
conjugate to a subgroup ¢f1. Hence the class number is

ngz(C) = nGé(C) =0.

Further we compute the permutation representatidi,ain X (C)/Inn(G). Then we can ver-
ify that B = X'(C)/Inn(G) is an H,-orbit of length 96 ang’ has the following permutation

type.
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permutation type

IBZ/I_ 12 . 22 . 410 . 510
By | 1%.2.415.8°
,Bé 248

Thus the orbitB is rigid and has genus
1
ga(B) =1—96+ 5(72+ 70+ 48) =0.

By the twisted braid orbit theorem the Tits grot#(2)’ occurs regularly as Galois group
overQ. O

EXAMPLE 4.2. The projective semilinear groufzR3(9).

We take the rational class vector= (24, 2C, 3A, 4E) of the groupG := PXL3(9) in
ATLAS notation. The sizes of their centralizers are 1132232 11664 96 and two of the
classes A and 3A are included in PS4(9). Here we extract the character table of B&)
in ATLAS.

TABLE 4.2. Irreducible characters of P§(9).

84913920| 11520 | 11664 11232] 96

14 24 34 2c | 4E
x1 1 1 1 |:] 1 1
x2 920 10 9 |:| 12 | 4
X3 91 11 0 |:| 13 |-3
x77| 819 19 9 |:| 39 |-1
xsa | 910 30 19 |:| 26 | 2
xsg | 910 —10 | 19 |:| 26 | -2
xe0 | 910 —10 | 19 |:| 26 | -2

This table, however, contains the information of irreducible charactersafs®). Each
character in this table splits into two characters &fLB(9). For example, the character
x1 splits into x1 and x;, wherex; is the trivial character of BL3(9) and x; is defined by
X1(g) = 1forg € PSL3(9) andx;(g) = —1 otherwise. Hence

84913926 2. (1 4320 4290 6669+ 49400\ 106
11520- 11232 11664- 96 9(? 912 81% 91®? ) ’

If a maximal subgrou of PXL3(9) intersects with all classes &, then H is conjugate
to one of the group&1, G/, G2, Gs of order 933120933120 12096 11232. We again use
GAP to compute the numbery (C) for these maximal subgrou#:

ng,(C) = nG/l(C) =32, ng,(C)=3, ng,(C)=19.

n(C) =
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Here each 4-system i@ N (G3)* generates a subgroup of order 888, or 72, which is also
conjugate to a subgroup @ or Gj. There exists a 4-system of C N (G1)* such that
o1, 02, 03, 04 generate a subgroup which is conjugate to some subgroGy.of he number
of such 4-systems is exactlylBn(G)|, where these 4-systems generate subgroups of order
96. Thus
I(C) = 106— (32+32—3) —3=42.
The groupH, acts onX' (C)/Inn(G) intransitively. IndeedX (C)/Inn(G) has twoH4-orbits
of length 18 and length 24. We take the shorter obbiif length 18. In the transitive action
of H4 on B, the permutation types ¢, 82, 83 are given in the next table.

permutation type

B1 16.22. 42
B2 4.5
B3 2.34.4

The orbitB is rigid, since it is a uniquéis-orbit of length 18 inX'(C)/Inn(G), and has genus
1

Here we choose the class vectorsuch that just two classesA2and 3A are included in
PSL3(9), so we have a regular extension oGHT) with Galois group PS§(9), similarly as
the proof of Theorem 0.1. O

We continue similar computation for several simple groGps Lie type and their exten-
sionsG.2 by outer automorphisms of order 2. Ansogp in the tables below has a rigid braid
orbit B with braid orbit genug 4(B) = 0 (Table 4.3) or twisted braid orbit geny§(B) = 0
(Table 4.4). In the case which(C)/Inn(G.2) decomposes into two or three orbits, we un-
derline the length of the orbit which we choose (ex. 24+ F®r the extension groufs.2 we
take the rational class vectatssuch that just two classes Gfare included inG. Hence the
subgroups; of G.2 also occur regularly as Galois groups o@rIn conclusion we obtain
the Theorem 0.2 stated in the first place.

TABLE 4.3. Rigid braid orbits of some (almost) simple groups I.

class vectoC 1(C) types ofB14, B4, B34
Sa(4) | (2A,2B,3A,5E) 12 12.32.4,  2.52, 26
L3(9).2 | (24,2C,3A,4E) | 24+18 | 16.22.42. 4252 2.3%4
Se(3) | (24,24,44,12C) 2 2, 2, 12
Us(2) | (24,24, 4C, 12F) 6 12.4, 124, 3?2
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TABLE 4.4. Rigid braid orbits of some (almost) simple groups II.

class vectoC 1(C) permutation types o8, 55, 5
Us(3).2 | (2B,2B,3B,5A) | 10+5+5 22.32, 3324 5
L5(2).2 | (2A,2A,4D,6C) 56 1.22.32.42.58.6.82, 23.36.48, 028
Us(2).2 | (2A,2A,4D, 104) 40 3.4.5%.63, 22.312 720
2F4(2) | (2A,24,2B,80C) 96 12.22.410.510 14941556 248
3D4(2) | (24,24, 3B, 124) 60 32.69,  13.31543 30
Go(4) | (2A,24,34A,74) 14 12.34, 452, 27
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