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Abstract. We apply the braid orbit theorem to projective semilinear groups over the
finite fields with p2 elements and some almost simple groups of Lie type. The projective
special linear groups PSL2(p2) with p ≡ ±3 (mod 8), the Tits simple group, and some small
simple groups occur regularly as Galois groups over the rationals.

Introduction. Let G be a finite group with trivial center andC = (C1, . . . , Cs) a
rational class vector ofG. We denote byΣ(C) the set of generatings-systems inC:

Σ(C) := {σ = (σ1, . . . , σs ) | σi ∈ Ci, σ1 · · · σs = 1, 〈σ1, . . . , σs 〉 = G} .

The inner automorphism group Inn(G) ∼= G naturally acts onΣ(C) and thepure Hurwitz
braid group Hs acts on the orbit spaceΣ(C)/Inn(G). An Hs-orbit in Σ(C)/Inn(G) is called
a braid orbit. In his rigid braid orbit theorem [7] Matzat determined certain conditions on
a braid orbit for the existence of a regular extensionN over the rational function fieldQ(T )

with Galois groupG and with ramification structureC.
Przywara [9] applied this theorem to the almost simple group P�L2(25) with class vec-

tor C = (2A, 2C, 2D, 12A) and proved that the projective linear group PSL2(25) occurs
regularly as Galois group overQ.

In this paper we take another class vectorC = (2C, 2D,pA,pB) of P�L2(p
2) for any

prime numberp ≡ ±3 (mod 8) and obtain the following theorem.

THEOREM 0.1. The projective linear group PSL2(p
2) occurs regularly as Galois

group over Q for any prime number p ≡ ±3 (mod 8).

Concerning Galois realizations of such simple groups, Feit [4] and Mestre [8] showed
in different ways that PSL2(p2) occurs regularly as Galois group overQ for p ≡ ±2 (mod
5). Furthermore, there are several works in the theory of modular forms. First, Ribet [11]
proved that PSL2(p2) occurs as Galois group overQ for any primep if 144169 is a nonsquare
modulo p. Reverter and Vila [10] extended this result for primesp such that one of the
integers 18209, 51349, 144169, 2356201, 18295489, 63737521 is a nonsquare modulop.
Moreover, Dieulefait and Vila [2] obtained similar result in the case which a prime less than
20 is a nonsquare modulop. Hilbert’s irreducibility theorem assures that if a groupG occurs
regularly as Galois group overQ, then there exist infinitely many linearly disjoint Galois
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extensions overQ with Galois groupG. So our theorem is a generalization of the case which
2 is a nonsquare modulop in their result.

In another direction we explicitly compute some braid orbits of small almost simple
groups of Lie type. Using the computer algebra systemGAP [13], we find suitable braid
orbits for the Tits simple group2F4(2)′, the smallest Steinberg triality group3D4(2), and
some small almost simple groups.

THEOREM 0.2. The following simple groups of Lie type occur regularly as Galois
groups over Q:

S4(4), U4(3), L5(2), U5(2), 2F4(2)′, L3(9), 3D4(2), G2(4), S6(3), U6(2) .

1. Rigid braid orbit theorem. Thefull Hurwitz braid group H̃s is generated by ele-
mentsβ1, . . . , βs−1 with the following relations:

βiβj = βjβi for |i − j | > 1 ,

βiβi+1βi = βi+1βiβi+1 for 1 ≤ i ≤ s − 2 ,

β1 · · ·βs−2β
2
s−1βs−2 · · ·β1 = 1 .

There exists a surjective homomorphismqs : H̃s � βi 	−→ (i, i + 1) ∈ Ss , whereSs is the
symmetric group ons letters and(i, i + 1) is a transposition. We denote the kernel ofqs by
Hs , which is a normal subgroup of̃Hs and has generators

βij := (β2
i )

β−1
i+1···β−1

j−1 = (β2
j−1)

βj−2···βi for 1 ≤ i < j ≤ s .(1.1)

The groupHs is called thepure Hurwitz braid group.
Let G be a finite group with trivial center andΣs(G) the set of all generatings-systems

of G:

Σs(G) := {σ = (σ1, . . . , σs) | σ1 · · ·σs = 1, 〈σ1, . . . , σs〉 = G} .

The groupH̃s acts on the orbit spaceΣs(G)/Inn(G) in the following way.

[σ1, . . . , σs ]βi = [σ1, . . . , σi−1, σiσi+1σ
−1
i , σi , σi+2, . . . , σs ] .(1.2)

Then the subgroupHs acts onΣ(C)/Inn(G), whereC = (C1, . . . , Cs) is a given class vector
of G. The numberl(C) := |Σ(C)/Inn(G)| is called theclass number of C. We denote by
B = B(σ ) theHs-orbit of [σ ] under this action and callB abraid orbit.

Let Hσ be the stabilizer of[σ ] ∈ Σ(C)/Inn(G) in Hs . A braid orbitB = B(σ ) is said to
berigid when for each[τ ] �= [σ ] there exists no automorphismα of Hs with Hτ = Hα

σ . Let
πB be the permutation representation ofHs on a braid orbitB andci the number of cycles in
πB(βis). Then we can define thebraid orbit genus g s (B) of B by

g s (B) := 1 − |B| + 1

2

s−1∑
i=1

(|B| − ci) .

Additionally, we consider the followingoddness condition.
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(Os) In the permutation representation onB, one of the cycle lengths occurs an odd
number of times in someβis .

Let QC be the number field generated by the values of irreducible characters ofG at
C1, . . . , Cs over the rationals. The class vectorC = (C1, . . . , Cs) is said to berational if
QC = Q, or equivalently if(Cm

1 , . . . , Cm
s ) = C for any integerm prime to|G|. Then we can

describe therigid braid orbit theorem as follows.

THEOREM 1.1 (Matzat [7]). Let G be a finite group with trivial center and C =
(C1, C2, C3, C4) a class vector of G. Further assume that Σ(C)/Inn(G) has a rigid H4-
orbit B which has genus g 4(B) = 0 and satisfies the oddness condition (O4). Then there
exists a regular extension over QC(T ) with Galois group G and with ramification structure
C.

Although this theorem was stated for arbitrarys in [7], here we restrict it tos = 4 for sim-
plicity. See Matzat [7] or Malle and Matzat [6] for the proof of the theorem.

From (1.1) and (1.2) the action ofβi4 on Σ(C)/Inn(G) can be described explicitly as
follows.

[σ1, σ2, σ3, σ4]β14 = [σσ2σ3
1 , σ2, σ3, σ

σ2σ3
4 ] ,

[σ1, σ2, σ3, σ4]β24 = [σ1, σ
σ3σ1
2 , σ3, σ

σ1σ3
4 ] ,

[σ1, σ2, σ3, σ4]β34 = [σ1, σ2, σ
σ1σ2
3 , σ

σ1σ2
4 ] .

If there exists an automorphismα ∈ Aut(Hs) with Hτ = Hα
σ , we have

|B(τ )| = |Hs : Hτ | = |Hs : Hσ | = |B(σ )| .
Consequently, in the case whichΣ(C)/Inn(G) has a uniqueHs-orbit B of lengthl, the orbit
B is rigid. In particular, ifl = 2 (resp. l = 1), the rigid orbitB has genusg 4(B) = 0 and
satisfies the oddness condition(O4). Hence we obtain the following corollary.

COROLLARY 1.2. Under the condition of the theorem, if Σ(C)/Inn(G) has a unique
H4-orbit B of length 2 (resp. 1), there exists a regular extension over QC(T ) with Galois
group G and with ramification structure C.

2. The groups P�L2(p
2). The p-Frobenius mapFp2 � s 	−→ s̄ := sp ∈ Fp2

induces the following automorphism of the projective linear groupH := PSL2(p
2).

ϕ : H � ρ =
(

s t

u v

)
	−→

(
s̄ t̄

ū v̄

)
=: ρ̄ ∈ H .

We define the projective semilinear groupG := P�L2(p
2) by the semi-direct product ofH

with this automorphismϕ. Hereafterp denotes a fixed prime number withp ≡ ±3 (mod 8).
In this case, 2 is a nonsquare ofFp, so we haveFp2 = Fp(

√
2), where

√
2 is a root of

x2 − 2 ∈ Fp[x]. We can easily check that¯√
2 = −√

2 andr := −2 + √
2 is a nonsquare of

Fp2. The conjugacy classes 2C, 2D,pA,pB in G are defined as the classes of the following
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elements, respectively.

ϕ ,

(
0 1

−1 0

)
ϕ ,

(
1 1
0 1

)
,

(
1 0
r 1

)
.

We take the rational class vectorC = (2C, 2D,pA,pB).

REMARK 2.1. Here we follow from the notation of PSL2(25) in ATLAS [1]. In the
character table of PSL2(9) ∼= A6, however, the notation inATLAS is somewhat different.
Indeed, our classes 2C and 2D correspond to 2B and 2C in the table of PSL2(9).

LEMMA 2.1.

(i) 2C =
{(

c1 c2
c3 c̄1

)
ϕ c2, c3 ∈ Fp

√
2, c1c̄1 − c2c3 = 1

}
,

where Fp

√
2 := {n√

2 | n ∈ Fp} = {s ∈ Fp2 | s + s̄ = 0}.

(ii) 2D =
{(

d1 d2

d3 −d̄1

)
ϕ d2, d3 ∈ Fp, d1d̄1 + d2d3 = −1

}
.

(iii) pA =
{(

1 + a1a2 a2
1−a2

2 1 − a1a2

)
(a1, a2) �= (0, 0)

}
.

(iv) pB =
{(

1 + b1b2r b2
1r−b2

2r 1 − b1b2r

)
(b1, b2) �= (0, 0)

}
.

PROOF. (i) Conjugatingϕ by ρ =
(

s t

u v

)
∈ H andρϕ, we get

ρ−1ϕρ = ρ−1ρ̄ϕ =
(

s̄v − t ū t̄v − t v̄

s̄u − sū sv̄ − t̄u

)
ϕ ,

(ρϕ)−1ϕ(ρϕ) = ϕ−1ρ−1ϕρϕ = ρ̄−1ρϕ .

Hence 2C ⊆
{(

c1 c2
c3 c̄1

)
ϕ c2, c3 ∈ Fp

√
2, c1c̄1 − c2c3 = 1

}
. Since the centralizer ofϕ is

CG(ϕ) =
{(

s t

u v

)
s, t, u, v ∈ Fp or s, t, u, v ∈ Fp

√
2

}
· 〈ϕ〉 ∼= PGL2(p) · 〈ϕ〉 ,

the cardinal of 2C is

|2C| = |P�L2(p
2)|

2|PGL2(p)| = p2(p2 − 1)(p2 + 1)

2p(p − 1)(p + 1)
= p(p2 + 1)

2
.

Using |{c1 ∈ Fp2 c1c̄1 = 1}| = p + 1, we can count the elements of the right-hand side of
(i), namely,∣∣∣∣

{(
c1 c2
c3 c̄1

)
ϕ c2, c3 ∈ Fp

√
2, c1c̄1 − c2c3 = 1

}∣∣∣∣ = p(p2 + 1)

2
= |2C| .

Hence the equality (i) holds. Other cases (ii), (iii), (iv) are similar. �
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Let U be the union of {0} and a representative system ofF×
p /{±1} with 1 ∈ U andV

the following subset ofU .

V := {u ∈ U | −2 + u
√

2 �∈ F×2
p2 } = {u ∈ U | 2 − u2 ∈ F×2

p } .

LEMMA 2.2. Each [σ ] ∈ Σ(C)/Inn(G) is represented by σ = (σ1, σ2, σ3, σ4) with

σ1 =
(

s + u
√

2 −u
√

2
(2u − sv)

√
2 s − u

√
2

)
ϕ , σ2 =

(
t + u

√
2 −t

t − s −t + u
√

2

)
ϕ ,

σ3 =
(

1 1
0 1

)
, σ4 =

(
1 0

−2 + v
√

2 1

)
.

(2.1)

Here s, t ∈ Fp, u ∈ U, v ∈ V are unique for each [σ ] and satisfy following relations.

s + t = 2uv , st = 2u2 − 1 .

PROOF. By conjugation we put

σ1 =
(

c1 c2
c3 c̄1

)
ϕ , σ2 =

(
d1 d2

d3 −d̄1

)
ϕ , σ3 =

(
1 1
0 1

)
,

σ4 =
(

1 + b1b2r b2
1r−b2

2r 1 − b1b2r

)

as in Lemma 2.1. Here we may assume thatb2 �= 0. Indeed, ifb2 = 0, we have(
d1 d2

d3 −d̄1

)
ϕ =

(
c1 + c3(1 + b2

1r) c2 + c̄1(1 + b2
1r)

c3 c̄1

)
ϕ

from the equationσ2 = σ3σ4σ1. This means thatc3 ∈ Fp ∩ Fp

√
2 = {0}, so the equation

cannot hold. Hence we can takeτ =
(

1 −b1b
−1
2

0 1

)
. Then

στ
3 = σ3, σ τ

4 =
(

1 0
b1b2r 1

)
.

Now we can rewrite

σ1 =
(

c1 c2
c3 c̄1

)
ϕ , σ2 =

(
d1 d2

d3 −d̄1

)
ϕ , σ3 =

(
1 1
0 1

)
, σ4 =

(
1 0
b 1

)
.

Sinceσ2 = σ3σ4σ1, we get(
d1 d2

d3 −d̄1

)
ϕ =

(
(1 + b)c1 + c3 (1 + b)c2 + c̄1

bc1 + c3 bc2 + c̄1

)
ϕ .

Here we putd1 = t + u
√

2, d3 = t − s for s, t, u ∈ Fp and solve this equation:

c1 = s + u
√

2 , c2 = −u
√

2 ,

d1 = t + u
√

2 , d2 = −t , d3 = t − s .
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Thenb = −2 + v
√

2 with v ∈ V andc3 = (2u − sv)
√

2, wheres, t, u, v satisfy the above
relations. To exclude multiplicity of±1 we may assume thatu ∈ U . Thens, t, u, v are unique
for each[σ ]. Indeed, when

(σ1, σ2, σ3, σ4)
τ = (σ ′

1, σ
′
2, σ

′
3, σ

′
4) for

σ3 = σ ′
3 =

(
1 1
0 1

)
, σ4 =

(
1 0

−2 + v
√

2 1

)
, σ ′

4 =
(

1 0
−2 + v′√2 1

)
,

we can see thatτ = 1 by the definition ofV , and hence(σ1, σ2, σ3, σ4) = (σ ′
1, σ

′
2, σ

′
3, σ

′
4).
�

Conversely, the elements in (2.1) actually generate the projective semilinear groupG for
suchs, t ∈ Fp, u ∈ U, v ∈ V . This fact follows from Dickson’s classical theorem:

THEOREM 2.1 (Dickson [3]). For any prime number p, if (p, n) �= (3, 2), then

PSL2(p
n) =

〈(
1 1
0 1

)
,

(
1 0
r 1

)〉
.(2.2)

Here r is any generator of Fpn/Fp.

Dickson’s theorem makes an exception of(p, n) = (3, 2), but even in such a case, ifr is a
nonsquare ofFpn , then (2.2) holds. A proof of the theorem is found, for example, in [5, Th.
8.4]. By elementary number theory there exist(p − ε)/4 choices forv ∈ V and(p − ε)/2
choices fors, t ∈ Fp, u ∈ U , whereε = (−1)(p−1)/2. So the class number ofC is

l(C) = (p − ε)2

8
.

3. The orbits of length 2. Let Q+ (resp. Q−) denote the subgroup ofG which is
generated byϕ and all upper (resp. lower) triangle matrices. Further, letP± be the subgroup
of Q± which is generated byϕ and all triangles whose diagonal elements are 1. Notice that

P+ is the centralizer of

(
1 1
0 1

)
in G.

LEMMA 3.1. In the action of H4, β24 and β34 have no fixed point on Σ(C)/Inn(G).

PROOF. A G-orbit [σ ] ∈ Σ(C)/Inn(G) is represented byσ = (σ1, σ2, σ3, σ4) in
the form as in Lemma 2.2. Suppose[σ ]β24 = [σ ]. Then there existsτ2 ∈ G such that
(σ1, σ

σ3σ1
2 , σ3, σ

σ1σ3
4 ) = σ τ2. Sinceτ2 andσ3 are commutative,τ2 belongs to the centralizer

P+. If τ2 ∈ H , then the equalityστ2
1 = σ1 meansτ2 ∈ Q+. Further, ifτ2 �∈ H , the equality

σ
σ1σ3τ

−1
2

4 = σ4 leadsσ1σ3τ
−1
2 ∈ P− and so



σ1 ∈ P+

σ1σ3τ
−1
2 = 1

or



σ1 ∈ P−

τ2 = σ3ϕ
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by a brief calculation. In the latter case we haveσ1 = ϕ. Thereforeσ1 belongs to the upper
trianglesQ+ in either case. Thus

2u = sv, s2 − 2u2 = 1 ,

which meanss2(2 − v2) = 2. This contradicts that 2− v2 is a square ofFp.
Next we suppose that[σ ]β34 = [σ ]. Then there existsτ3 ∈ G such that(σσ3σ4

1 , σ
σ3σ4
2 ,

σ3, σ4) = σ τ3. Sinceτ3 commutes withσ3 andσ4, Dickson’s theorem shows thatτ3 commutes
with any element ofH , namely,τ3 = 1. Henceσσ3σ4

1 = σ1, and soσ1 commutes withσ2.
Thusσ3σ4 = σ−1

2 σ−1
1 has order 2, but we can calculate that

(σ3σ4)
2 =

(−1 + v
√

2 1
−2 + v

√
2 1

)2

=
( ∗ v

√
2

∗ −1 + v
√

2

)
,

which is a contradiction. �
PROPOSITION 3.1. Let p be a prime number with p ≡ ±3 (mod 8) and G =

P�L2(p
2) the projective semilinear group over Fp2. Then there exists a unique H4-orbit

of length 2 in Σ(C)/Inn(G) for the class vector C = (2C, 2D,pA,pB) of G.

PROOF. From Lemma 3.1 and the identityβ14β24β34 = 1, if Σ(C)/Inn(G) has anH4-
orbitB of length 2, thenβ14 fixes each element ofB. So we suppose that[σ ]β14 = [σ ], where
σ is of the form as in Lemma 2.2. Then there existsτ1 ∈ G such that(σσ2σ3

1 , σ2, σ3, σ
σ2σ3
4 ) =

σ τ1. Sinceτ1 andσ3 are commutative,τ1 belongs to the centralizerP+.
If τ1 ∈ H and soστ1

2 = σ2, then we haveσ2 ∈ Q+ and sos = t = uv. Thus

2u − sv = u−1(2u2 − suv) = u−1(2u2 − st) = u−1 .

We put

τ v :=
(

u

(
v+√

2 −√
2

u−2
√

2 v−√
2

)
ϕ , u

(
v+√

2 −v

0 −v+√
2

)
ϕ ,

(
1 1
0 1

)
,

(
1 0

−2+v
√

2 1

))
,

which is a fixed point ofβ14.

On the other hand, ifτ1 �∈ H and soσ
σ2σ3τ

−1
1

4 = σ4, then we getσ2σ3τ
−1
1 ∈ P−. Since

σ3τ
−1
1 ∈ P+, we can see thatσ2 is of the form

(
1 ∗
∗ ∗

)
ϕ, and hencet = 1, u = 0. We put

σ v :=
((

1 0
−v

√
2 1

)
ϕ ,

(
1 −1
2 −1

)
ϕ ,

(
1 1
0 1

)
,

(
1 0

−2+v
√

2 1

))
,

which is another fixed point ofβ14.
Next we determine all pairs of these fixed points which are permuted byβ34. Sinceβ34

maps[σ1, σ2, σ3, σ4] to [σσ3σ4
1 , σ

σ3σ4
2 , σ3, σ4], the uniqueness of representation (2.1) shows

that

[σ v]β34 �= [σ v′ ] , [τ v]β34 �= [τ v′ ] ,

[σ v]β34 = [τ v′ ] �⇒ v = v′ ,
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for anyv, v′ ∈ V . For(σ1, σ2, σ3, σ4) := σ v we calculate that

σ
σ3σ4
2 =

(
1 + v

√
2 −1

2 − 2v2 −1 + v
√

2

)
,

so if [σ v]β34 = [τ v], thenv = 1. Hence we obtain a uniqueH4-orbit B of length 2, namely,

B := {[σ1], [τ1]}
=

{[(
1 0

−√
2 1

)
ϕ ,

(
1 −1
2 −1

)
ϕ ,

(
1 1
0 1

)
,

(
1 0

−2+√
2 1

)]
,

[(
1+√

2 −√
2√

2 1−√
2

)
ϕ ,

(
1+√

2 −1
0 −1+√

2

)
ϕ ,

(
1 1
0 1

)
,

(
1 0

−2+√
2 1

)]}
.

�
PROOF OF THEOREM 0.1. By the rigid braid orbit theorem and its corollary, there

exists a regular extensionN/Q(T ) with Galois group P�L2(p
2) and with ramification struc-

tureC = (2C, 2D,pA,pB). The intermediate fieldL corresponding to the normal subgroup
PSL2(p

2) of P�L2(p
2) is a quadratic extension overQ(T ). Here two ramification points

corresponding topA and pB are unramified atL/Q(T ), since these classes are included
in PSL2(p

2). Therefore the quadratic extensionL is a rational function field overQ, say
L = Q(T ′). Thus we obtain a regular extensionN/Q(T ′) with Galois group PSL2(p2). �

4. Some almost simple groups. Matzat improves the rigid braid orbit theorem for
the class vectors which have some symmetries. This improvement is called thetwisted braid
orbit theorem. Using this theorem, we treat some finite simple groups listed inATLAS.

Let C = (C1, C2, C3, C4) be a class vector ofG with C1 = C2. Then one of the
generatorsβ1 ∈ H̃4 acts onΣ(C)/Inn(G). Now we putβ ′

1 := β14, β ′
2 := β1, β ′

3 := β14β1

andH ′
4 := 〈H4, β1〉. Let B = B(σ ) be anH ′

4-orbit in Σ(C)/Inn(G) andc′
i be the number of

cycles in the permutation representation ofβ ′
i on B. Instead of the braid orbit genusg 4(B),

we use thetwisted braid orbit genus:

g ′
4(B) := 1 − |B| + 1

2

3∑
i=1

(|B| − c′
i ) .

Additionally, the oddness condition(Os) is replaced by the next condition.
(O′) In the permutation representation onB, one of the cycle lengths, summed over all

β ′
i of the same permutation type, occurs an odd number of times in someβ ′

i .
Then we can state the twisted braid orbit theorem.

THEOREM 4.1 (Matzat [7]). Let G be a finite group with trivial center and C =
(C1, C2, C3, C4) a class vector of G with C1 = C2. Further assume that Σ(C)/Inn(G)

has a rigid H ′
4-orbit B which has genus g ′

4(B) = 0 and satisfies the oddness condition (O′).
Then there exists a regular extension over QC(T ) with Galois group G and with ramification
structure C.
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We define the numbern(C) := |Σ̄(C)|/|Inn(G)|, where

Σ̄(C) := {σ = (σ1, . . . , σs) | σi ∈ Ci, σ1 · · ·σs = 1} .

This numbern(C) can be calculated only by the character table ofG (cf. [12, Ch. 7.3]).
Further we define the numbernH (C) := |Σ̄(C)∩Hs |/|Inn(G)| for any subgroupH of G. To
determine the class number ofC, we use such numbersnH (C) of the maximal subgroupsH .

EXAMPLE 4.1. The Tits simple group2F4(2)′.
We take the rational class vectorC = (2A, 2A, 2B, 8C) of the Tits groupG := 2F4(2)′

in ATLAS notation. The centralizers of these classes 2A, 2B, 8C have order 10240, 1536, 16,
respectively. The character table of2F4(2)′ shows that

n(C) = 179712002

102402 · 1536· 16

(
1 − 150

272 − 275

3252 + 14397

3512 − 3675

6752

)
= 227

2
.

TABLE 4.1. Irreducible characters of2F4(2)′.

17971200 10240 1536 16

1A 2A 2B 8C 1A 2A 2B 8C

χ1 1 1 1 1 χ10 351 −1 −9 1

χ4 27 −5 3 −1 χ11 351 −1 −9 1

χ5 27 −5 3 −1 χ15 675 35 3 −1

χ8 325 5 −11 −1 χ18 1300 20 −12 2

χ9 351 31 15 1 χ19 1300 20 −12 −2

The maximal subgroup of2F4(2)′ which intersects with these classes 2A, 2B, 8C is conjugate
to one of the groupsG1,G2,G3,G

′
3 of order 10240, 6144, 1440, 1440. The computer alge-

bra systemGAP provides the character tables of the Tits group and its maximal subgroups.
Actually, we compute the numbernGi (C) as follows.

nG1(C) = 35

2
, nG2(C) = 11

2
, nG3(C) = nG′

3
(C) = 0 .

Here any 4-system inC ∩ (G2)
4 generates a subgroup of order 32, 64, or 128, which is also

conjugate to a subgroup ofG1. Hence the class number is

l(C) = 227

2
− 35

2
= 96.

Further we compute the permutation representation ofH ′
4 onΣ(C)/Inn(G). Then we can ver-

ify that B = Σ(C)/Inn(G) is anH ′
4-orbit of length 96 andβ ′

i has the following permutation
type.
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permutation type

β ′
1 12 · 22 · 410 · 510

β ′
2 14 · 2 · 415 · 56

β ′
3 248

Thus the orbitB is rigid and has genus

g ′
4(B) = 1 − 96+ 1

2
(72+ 70+ 48) = 0 .

By the twisted braid orbit theorem the Tits group2F4(2)′ occurs regularly as Galois group
overQ. �

EXAMPLE 4.2. The projective semilinear group P�L3(9).
We take the rational class vectorC = (2A, 2C, 3A, 4E) of the groupG := P�L3(9) in

ATLAS notation. The sizes of their centralizers are 11520, 11232, 11664, 96 and two of the
classes 2A and 3A are included in PSL3(9). Here we extract the character table of PSL3(9)

in ATLAS.

TABLE 4.2. Irreducible characters of PSL3(9).

84913920 11520 11664 11232 96

1A 2A 3A 2C 4E

χ1 1 1 1 : 1 1

χ2 90 10 9 : 12 4

χ3 91 11 10 : 13 −3

χ77 819 19 9 : 39 −1

χ84 910 30 19 : 26 2

χ89 910 −10 19 : 26 −2

χ90 910 −10 19 : 26 −2

This table, however, contains the information of irreducible characters of P�L3(9). Each
character in this table splits into two characters of P�L3(9). For example, the character
χ1 splits into χ̃1 and χ̃ ′

1, whereχ̃1 is the trivial character of P�L3(9) andχ̃ ′
1 is defined by

χ̃ ′
1(g ) = 1 for g ∈ PSL3(9) andχ̃ ′

1(g ) = −1 otherwise. Hence

n(C) = 849139202

11520· 11232· 11664· 96
· 2 ·

(
1 + 4320

902 − 4290

912 − 6669

8192 + 49400

9102

)
= 106.

If a maximal subgroupH of P�L3(9) intersects with all classes ofC, thenH is conjugate
to one of the groupsG1,G

′
1,G2,G3 of order 933120, 933120, 12096, 11232. We again use

GAP to compute the numbernH (C) for these maximal subgroupsH :

nG1(C) = nG′
1
(C) = 32, nG2(C) = 3 , nG3(C) = 19.
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Here each 4-system inC ∩ (G3)
4 generates a subgroup of order 864, 96, or 72, which is also

conjugate to a subgroup ofG1 or G′
1. There exists a 4-systemσ of C ∩ (G1)

4 such that
σ1, σ2, σ3, σ4 generate a subgroup which is conjugate to some subgroup ofG′

1. The number
of such 4-systems is exactly 3|Inn(G)|, where these 4-systems generate subgroups of order
96. Thus

l(C) = 106− (32+ 32− 3) − 3 = 42.

The groupH4 acts onΣ(C)/Inn(G) intransitively. Indeed,Σ(C)/Inn(G) has twoH4-orbits
of length 18 and length 24. We take the shorter orbitB of length 18. In the transitive action
of H4 onB, the permutation types ofβ1, β2, β3 are given in the next table.

permutation type

β1 16 · 22 · 42

β2 42 · 52

β3 2 · 34 · 4

The orbitB is rigid, since it is a uniqueH4-orbit of length 18 inΣ(C)/Inn(G), and has genus

g 4(B) = 1 − 18+ 1

2
(8 + 14+ 12) = 0 .

Here we choose the class vectorC such that just two classes 2A and 3A are included in
PSL3(9), so we have a regular extension overQ(T ) with Galois group PSL3(9), similarly as
the proof of Theorem 0.1. �

We continue similar computation for several simple groupsG of Lie type and their exten-
sionsG.2 by outer automorphisms of order 2. Any group in the tables below has a rigid braid
orbit B with braid orbit genusg 4(B) = 0 (Table 4.3) or twisted braid orbit genusg ′

4(B) = 0
(Table 4.4). In the case whichΣ(C)/Inn(G.2) decomposes into two or three orbits, we un-
derline the length of the orbit which we choose (ex. 24+18). For the extension groupsG.2 we
take the rational class vectorsC such that just two classes ofC are included inG. Hence the
subgroupsG of G.2 also occur regularly as Galois groups overQ. In conclusion we obtain
the Theorem 0.2 stated in the first place.

TABLE 4.3. Rigid braid orbits of some (almost) simple groups I.

class vectorC l(C) types ofβ14, β24, β34

S4(4) (2A, 2B, 3A, 5E) 12 12·32·4, 2·52, 26

L3(9).2 (2A, 2C, 3A, 4E) 24+18 16·22·42, 42·52, 2·34·4
S6(3) (2A, 2A, 4A, 12C) 2 2, 2, 12

U6(2) (2A, 2A, 4C, 12F) 6 12·4, 12·4, 32
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TABLE 4.4. Rigid braid orbits of some (almost) simple groups II.

class vectorC l(C) permutation types ofβ′
1, β′

2, β′
3

U4(3).2 (2B, 2B, 3B, 5A) 10+5+5 22·32, 32·4, 25

L5(2).2 (2A, 2A, 4D, 6C) 56 1·22·32·42·53·6·82, 23·36·48, 228

U5(2).2 (2A, 2A, 4D, 10A) 40 3·4·53·63, 22·312, 220

2F4(2)′ (2A, 2A, 2B, 8C) 96 12·22·410·510, 14·2·415·56, 248

3D4(2) (2A, 2A, 3B, 12A) 60 32·69, 13·315·43, 230

G2(4) (2A, 2A, 3A, 7A) 14 12·34, 4·52, 27
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