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Abstract. We consider the integral of (the square of) the length of the normal curva-
ture tensor for immersions of manifolds into real space forms, especially into spheres. The
first variation formula is given and the Euler-Lagrange equation is expressed in terms of the
isothermal coordinates when the submanifold is two-dimensional. The relations between the
critical surfaces and Willmore surfaces are discussed. We also give formulas concerning the
residue of logarithmic singularities sFWillmore points or estimate it by a conformal invari-
ant.

We show that if a compact critical surface satisfies certain conditions and the immersion
is minimal, then the Gauss curvature is a non-negative constant and the immersion is a stan-
dard minimal immersion of a sphere or a constant isotropic minimal immersion of a flat torus.
To prove this result, we study two-dimensional Riemannian manifolds admitting concircular
scalar fields whose characteristic functions are polynomials of degree 2. Moreover, the case
that the characteristic functions are polynomials of degree 3 is studied.

Introduction. Inthe 1960's, Willmore proposed studying the functional
Llg] = f (” = K)dv
M

on the space of immersiogs: M — R® of a compact orientable surfadé into a three-
dimensional Euclidean spa&8, wherey is the mean curvature @f, K the Gauss curvature
of the induced metric andv the volume element. The function8l¢] is called the Willmore
functional and a critical surface is called\illmore surface.

Around 1980, Bryant [5] studied Willmore surfaces in a three-dimensional spifere
and contributed to the subject. He defined a conformal Gauss map of a siffaTes
into the de Sitter space of all oriented small spheres3adind showed tha¥/ is a Willmore
surface if and only if the conformal Gauss map is harmonic. Furthermore, he obtained a
duality theorem for Willmore surfaces i§f. Ejiri [11] introduced the notion o&WIImore
surfaces and generalized Bryant's duality theorem f6Willmore surfaces inS”. He also
proved that Willmore surfaces of genus 05f(1) are S-Willmore surfaces and classified
them. Recently, Hélein [13] constructed a Weteass type representation of all Willmore
immersions in terms of closed one-forms. In the studies mentioned above, the most important
fact about Willmore surfaces is théf¢] is invariant under conformal transformations of the
ambient space. The Willmore functional is generalized to submanifolds in a Euclidean space
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or a sphere. One is Pinkall's conformal invariant ([20]) and the other is given in Rigoli [21].
The generalized Willmore functional dealt with in this paper coincides with the latter. For a
general presentation of the problem, see [26].

It is well-known that, for a submanifolsl/” in a space form, the normal curvature tensor
RL € C®(A\?T*M ® (T M)* ® T M) is invariant under conformal transformations of the
ambient space. Therefore the functional

RE1¢) = f IR 17dv
M

on the space of immersions : M™ — M(c) is also a conformal invariant i = m/2.
However, for the most part, we shall deal with the functioﬁél[q&], because it is the Yang-

Mills integral of the normal bundle. We shall also deal with the case¢hat 1 whenM

is a surface. We here note that the geometric meaningj of andR% [¢] for surfaces is as
follows: The integrand ofZ[¢] is equal, up to a constant factor, to the sum of the square of
lengths of major and minor axes of the curvature ellipse in the normal space at each point. On
the other hand, the integrati®- |2 of R% [¢] is equal to the square of the area encircled by
the curvature ellipse up to a constant factor.

Guadalupe and Rodriguez [12] studied the integral of the normal curvature and obtained
some inequalities relating the area of the surface and the integral of the square of the length of
the mean curvature vector with topological invariants. Their integral of the normal curvature
is different from ours. We should note twaf [¢] (resp.R% [¢]) is the integral of the absolute
value (resp. the square of the length) of the normal curvaure.

In Section 1, we give the fundamental formulas in the theory of submanifolds in a real
space form. We also rewrite the corresponding formulas in terms of isothermal coordinates
when the submanifold is two-dimensional.

In Section 2, we obtain the first variation formulas £ff¢] and R(J]-[(;S]. The Euler-
Lagrange equation af[¢] has already known as mentioned above. However, the computation
in this paper seems to be briefer than that of [22]. The Euler-Lagrange equaﬂbjn[doﬂ
is given in Theorem 2.7. The function‘&’l%[q&] is a conformal invariant if the submanifold
is of dimension 4 and is the Yang-Mills integral. We shall prove in Theorem 2.8 that if
¢ : M* — M(c) is an immersion of a 4-dimensional compact oriented maniféfdinto an
n-dimensional space for® (c) and the normal connection is self-dual or anti-self-dual, then
¢ is a critical immersion oRi [¢]. We should note that sindé% [¢] is a functional defined
on a space of immersions, the normal bundle and the induced metric varg with

In Section 3, we reduce the Euler-Lagrange equatio‘R?tgb] (g = 1 and 2) to the
situation that the submanifold is a surface. The result is given in Theorem 3.1.

In Section 4, we shall study critical surfaces £&f®] and R%[q&]. We give formulas
relating the sum of residues of logarithmiogularities of S-Willmore points in a compact
oriented Willmore surface with conformal invariants. In particular, the conformal invariant
appeared in the formula (4.8) is the Willmore integral. We conclude this section by showing
Theorem 4.8 that is stated as follows:
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Letg : M2 — S$"(c) be a minimal immersion of compact surfadé into " (c). If ¢ isa
critical immersion ofR% [¢] and the curvature ellipses are circles, then the Gauss curvature is
constant and the immersion is a standard mithimanersion of a sphere, a constant isotropic
minimal immersion of a flat torus.

To complete the proof of Theorem 4.8, weed to study concircular scalar fields in
Section 6.

In Section 5, we shall consider the equation satisfied by concircular scalar fields on a
two-dimensional manifold/ as the Euler-Lagrange equation of the functional

Filgl = / J(K)dvg
M

whereJ is a function orR. Moreover, we shall introduce Tashiro’s work concerning concir-
cular scalar fields.

In Section 6, by making use of elliptic functions, we classify complete two-dimensional
manifolds admitting concircular scalar fields whose characteristic functions are polynomials
of the scalar field which are of degree 2 or 3. The classification is given in Theorem 6.3. The
proof of Theorem 4.8 is completed by using Theorem 6.4.

The author would like to express his hearty thanks to Professor M. Okumura who in-
troduced to him the results by Tashiro [24] explained in Section 5 and to the referee for his
valuable comments.

1. Submanifolds in a space form. Let¢ : M — M be an immersion of am-
dimensionalC® manifold M into ann-dimensional Riemannian manifold. We shall de-
note the Riemannian metric @ by § and the induced metric ot by g. Indicesi, j, k, I run
overtherangé¢l,...,m}, A, u, v,k therangdl, ... ,n} andu, vtherangdm +1,... , n}.
The differentiali¢ of the mapp can be regarded a<&® section of the bundI&* M Q¢*T M,

namelyd¢ € C®(T*M ® ¢*T M) and, in terms of local coordinatds?, ..., x™} (resp.
{yl,...,y"})in M (resp. inM), itis represented as
gt

: a

i A A1 m
axidx ®W’ ()’ _¢(-x1"'7-x ))1
where we use the so-called Einstein summantion convention. The induced mistigiven
by

1.2) 9(X,Y) = g((dp(X),dp(Y))

for any vector fieldsX andY tangent toM.

LetN : T+M — ¢*T M be the inclusion map of the normal bundlé M into ¢*T M.
Then it is regarded as @ section of Hom{+ M, ¢*T M). The connection op*T M in-
duced from the Levi-Civita connection o and the normal connection dft- M induce a
connectionv on Hom{'+M, ¢*T M). Then the Weingarten equation fplbecomes

(1.1) de =

(1.3) VN = —dpoA,
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whereA € C®(T*M ® TM ® (T+M)*) and, for a normal vector fielg, A e C¥(T™"M ®

T M) is the shape operator correspnding td he relation betweer and the second funda-
mental formi € C®(S2T*M @ T+ M) is given by

(1.4) g(AeX,Y) = g(h(X,Y),§)

for vector fieldsX and Y tangent toM. We shall putH = N o h, which belongs to
C™(S2T*M, ¢*T M). The Gauss equation is given by

(1.5) Vdp = H ,

V being the induced connection on the bunflfeV ® ¢*T M.
Let M be a space form (c) of constant sectional curvature Then the structure equa-
tions of Gauss, Codazzi, Ricci are given, respectively, by

gRX,Y)Z, W) =c{g(X,W)g(Y,Z) — g(X, Z)g(Y, W)}

(1.6) +gHX, W), HY,Z) - g(H(X,Z), HY, W)),
(1.7) (VR)(X,Y, Z) = (V)Y X, Z),
(1.8) RY(X,Y)E = h(X, AcY) — h(Y, A¢ X)

for X,Y,Z,W € TM andé € T-M (cf. [9]), whereR: € CX(N\2T*M ® (T+M)* ®

T1M) is the normal curvature tensor. We note tRain (1.7) is the induced connection

on (T*M)2 ® T+M. In the sequel, we shall use the same notaliofor each connection
induced on various vector bundles constructed ffbM, T-M and¢*T M except for the
two-dimensional case, and shall not state to which vector bundle various tensors belong. From
(1.6), we have formulas for Ricci tensor Ric and scalar curvature

(1.9) Ric(X,Y)=cm—Dg(X,Y)+mgh(X,Y),n) — Z g(h(X, Xi), h(Y, Xi)),
(1.10) p = cm(m — 1) +m?||n)|® — | H||?,
wheren is the mean curvature vector field defined by

1
n== h(Xi, Xi),
i

{X1, ..., X} being an orthonormal frame tangentih

Next, we deal with oriented’* surfaces differentiably immersed in a sphéfégc) =
{p € R™ | pll = 1/4/c}. Using isothermal coordinates= x++/—1y, we write the induced
metricg as

(1.11) g = 2F(z,2)|dz|?,

whereF is a positiveC* function. We note thaf" becomes real andig if the immersion
¢ is minimal, has parallel mean curvature vector or make® be a Willmore surface (cf.
[11]). The area element is given by
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(1.12) dv=2Fdx ndy =~—-1Fdz ANdZ.

For integersp andg, let EP-9 be the complex line bundle ovéf whose elements are
equivalence classes ¢, z, P, w), where
(&) UisanopendomainiM andP € U,
(b) zis alocal isothermal parameter definedirandw < C,
() WU,z,P,w)~ U’ 7, P, w)ifand only if
i) P=P eUNU, and
(i) w = w((@z/8z)(P)?(3z/02)(P))".
See [8] for details. We shall sometimes use the complex conjugatfeh — E9-” in our
computation. lix = @ for@ € EP7, then itis said to be real. For instandg= F(z,7)dz ®
dz) isin EL1 and real. The Gauss curvatukeof g is given by

1 - 1

whered = 3/dz, 3 = 3/0z andA = —2F~199. The metricg induces Levi-Civita connec-
tion vV on the bigraded algebta = 3, . E7-¢ with tensor product. The covariant differential
operatorV decomposes int§’ andV”, whereV’ (resp.V”) is a differential operator of bide-
gree (1, 0) (resp. (0, 1)). The operatdtsandV” are defined by

Vi = (da(z,z) — pdlog F - a(z, 2)(dz)" ™t ® dz)?,
V' = (da(z,Z) — g log F - a(z, 2))(d2)P ® (d2)1T

fora = a(z,2)(dz)? ® (d7) € C*°(EP?). In particular, we hav®’ F = 0= V”F. For the
Ricci identity, we have

(1.15) V. Va=(@q-pKFQa.

(1.14)

All higher order derivatives of will be considered as functions with values @+1 =
R"*1 ®@g C. Let the symmetric produ@ = (a1, ... , an+1) andb = (b1, ... , byy1) in C" 1
be defined by

n+1
(1.16) (@b) =Y anby.
h=1

Then the Hermitian product o0& is given by(a, b). The norm ofe € E?7 @ C"*1is
defined as

(1.17) la|? = F~PH9 (o, ).
We immediately have
(1.18) (V. V') =0, (V'¢,V'¢)=0, (Vi¢,V'¢)=F.

Letx! = x andx? = y. We putH;; = H(d/dx',d/dx/), whereH is the second
fundamental form of the immersiagh: M — S"(¢). If we considerH;; as a vector irc+,
then we see that the Gauss equation (1.5) becomes
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/ 1
(1.19) V2 = J(Hi1— Hao— 2v/=1H19)(d2)?.

The right hand side is a vector normalAbin S”(c), which we shall denote by. The mean
curvature vector fielg satisfies

1
(120) n=cp— §A¢ ,

becausenp = —(2/F)V'V”¢. Taking a local orthonormal cross sectigé, ... , N, } in
T+M and regarding them &"*-valued functions, we have

1 _
(1.21) <8Nu +n"d¢p + F}/"a(ﬁ)dz =w Ny,

wheren = n’N,, y = y"N, andw, is the components of the normal connection extended
to the complexificatiol© 7 M of the normal bundle. Fay € C*®(EP4 @ CT+M), we may
define the covariant differentiation éfby

(1.22) Ve = (VE + WE Ny, "VE = ('VE" + BYEN,,

whereé = £“N, = £%(z,2)(dz)? ® (d2)?N,. Then the Weingarten equation (1.3) becomes
1

(1.23) VE ="V =—(E )V — (& 7IV'P,

in virtue of (1.21).
The structure equation (1.6) through (1.83duss, Codazzi and Ricci are the following:

(1.24) K =c+|nl* -yl
(1.25) "ty = F'vip,

1
(1.26) Mg =~ (& Py — €17},

for& e C®(EP4 ® CT+M), where
RE=Vo—V'o+[w, o] e C°(EY @ Hom(CT+M,CT+M)).

We note that the components®f- are given by

V=1
(1.27) ML= TRJ‘lzu“dz ®dz,
and hence it is pure imaginary. We finally note that Ricci identity:fer C*°(EP9QCTLM)

IS
(1.28) V1"V E = (g - pKF®&+R1e.

2. Variation of the length of normal curvaturetensor. Let ¢ be an immersion of
an orientedn-dimensional manifold into ann-dimensional Riemannian manifold. We
shall assume thait > 2.
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DEFINITION. By a compactly supported variation ¢f we mean aC*> map @ :
(—&, &) x M — M, (wheres > 0), such that

(@) eachmap, = @(t,-) : M — M is an immersion ang = ¢y,

(b) the closure of the sép € M | ¢,(p) # ¢(p) for somer € (—¢, ¢)} is compact.

The variation vectol of @ is a vector field along which is defined by

a
v =dq§<—>
/|, o

Thus, if we putW = d®(ad/9dt), thenW (0, p) = V(p) for everyp € M. We decompos&/
into the tangential and normal components:

2.1) W = de(T) + Ni<

whereN; is the inclusion map of the normal bundl& M), into ¢,*TM with respect to the
immersiong;. We note thaf” and¢ depend on, but we omitr from them. On(—e¢, &) x M,
we define an operatady by

af 9 . 9 9
2.2 f=—, & — =WHtT," , & —=0
22 d=5 alg) =wn(n) v

for everyi andi, wheref is aC* function on(—e¢, &) x M, fﬂ”k are Christoffel’s symbols
of the Levi-Civita connection oM and(3/dy*)¢ is the natural local frame i@*T M. We
extends; as a derivation to the tensor bundie7, (M) ® cD*T,,”(M).

LEMMA 2.1. Let g, be the induced metric ¢/ g on {t} x M for eacht € (—¢,¢).
Let #r denote the Lie derivative with respect to T and (H;), be defined by (H):(X,Y) =
g(H/(X,Y), Ny¢) for X, Y € TM, where H; is the second fundamental form of the immer-
sion ¢,. Then we have

(2.3) 819 =2r 9, —2(Hp)¢ .

PrROOFE We first note that
(2.4) 89 =0,

since

J .
dyv Jrpdy* ® dy"
— D W EHvdy” @ dy* — G, WE T dy* @ dy”

= W'V, §,,dy" ® dy" =0.

8:(3;,dy* ® dy") = W"

It follows from (2.4) that

(819 )(X,Y) = 8:(9,(X, Y)) = 8:(9(dp: (X), dp: (Y)))
= g ((8:dp1)(X), dp: (Y)) + g (dpr (X)), (8:dpr)(Y))
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foreveryX,Y € TM. Since

apr . 9
wan =550 e (57), )

AW L, QDM . 9
= — + W', _ | dx —
<8xl R ) * ®<ayk>¢

=VW,

we have, from (1.5),
(619X, Y) = g(VxW,d¢(Y)) + g(de(X), Vy W)
=X-g(W,de,(Y)) — §(W, (Vxdd)(Y)) — (W, dp: (Vi Y))
+Y - §depi(X), W) — §(Vydd)(X), W) — §(de (Vy X), W)
=X-g,(T,Y)— g, (T, VsY)+Y - g,(X,T)— g,(Vy X, T)
—g(Ng, Hi (X, Y)) — g(H (Y, X), Ni$)
=(Z9)(X,Y) = 2(H): (X, Y),
whereV! is the induced connection on the bundieM ® ¢¢*M over{t} x M. O

LEMMA 2.2. Let g; ! be the inverse matrix of the metric ¢, and dv; be the volume
form on M with respect to g,. Then we have

(2.5) 819t =97 L9, — 2H)e g
(2.6) 8idvy = {divT — mg(n, O)}dvy,
divT denoting the divergence of the vector field T'.
PROOF  Since
0=351(g,9; 1) =909, + 9,697 Y.

substituting (2.3) into the first term, we obtain (2.5). We denote the determingnttof g,
and(i, k)-cofactor byA;;. Thend,/g;/dt = (9g:/91)/2./g: and

m
0(9,)1k 0(g)2k (g mk
ag; /0t = A A A
gt/ k§—1 { ” 1w+ o 2%+ -+ o mk

=YY Giging)™ e = 0:(Lpg, — 2(H)ir(g )™
ki

= 2{divT —mg(n, ¢)}gr
Thus we have (2.6). O
LEMMA 2.3. Thevariation §; H, of the second fundamental form H, is given by
7))  (GH)X.Y) = (V'VW)X,Y) + RW.d¢;(X))de,(Y) — dep (8 T) (X, Y))

for every X, Y € TM, where §,I" = (3Ij'x(t))/dt)dx’ ® dx* ® 3/dx", I';ix(t) being
Christoffel’s symbols of the Levi-Civita connection of g, .
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PrROOE From (1.5), we have
(8 H)(X,Y) = (8:V'dg)(X,Y)
for X, Y € TM, where we note that

82 APY -, DM
Vidg, = ( " + *

axidx/ axi " M oxi

ko 0P i j )
=" () —— Jdx ®dx! ® (8/3y") g .
0x
Therefore, using the Ricci formula
[, V'1dey = R(W. dep;(X))dp(Y) — depy (8, T)(X. Y))

ands,;d¢, = VW, we obtain (2.7).

REMARK. Inour later computation, we shall take an inner produét & with normal
vectors and so we need not compéi€’. Here, we only note tha I is a tensor field given

by
29,((6:T)X,Y), Z2)=(V')(X,Y,Z)+ (VY. Z, X) — (V'k)(Z,X.,Y),
wherek = 79,2 (H;),. This will be necessary for the computation of the second variation

formula.

We next compute the first and second terms of the right hand side of (2.7). Hereafter, we
assume that/ is a Riemannian manifold? (c) of constant sectional curvature

LEMMA 2.4. Forevery X,Y € TM, we have

(2.8) R(W,d¢:(X))d¢y(Y) = cg,(X,Y)N,¢ modde,(TM),
(VIVW)Y(X,Y) = NIV h)(X, Y, T) + h (VYT Y) + h(X, Vi T)

(2.9) o .
+ (VIVIO)(X.Y) = h(X, ALY)}  modde,(TM).

PROOF  SinceM = M(c), we have

R(W,de(X)dgy(Y) = cj(dey(X), dp (Y)W — §(W, dep(Y))d e, (X)
=cg,(X,Y)N;, modde,(TM).

Equation (2.9) is proved as follows:

VyW = V;,(dqb,(T) + N:g)
= H,(Y,T) +d,(VyT) — dgy (A Y) + N, Vy( .
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Therefore, ifX € T, M andY is a vector field onM such thatvxY = O atp, then

(VIVW)(X,Y) = Vi Vy W
= VN (Y, T) +ddp;(VyT) — dgy(ALY) + N, Vy ¢}
= N/(V'h)(X,Y,T)+ Neh (Y, V4T)
+ H(X,VyT) — H/(X, ALY) + N, Vi Vi L
= NA(V'h)(X, Y, T) + he (X, Vy,T) + he (Y, V4 T)
— h(X, ALY) + (V'V'O(X, Y)}  moddg,(T,M),

whereAt§ is the shape operator ¢f with respect ta;. i
It follows from (2.7) through (2.9) that

BH)(X,Y)=N{(VVO)(X,Y)+cg(X,Y) +(VR)T, X,Y)

(2.10) —h(X,AY) +h(VxT,Y)+h(X,VyT)} moddo(TM),

where we have put = §;|,—0 and so on. For the mean curvature veetowe have
1
(2.11) S(N) EN{E(—AHS%)HHVTn} modd¢(T M),

S+ being the symmetric transformatidh-M — T-+M defined by
§(S7§, &) = trace Az Ag) .

Here we take an orthonormal local frame fi¢hd,} in 7M. The equation (2.11) is proved
as follows:

1 ij 1y ad
8(Nn) = Z(S 9" Hij I
¢

1 y 9 y 9
=169 HHMN — ) +976Hi—
m ay " dy ®

1 o o . ad
Z{—(V’Tf +V1T’)+2h’/u§”}H,~A< )
¢

y*
1 n 2 i of 0
+ —N(=A¢ =S¢ +cm¢ +mV,n) + —(V'T/)Hj —
m m dy ®
1
= —N(—=AZ +St0)+¢cNe + NV,n  moddp(T M),
m
because of (2.5) and (2.10). L§X;};—1, ... » be an orthonormal base i), M.

LEMMA 2.5. Let S be the symmetric transformation of 7 M defined by ¢(SX,Y) =
> i §(H(X, X;), H(Y, X;)). Thenthe variation of the length of the second fundamental form
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and the mean curvature vector are given by
SIHI?=2) " §(H(Xi, X)), (VVE(Xi, X)) +2 ) He(SXi, Xi)
(2.12) ij i
+2me§(n, ¢) +d|H|*(T),
2 2. -
(2.13) 8linll* = —=G(AL M+ —G(STE, M) +2c5(C,m) + dnl*(T),
respectively.
PROOE Since
IH|? = Hij* Ha" g™ g7',,, and |nl|?> = §(Nn, Nn),

equations (2.12) and (2.13) are derived from (2.4), (2.5), (2.10) and (2.11) by a routine calcu-
lation. O

Next, we shall compute the variation of the length of the tensor fieldhich we define
by L = h—ng, and the normal curvature tensot. We note thatv L andR~+ are conformally
invariant, that isN*L* = NL and(R1)* = R' under the changg* = ¢2/j. This fact is
well-known. However, for reader’s conven@ we give the proof. By a straightforward
computation, we have

H*X,Y)=H(X,Y)+ g(X, Y)ér,
whereé is the normal component of the gradient vectorfof Hence the mean curvature
vector satisfies

N** = e/ (Nn+&p),
from which it follows that
N*L*(X,Y) = H*(X,Y) — ¢*(X,Y)N*n*
=H(X,Y)—g(X,Y)Nn
=NL(X,Y).
DefineL¢ by
g(LeX,Y) =g(L(X,Y),§).
Then we can easily show that
LEX = ALX — 5" (", )X
=As X+ 96X —gn+&r,6)X
=L:X
Since
NR(X,Y)E = H(X, A¢Y) — H(Y, A¢X)
=NL(X,LsY) = NL(Y, L¢X),
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we have(R1)* = RL. Since
(2.14) ILIZ = IH|? = mlnl?,
equations (2.12) and (2.13) imply that
SILIZ=2) " §(L(Xi, X)), (VVO(Xi, X)) +2) §(h(SXi, Xi), ©)
(2.15) ij i
—2§(8* 0, 0) +dIILIAT) .

Therefore we have the following result which was obtained in [21] and [22].

THEOREM 2.6 ([21, 22, 26]). The Euler-Lagrange equation of the conformally in-
variant functional

Lg] =/ IL|"dv
M
is

(2.16)  O(ILI"?L) - ||L||m‘2{<m — 10— ) _Ric(X;, X))L(X;, xj)} =0,
i,j

where 0+ : T+-M — T M isthe symmetric transformation defined by
G(OYEE) =) GL(Xi, X)), )G (L(Xi, X)), &)

and OB = —(VIV/B;;")N, for any section B of T*M ® T*M ® T+ M.

PrROOFE We see from (2.6) that
i£[¢]| —/5(||L||md )
a1 t1lt=0 = v
m . ~
=f{5||L||m—28||L||2+||L||m(d|vT—mg(n,¢))}dv.
Using (2.15), we have

%HLH'"—Z(SHLHZ = m||L||m—2{ Y G, X)), (VYO (Xi, X))
iJ

. ey ey Aol 12
+Zg(h(SX,,X,),§) g(S 77,{)+2d||L|| (T)}~

1
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Hence

%nan‘zanan + L™ @AVT —mG(n, £))
=m Y GULI"?L(Xi, X)), VV¢(Xi, X))
+ml|LI" G (D h(SXi, Xi) — Sty = L)%, ¢))

m .
+ §||L||m*2d||L||2(T> +|ILI™divT

=m Y GULI"?L(Xi, X)), VV¢(Xi, X))
+m| L %5 (— Z Ric(X;, X))L(X;, Xj) + (m — 1) Q" n, ¢) + div(| L||"T) .
where we have used
Stn = Q0 n+minl®n,
g(SX,Y) = —Ric(X,Y) +cm — D)g(X,Y)+mih(X,Y),n).

Integrating by parts and using Stokes’ formura, we obtain (2.16). O

Thus if the Ricci tensor is proportional to the metric tensor, then (2.16) reduces to

O™ 2L) = (m = DIL|"2Q*n = 0.

In particular, we have the following result obtained in [21, 25].

COROLLARY. Ifm = 2, then (2.16)reducesto
(2.17) An— Q+tn=0.

PROOF We have only to showlL = (m — 1)An. We can easily show that by using
the Codazzi equation (1.7). O

DEFINITION.  Willmore surface is a surface satisfying (2.17) immersed in a space form.

Let us consider a variational problem for another conformal invarkint We shall
compute the Euler-Lagrange equation for the functional

Ril¢] = fnRinqdv.

We note that ifg = m/2, thenRj1 /z[¢] is a conformal invariant. However we are also
interested in the cage= 2 for any dimensiom:, because the right hand side of the definition
of R3[¢]is a Yang-Mills integral.

Here we explain the geometric meaning||&~ || in the case thag = 1 andm = 2 (cf.
[12]). For arbitrarily fixed pointp € M, the curvature ellips&, at p is defined as the set
{h(X,X)|X € T,M, || X| = 1}. Thisis an ellipse lying on the plari&, which pass through
n and is spanned by the normal vectars: (h11 — h22)/4F andb = hip/2F in the normal
spaceT,~M. We easily see that|#[>(= 2||L|?) is equal to 4|al|> + ||b]|?) and hence is
equal to the sum of the square of lengths of major and minor axes. The square of the area
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surrounded byE ), in 11, is equal tor?(||a]|?||b]|?> — (a, b)?). It follows that it is equal to
m2(ly1* = [y, y)1®/4 atp. Since|RH|2 = F~2)", R, "RL,7, we see from (1.26) that
(area? = n2|M1|2/8 = 72| R+ ||2/16 atp.

THEOREM 2.7. LetC € C®(T*M ® T*M ® T+M) be defined by
CX,Y) =Y R“(Y,Xh(X,X;).
i=1
If ¢ > 2, then the Euler-Lagrange equation of the functional
Rilgl = / IR [4dv
is given by
1 m
Lyg-2 Lyg-2 vy, v M2 |
(2.18) OURI77C) - EIIR 1 {ZP(X,,X,;)h(X,, Xj) 2 IR~ 77} =0,
LJ
where P is defined by
P(X,Y)=— Ztrace{RL(X, X)HRE(Y, X)) .
In particular, if g = 2, then (2.18)becomes
1 m 2
(2.19) DC—E{ZP(XhXj)h(Xian)_Z”RL” n}=0.
L]
If g = 1and R+ # 0 anywhere on M, then we have
1 m
(2.18)  O(IRM|'C) - EnRinl{ D P(Xi, Xh(Xi, Xj) — EnRinzn} =0.
i,J
PROOFE Since

d
SRy 191]

= /HRHW‘Z{%SHRHF + IR 2(AVT —mg (n, c»}dv,
t=0

we need to computé| R+ ||2. DefineD, by
. ; | d
A kl i
D; = (Hp)u" (Hp) ji"(9)" dx' @ dx’ ® (W)@ ® <ay—ﬂ)q> .
Then, from (1.8), we have
IRA11Z = {(D)i™ = (D) ji*™ D™ = (D) g D™ (907 G307 -

Therefore

1 i~
(2.20) EanRLnZ = {(6D)ij™" — D) ;™ HDu"™ — Dik"}9™ 971 5307 e

+ (D™ — D) (D™ — D™ )89 97 5307 e -
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Next we computé D:

_ , d 9
8D =8| Hu"Hy gMdx' @dx/ @ | — ) ® | —
' 0 )y N0/,

= {SH)u" Hji* g + Hy" S H) ji* g™ + Hy Hy™ (89~}

_ 4 9 9
dx'Qdx’ | — ) ®(— .
ay*Jy Nyt /

Using (2.5) and (2.10), we obtain
GD)ij ™ = ViVt "N HM + ViV 'N B
+ c(Hij* Ny" ¢V + Hij* Np*¢V)
+ T (Vb N1 + Vi N R
+ ViT*D " 4+ v;T* Dy mod (d¢*, dpH) .
Substituting this result into the first term of the right hand side of (2.20) and puiifig =
hig'h %, we have

1 g .

S8 RY|Z = AViVie Ph M Ry + 2P g
(2.21) 2 I l i Vi& J uv T ij u§ )

+ 2QT*Vihy h " + 2V, T* Dy*® — V; T*R* ;") R .
The third term of the right hand side of (2.21) is equal to
2TkRLijuvviRijle .
The second Bianchi identity fat- implies that this is equal t&V7 | R ||2) /2. It follows that
SIIR1? = 8ViVigUh Ry + APh Y " + T'V; | R

Integrating by parts and using Stokes’ formula, we have

d
Ry 19]

= / {AgViVi (IR 19720 ;% RYT )
t=0

+2q | RE12Pyhy — mIIRM[n,}¢ Vv
Here we note that we can use Stokes’ formula under the assumption tha@t However, if
g =1, then
Vi(|RH1972 MR )¢ and  [RMY72h M R 4y Vi
may not converge to 0 as a point approaches to the zerRs oThus, whery = 1, we need
the assumption that does not vanish. O

Whenm = 4 andg = 2, R%[q)] is a conformal invariant and the Yang-Mills integral in
the vector bundlg M.

THEOREM 2.8. Let¢ : M* — M(c) beanimmersion of a four-dimensional compact
oriented manifold M into an n-dimensional space form M (c). If the normal connection is
self-dual or anti-self-dual, then ¢ iscritical for the functional Rf [¢o].



222 K. SAKAMOTO

PROOFE Lete = 1 or—1 according as the normal connection is self-dual or anti-self-
dual. Let{Xq,..., X4} be an orthonormal basis ifi, M associated with the orientation of
M*. Then the assumption that the normal connection is self-dual or anti-self-dual is equivalent
to

RY(X1, X2) = eRM (X3, X4), RY(X1, X3) = eRT (X4, X2),
R (X1, X4) = eRM (X2, X3).

(cf. [3, p. 370]) Self-dual and anti-self-duabnections are Yang-Mills instanton. Thus the
normal curvature tensaR' satisfiesVi R,V = 0 (cf. [19, p. 21]). Thus we see from
Codazzi equation (1.7) that

0OC = —VIV/ (PR jpu”)
= -V (h""VIRY ") =0.

(2.22)

The second term of (2.19) vanishes. In fact,
Y P(Xi, Xph(Xi, X)) — R 1P =) P(Xi, X)L(Xi, X)) ,
i,j i,j
and (2.2) implies thaP (X;, X ;) = «4;; for everyi andj, for instance
P(X1, X2) = —tracg R (X1, X3) R (X2, X3) + R (X1, X9) R* (X2, X4))
= —tracg R (X4, X2) R (X1, Xa) + R* (X1, X4) R (X2, X4))
=0.
O
3. Two-dimensional cases. Let¢ : M2 — S§"(c) be an immersion of an oriented
surfaceM? into ann-dimensional spheré” (c) of constant sectional curvature We shall

rewrite (2.18), (2.18) and (2.19) in terms of the isothermal coordinatex + +/—1y. Since
g11 = go» = 2F andg 4, = 0, Christoffel's symbols of the Levi-Civita connection are given

by
1 1 2 1 1 2 2 1
(3.1) F11=—F22=F12=§31|09F, F12=—F11=F22=§32|09F,

whered; = d/dx andd = 9/dy. The coefficientd;}, of the normal connection with respect
to an orthonormal local frame fielaV, } in 71+ M are defined bWaf_Nu = VN, and so the
relation betweew? andr;} is

(3.2) M=+, DL=v=-1e-0), (o) ==td).
Therefore, we have
1
Vit = 016" + Iyé"
= (0 + D" + (€ + £)"
— /VLéu + //Viéu
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where we have puv+& = 'V1&4dz @ N, and’V+1e = "V4igrdz @ N,. Similarly, we have
VZJ_éu — \/__]-(,Vléu _ //VJ_SM) .

Moreover, a straightforward computation shows that
V1V1§“ — ,VJJVJ'SM + ’V“VL}E“ + NVJ‘/VJ‘SM + //VJ_//VJ_%_M
V2V2§u — _/VJ_/VJ_%_M + /VJ_//VJ_Eu + //Vlle_g_-u _ NVJ‘NVJ‘SM .
It follows that
1
(33) An = _F(//VL/VLH + /Vl//vin) )
The tensor field. has the components:
(3.4) Li" =y"+y", La"=-("+7"), Lid"=+-1¢"-7".
Therefore the components ¢f- are given by
(35) Lv_i( Ll—v+—Ll v)
: w =gz YY),
Using (1.26), (1.28), (3.3) and (3.5) we have

1
—An+ QLn — F(//VL/VLU + /Vi//VLn) + Qin

= 0GPy = )P+ (0 7Y + ()P
2 AvARE AN 1 =

—("V—-'Vv —(n, .

F( n+ F(n YY)

Thus we can rewrite (2.17) as

1
(3.6) VY4 (0, 7)y =0,

or equivalently
(3.7) "V 4+ (1. 7)y =0

which is the defining equation of Willmore surfaces ([11, 25, 26]).
Nextwe treat (2.18), (2.18’) and (2.19) with the isothermal coordinate. First, we compute
the components of the tensor figld Using (1.27), we have

1
C11’ = R 1y hu g* = == R 12, h12"
2F
1

_ —opl veu _ su
—F%u(y Y.
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Similarly, the other components are the following:

V=1
C1’ = Tm%,“(y” + P4+ 2Fn"y,

V=1
Ca’ = Tmﬂ”(y" +y" —2Fn"),

C2’ = —%fﬁLuv(V" -7").
Using (3.1) and (3.2), we have
VECHY = g™ @Cj" — IV jCik” = Ik Cji¥ + ML C ")

= %{alc,-lv +82Cj2" — (M'1+ ') Cji" — ' jCin” — I jCiz"
+ MUCj" 4 I2UCj2")

= %{(a +3)Cj1” + /=10 — 3)C}2"
— (Y011 + M2 Co” + oY C10Y + 122 C22Y)
+ (€2 + 29 C 1" + V=1L — 29 C 2"

= %{a(cﬂ” +V=1C)2") + 3(Cj1° — vV =1Cj2") + 4/ =112 |-tV
+L5(Cin" + V=1Cj2") + £5(Cjn" — V=1Cj2")} .

It follows that

1 1 1
chlkv — F{ _ F /VL(%iuv);u) + F //Vl(mLquu)

_ /Vi(miuvnu) + //Vi(mLuvnu)}’
(3.8)
~v=1(1 1
VkCZkU — F {F /VL(ERLMU);M) + F //Vl(mLquu)

_ /Vi(miuvnu) _ //Vi(mLuvnu)} )

Moreover, we comput&/ V4C V. Since
VIvEC b = g/tvvhc Y
= g/' @V Cp® — I VECR” + Vi Ci
and from (3.8)

2 1
vkclkv + \/__1ka2]{’0 — F{ _ F /Vi(%iuv?u) +// Vl(mLuUr}u)} ,
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we have
VIvkC
1 _
= ﬁ{a(vkclk” + /=1VECRY) + (VECuY — vV—=1VFCyY)
+L(VECR + V=1IVECR") + By(VE et — V=1VECa™))
1 - 1
— ﬁ{//VL//VL(mLMUyu) + /VL/VL(mLqu;u)} + ﬁmemeuwnu.
We thus obtain
2 1
(3.9) -0c = ﬁm["v“v%%lm + ﬁml)zn,

wherefi[ ] means the real part ¢f ].
The second term of (2.19) is computed as follows:

D PXi XPh(Xi, X)) = R ipun R hTO Ny,
ij
= 8—}1,3(4F2|9%i|2h11w +4F R Ph" ) N
= 2Ry
Here we note thatRt|2 = F—2(L, /L) = ||[R+|2/2. Therefore we have obtained

THEOREM 3.1. The Euler-Lagrange equation of the functional
Ry1¢] = / IR |Pdv

for immersion ¢ : M2 — S"(c) of an oriented surface M2 is given by
2

ﬁfﬁ

For the conformally invariant functional

Rilpl = fanndv,
the Euler-Lagrange equation is given by
(3.11) aqirRY~tc)=0

1 1
(3.10) [V vEoRE )]+ ﬁ(mﬂzn + Emﬂzn =0.

under the condition that R+ does not vanish anywhere on M.

COROLLARY. If the normal curvature tensor is parallel, then theimmersion ¢ is crit-
ical for the functional Rf [¢]. Moreover, if ¢ isminimal, then ¢ is critical for the functional
R 19].

PrROOFE We immediately have
VlRllZuU — _zm(/vLmluv + //VL%LMU) ,
VZRLZ]Jtv — _2 (/Vlmluv _ //VLmluv) .
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It follows that the normal curvature tensor parallel if and onlf W-R1- = 0. From the
assumption, we see thAV-9:- = 0 and so/9i"| is constant. IR = 0, then it is trivial
thatg is critical. Assume tha® £ 0. Then we see from (3.9) that (3.11) is equivalent to
2
(3.12) Fm[”vl”vL(miy)] + ®mH%y =0.
Since
”VJ‘NVJ‘(%L)/) + /VJ_/VJ_(%J_?) — mJ_(//VJ_//VJ_y _ /VJ_/VJ_J;)
— FSRJ'(”VJJVJ‘U _ /VJ_//VJ_n)
= —FRNLy,
we have (3.12). O

The following proposition shows that (3.12) is equivalent to the defining equation (3.7)
of Willmore surfaces under appropriate assumptions.

PROPOSITION 3.2. W assume that |RL| is a non-zero constant and the curvature
ellipseisacircle at every point. Then (3.7)is equivalent to (3.12)

PROOFE We first note that the curvature ellipse is a circle if and onlyify) = 0.
Thus from the assumption, we ha¥ey = F|y|?y and

|SRJ_|2 — F_2<ERJ_, S;{J_>
=F Y G =y v e =7y

=2(y" = ltv. 1> = 2y|*,
which is a non-zero constant. Assume that (3.7) holds. Then
IVHIVE@Ry) = Fly PV Y
=—FlylPn.7)y .
Therefore we have
IVEIVE@RLY) + VYRR D) = —Fly P, 7)y + (i, v)7)
Since
RH%n = F'R (0. 7)y — (0. v)7}
= . Py Py + . y)ly Py .
we have (3.12). Conversely, assume that (3.12) holds. Then
0= FH{'VH'VE@R ) + ' VI VER D)) + D)
= [y POVEY'VEy £ 'VEVED) + v P vy + (. v) 7).
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Since
//VL//VL)/ _ /Vi/vi); — F(//VL/Vln _ /VL//VLU)
= —FRy
=y —mvy,
we obtain (3.7). O

4. Critical surfaces. First, we shall study Willmore surfaces. Lt M — S"(c) be
an isometric immersion of a compact oriented surfscato 5 (c). Define¥ € C®(E3°®
AN2CTLM) by w = y A 'V1y. The immersionp : M — S"(c) is called aS-Wlimore
surface if y Ay # 0 and¥ = 0 everywhere orM. It is known thatS-Willmore surfaces
are Willmore surfaces and there exist Willmore surfaces which arég-Wgillmore surfaces
([20, 11]). In the following, we shall obtain an integral formula for the sum of residues of
logarithmic singularities of log#|2. We note that the Willmore surface equation (3.6) and
Codazzi equation (1.25) imply that is a holomorphic section af3° @ A2CT*M, that
is, "Vt = 0 and hence eithep is identically zero, or else the zeros@fcan be at most
isolated. Define the symmetric product of twevectorst = &1 A- - - A&, ands = L1A- - AL,
in A CT+M by

1
(4.1) (£.¢0) = ;de((%‘m CB)AB=1,...p-
Then we have

LEMMA 4.1. Let¢ : M — S"(c) be a compact oriented WiImore surface such that
¥ # Oidentically. Let X denotethe set {p € M|¥(p) = 0} and 2, the real analytic order
ofthezeroof |W|2atp € X. Set A = >,.s Jp- Thenwe have

2 a A
(4.2) —2n/V=6nx(M)+/{W(W’NZ—W’NZ)"‘W}dUa

where Wy = ((VEn,y)y — (y.y)'Vinl/2, Wy = ((Vin, )y — (v, 7)'V'n}/2 and
A= VIR P2— [(Viw, )2,
PROOE OnM\X, we have
F~IV'V”log|¥|?
F74
ITZE
1

_ —4 v Llrolg,
_—WF (W, 'v+'vig) +

(Ve V) 4+ (@, VYV W R — P, VR (Ve 0

w4
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Using the Ricci identity (1.28), we have
3FKVE +RIUE
= VIV (WE) - V()
= (VV'VE VYV E 4 o (VvEVEiE v VL)
= (VY'VRe vV g+ omte
for every normal vectof. It follows that
'VY'VEY = 3FKY + R — ot
Thus we obtain
(4.3) F~4w,'V'vig)
=3K|W[P+2F Y RE, et
=3K|WIP+2F° ) Uyt =y et
=3K|W*+ 2y — 1¥71?).

The residue of the logarithmic singularities of laig|? is given by

—2n N = Iim/ (F*l V’V”Iog|l1/|2> dv,
X

e—0

where X, denotes the complement M of ane-neighborhood of all points af'. In virtue of
the Gauss-Bonnet formula:

/Kdv =2nx (M),

we obtain (4.2). O

THEOREM 4.2. Let¢ : M — S§"(c) beacompact oriented WiIImore surface. Assume
that ¥ # O identically. Then we have

IR 2
|2 dv.

@B (M) + ) < / -

The equality holdsif and only if (¥'y, ) = 0and’ V1 is proportional to .
PROOE We compute the first term of the integrand of (4.2)MRX. Since

1
Wy Ayl?= 2 P,
we have

1 _
wy2ly? = S, VPP + 1wy, 7)12.
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We also have

o, 1 _ _ _ _
wy|? = af WV, 7Yy = (v, 7)YV, (Vi )7 = (v, 7)) Vi)

1 _ 1
= Z{|y|4|’an|2 — Vi P)PlyI? = 5|y|2|m2.
It follows that

1
w2
where we have used

1|2 [y, p)I?

(4.4) :
4ly|? 2|y 12

(1wy|? = 1w7?) = -

IRE2 =201 = 1(r. D).
Therefore we see from (4.4) and the non-negativitAdhat
RPNy P A

F1Vv'V'Iog|¥|? =3K — +2
(4.5) 2ly|2 w22
il
> 3K — 7 -
2ly|
Integrating (4.5), we have the desired inequality. O

Surfaces with isotropig in $%(c) are S-Willmore surfaces, becauseandy form an
orthogonal basis o€ 7+ M and

F(Vin,y)=("Viy,y)=0.
This fact was proved in [11]. We also have

THEOREM 4.3. Let¢ : M — $°(c) be a WImore surface whose curvature ellipse is
acircle everywhere. Thenitisa S-WlImore surface.

This is immediately derived from the following lemma.

LEMMA 4.4. Let¢ : M — S8(c) be a WImore surface whose curvature ellipse is a
circle everywhere. If & # O identically, then y, y, 'V+n and " V15 form a basis of CT+M
on M\ X and satisfy

(4.6) (Vin,yy =0, (Vty,y)=0, (Vvip'vip =0.

PROOF Since(y, y) = 0, we get
(Vin,y)=0, (Viy,y)=0,
and so, using (3.6),
0=V"(Vin.y) = ("V'Vy) + (V. F'VEn)
= F(Viy, 'vip).
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Therefore we see that the subspace spanned agd’V-+y in CT+M is isotropic. Since
v =y A'Viy #£0,vectorsy, y,'V1tn and”V-1y form a basis oC7+M on M\ X. O

THEOREM 4.5. Let¢ : M — S8(1) be a compact oriented WImore surface. Assume
that ¥ # O identically and the curvature ellipse is a circle everywhere. Then we have

2
(4.7) —2n.N =6rx(M)— / ly|%dv + %dv,

wherea = (VV'V4y, y) = —(V1iy,’V51y). Inparticular, if M is a topological sphere,
then we have

(4.8) / ly12dv = 127 + 2n.4 .

PrROOF By Lemma 4.4, we can set
/Vl/vln =ay +b]7 +C/Vl7]+d//vl7],
/Vl)/ =a’y+b/37 +C/ /VLn_i_d/ ”VLH.

Taking the symmetric product of the both hand sides of the above equatign(antl;), we
obtain

It follows that
(4.9) VI AW = ;C,;{Fl/vwzy AW — (Vin, 7Y Vg A vy,

-3

F
iy aw =2 "0 Vg AW — F2ly 2N A ).
y 19%% y

2|2
The following general formula for decomposable 2-vectors are easily proved:

(P ASL,GATY P As2,G A2) —(p As1, G AR)(p As2,q A)
(4.10) 3

= E(Pa@(l?/\sl/\sz,é/\l_l/\t_z).

Using this formula, we computé defined in Lemma 4.1. We have

VAU =0AS+y Aw,
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where we have put = 'V1y, § ='V1yandw =’V V15, ThenA is computed as follows:

A=10AS+y APy ASP—0AS+y Aw, 7 A8
=10 A8y ASIZ— (0 A8, 7 AB)P
+ly Aolly ASP =y Aw, 7 AB)P
+F2ONS, 7 AD)Y ASIP—F TONS, 7 AT Add,y AS)
+F 2y A0, 0 Ay ASP—F (y Aw, 7 ASYO NS,y AS)
= g{laﬁa ANOAYP+1yPly Awnsl?
—2RF S,y oAy A8, 0 A7 AB)}.

Thus we have
3
(4.11) A= 5{|y|2|/vi/vin AW+ V2 Viy Aw)?
— 2R(F~(y, "V (VE Vi AV A

To compute three terms of the right hand side of (4.11), we use (4.1) and (4.9). The first term
is computed as follows:

|y|zlle/vJ_n A w|2
_yPlef?

T (I'VEnPy AV Ay =V, 7)YV AV Ay,

IVEnPy AVER AT = ('Y, ) Vi ATV A )
v 12la|?
12|@|4

UVt Pw 2 — VPOV, 7) 21w )
= %Vwmzu’wmzw — [V, 7))
= é|y|2|a|2|/v%7|2.
Similarly, the second and third terms become
Vi VEy AW = (—13|’vin|2|y|2|a|2,

I | i
2R(F~ "y, "VEN VYV AW, "V AW = §|a|2|</vin, "2

Substituting these equations into (4.11), we get |a|2|¥|2. Since¥y = 0, (4.2) reduces
to (4.7).
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Furthermore, ifM is a topological sphere, thenvanishes. To prove this result, we have
only to show thatr is a holomorphic differential of degree 4. By (3.6), we obtain
V(i 'Vty)
= ("VEVE, 'Vhy) + (Y VYY)
= —F Xy, )y, Viy) + (Vi F VYV + 2K Fy — Rty)

1
= EFV’(/Vlr], ’Vln) =0.
O

Second, we study surfaces satisfying (3.10D)he normal connection is flat, then (3.10)
trivially holds. By the same proof as that of Proposition 3.2, we obtain

LEMMA 4.6. Under the assumption that the curvature ellipses are circles of constant
radiuson M, (3.10)is equivalent to

I F
(4.12) "VEVEn + F l(n,y>7/+§lylzn=0.

PROOF  Sincefl’y = F|y|?y and|y| is constant, we have
”VJ'NVJ'(%J')/) — F|]/|2 //VJ_//VJ_J/ .
Using
RH%n = Y27 )y + (r.mP) .
we obtain
1 S
F{//VJ_//VJ_(ERJ_)/) +/VJ_/VJ_(ERJ_)/)} + (SRJ_)ZU
= [y POV Ey £ VIV 4 o)y + (o) p)
= |y HFC'VYVE + VYV + (o) + (v
It follows from the Ricci identity (1.28) that
2«// 1l 1 1.2 F2 1,2
Fih[ VEIVE-Rp) ]+ (R n+7l9‘{ [“n
= |y HF@'VYVin+ R + (7.ny + (v )7 + F2ly %)
4 F
= 2F|y|2<”vi’an +F Nyon)y + Elylzn) :

Wheny = 0, ¢ is totally umbilical and hence (4.12) holds. Thus (3.10) is equivalent to
(4.12). O

An isometric immersio : M — M is said to beconstant isotropic if ||H (X, X)||2 is
constant on the unit tangent bundleMf In the case thaV is a surface, we easily see tlfails
constant isotropic if and only if it is pseudo-umbilic&)/( n) = 0), the curvature ellipses are
circles (y, y) = 0) and||n||2 + |y|2/2 is constant. In [23], we determined constant isotropic
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surfaces ins®(c). All of them are of constant Gauss curvature. In connection with this result,
we state

THEOREM 4.7. Let¢ : M — S"(c) bea pseudo-umbilical immersion of a surface M.
If the curvature ellipses are circles of constant radius on M and ¢ satisfies (3.10) then M is
of constant Gauss curvature.

PROOF  Since('V+y, y) = 0, we have, from (4.12),
0=V"(Viny)
= ("VEV I y) + (Vi F V)
= Pl y) + FOV v )
= F(Viy, 'Vin).
Thus we see that
0=V"(Viy. Vi)
=—lyl?(n,/ Vi) = —%annnz.
If y = 0, theng is totally umbilical. If||5||2 is constant, thelk is constant because of the
Gauss equation (1.24). O

REMARK. If ¢ : M — S"(c) is a constant isotropic minimal immersion, then the
assumption thad is pseudo-umbilical and satisfies (3.10) is trivially satisfied (cf. (4.12)).
Minimal surfaces of constant Gauss curvaturé’iic) were determined in [6].

In the next theorem, we characterize a part of minimal surfaces of constant Gauss curva-
ture inS" (c¢) by the conditions thaM is compactg is critical for the functionaRf and the
curvature ellipses are circles everywhere.

THEOREM 4.8. Let¢ : M — S"(c) beaminimal immersion of compact surface M. If
¢ satisfies (3.10)and the curvature ellipses are circles everywhere, then the Gauss curvature
of M isconstant and theimmersion isa standard minimal immersion of a sphere or a constant
isotropic minimal immersion of a flat torus (cf. [6, 17, 23]).

PROOF If |+ = 0, theny = 0 and sop is totally umbilical. Assume thak* does
not vanish identically. Equation (3.10) reduces to

R'VE'VERY)) = 0.
It follows that
V'V'ly Py +(V'VyP7 =0.

Vectorsy andy are linearly independent aB’ = {p € M|R~(p) # 0}. ThusV'V’|y|2 =0
on X'. Since¢ is real analytic,M\ X’ is discrete inM. HenceV'V'|y|? = 0onM. It
follows thatV'V'K = 0 on M in virtue of the Gauss equation (1.24). In the subsequent
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sections, we study a two-dimensional Riemannian maniféddg) which admits a function
satisfyingVV f = 4. In Section 6, we prove that if the Gauss curvatiref a compact
two-dimensional Riemannian manifold satisflé&v’K = 0, thenK is constant. From this
and the result of [6], we have the assertion. O

REMARK. For any standard minimal immersion of a sphere, the curvature ellipses are
circles. On the other hand, there are minimal immersions of flat tori such that curvature
ellipses are not circles (cf. [6]).

Next, let us assume that the mean curvature vector of the immegsiad — S"(c¢) is
parallel. Chen [9] and Yau [27] proved that if the mean curvature vectgriefparallel, then
M is one of the following surfaces:

(1) aminimal surface 8" (c),

(2) aminimal surface of a small hyperspheresétc),

(3) asurface with constant mean curvature in a three-dimensional sph#re nf
In the following collorary, we show that i is not totally umbilical, then the conditon for the
curvature ellipses excludes the case (3) and the equation (3.10) excludes the case (2) from our
conclusion.

COROLLARY. Let¢ : M — S"(c) be an immersion of a compact surface M. If ¢
satisfies (3.10), the mean curvature vector is parallel and the curvature ellipses are circles
everywhere, then the Gauss curvature of M is constant and theimmersion is a standard mini-
mal immersion of a sphere, a constant isotropic minimal immersion of a flat torus or a totally
umbilical immersion.

PROOFE Inthe case (3), the normal connectionis flat (cf. [9, p. 106]). Sipce) = 0,
we havey = 0. Thusg is totally umbilical in the case (3). B+ = 0 in the case (2), then
y = 0 and hence is totally umbilical. Assume thai does not vanish identically in the
case (2). Take the symmetric product of both hand sides of (3.10).aflden we have

1
2R[F3V/V"(RLy, )] + F~2(R52n, n) + Emﬂznnnz =0.
Since
%J_n — /VJ_//VJ_n _ //VJ_/VJ_n — O,

we see thay = 0 on the open dense sEY, where we note thap is real analytic. Therefore
we haven = 0onM. O

5. Equation VV f = 7g. In the proof of Theorem 4.8, we used the result that a
compact surface whose Gauss curvature satisfi8®8K = 0 is of constant curvature. The
equationV’'V’'K = 0 can be rewritten as a tensor equatdNK = tg, T being aC*®
function onM. In the present and next sections, we shall study a complete two-dimensional
Riemannian manifold/ which admits a functiory satisfyingvVVv f = =g (cf. [4, 15, 18,

24)).
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Let M be a two-dimensional> manifold. We assume th# is compact and orientable.
Let M denote the set of Riemannian metricsn Furthermore, letM 1 denote the subset
{9 e M| [, dvg = 1} and M the subsety € Mi|dv, = u}, whereu is a positive density
on M with total volumef,, © = 1 (cf. [3]). In the compact oped’™ topology, M is an
open convex cone in the s€f°(S27*M) of all C*> sections ofS?T*M. We consider the
following functional 7y from M to R:

Filgl = / J(K)dvg
M

whereJ = J(x) is a function defined oR, J(K) the compositior/ o K anddv, the area
element ofy € M. The Euler-Lagrange equation is given by
(5.1) VVJ(K)+{AJ(K)— KJ(K)+ J(K)}g =0

for a critical pointg € M, whereV denotes the covariant derivative with respecytdhe
Laplace operator is defined by = — ¢/ V;V; andJ (K ) the composite/ o K. The equation
(5.1) for the case/(x) = x2 is well-known (cf. [3], Chapter 4). However, for the sake of
completeness, we give the proof in the following.

Let g (1) be a smooth curve—¢, ¢) — M such thaty (0) = g. We computeF’[g] :=
(d/dtFylg()](0). Since

. K
Filg] =/ J(K)a—(O)dUg +/ J(K)(dvg(,))’(O),
M t M

we have to computéd K /91)(0) and(dvg())'(0). Letk € Ty M be defined byt = ¢'(0).
Then it is easy to show that
9 .. y
— 4l — Ll
< 579 )(O) k

g'(0) = (trk)g,
whereg(r) = det(g,; (1)), g = g(0) and tk = k;;g"/. Therefore we have
g'(0)
2.3

The derivative(alfjik/at)(O) of the coefficients of Riemannian connectigris given by

and hence

1
(dvg)'(0) = dxt A dx? = Etrkdvg .

5 1 .
<§Fj1k)(0) = Eg'p(ijpk + Vikjp — Vpkji) .

Using this equation in the derivation of the Rimannian curvature teﬁgdr.

0 d
o7 K98 = 98} = <5Rijk’)<0>

(3 i ! !
={E<8xirjk_wrik+riijpk_Fijipk 0,
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we get

2(%1()(0) = V;VjkV + Atrk — Ktrk .
By integration by parts, we have

2F1g] = / {J(K)(V; VK + Atrk — Ktrk) + J (K)trk}dvg

(5.2) M

=/ [ViV;J(K)+ {AJ(K) — KJ(K) + J(K)}g;; k" dv, .
M

The equation (5.1) is the necessary and sufficient condition for#ag] = 0 for
arbitraryk € T, M. The equation (5.1) implies that
AJ(K) = 2{KJ(K) — J(K)}
and hence is rewritten as
(5.3) VVJ(K)={J(K)—KJ(K)}g.
We now introduceC® functions onM
f=J(K), 1=J(K)—KJ(K).
Then (5.3) becomes
(5.4) VVf=r1g,

which shows thaf is aconcircular scalar field on M (cf. [24]).

Recall thatTy M1 = {k € TyM| [trkdv, = 0} andTyM> = {k € T, M]|trk = 0}.
Thusg is a critical point of 7| o4, (resp. F;|4,) if and only if the orthogonal projection
of the left hand side of (5.1) ontB; M1 (resp. T, M>) is zero. Thus ifg is a critical point
for the functionalsF;, F|am, Or Frlam,, then we have a concircular scalar field h The
function r, called thecharacteristic function of f, can be considered as a functie(f) of

f if J is strictly monotone, i.e.J # 0 anywhere orR. In fact, we haver = —Af/2 and
covariantly differentiating the both hand sides of (5.4) and using the Ricci identity, we obtain
VAf =2KVf.

Under the assumption thdt# 0, K is represented a& = U(f) with U = J~L. Thusz is
given by

(5.5) T= —/U(f)df,
where the integral constant is chosen in such away fhatdv, = 0. Since

VIVFIZ=2t(f)Vf,
the length ofV f is given by

(5.6) |WfV=2/tUMﬂ
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We have shown the following.

THEOREM 5.1. The critical point ¢ € M of the functional F; is characterized by
(5.3). If g isacritical point for 7, F;|a,, Of Fylam,, then the function f := J(K)isa
concircular scalar field on M. If J # 0, then the characteristic function ¢ and the length of
V f aregiven by (5.5)and (5.6), respectively.

Next, letM be a complete two-dimensional Riemannian manifold with a metrigve
assume thaZ admits aC* function f satisfying (5.4), namely a concircular scalar field with
the characteristic function. Letm denote the number of the isolated stationary points of the
gradient field grag. Tashiro proved the following results (cf. [24, pp. 251-257]):

(1) The stationary points are isolated and< 2.

(2) According tom = 0,1 and 2,M is diffeomorphic to the direct product of a
complete one-dimensional Riemannian manifdléndR, a Euclidean spade? and a two-
dimensional sphers?.

(3) The integral curves of grgdare geodesics. Denoting By the set of the stationary
points, we can take a local coordinafasé} on M\ W such that:-curves coincide with the
integral curves and is a local coordinate ofd (m = 0) or the unit circle in the tangent space
atP € W (m = 1, 2); in other words{u, 6} is the geodesic polar coordinates around
Moreover, in terms ofu, 6}, f is represented as a functigi(u) of only u, andg has the
form

g =du®+aw)?do®, aw)=cf ) >0,
wherec is some constant.

REMARK. Tashiro obtained stronger results than those stated aboréfdz)-dimen-
sional Riemannian manifolds.

In (3), the domainl of a is (—o0, 00), [0, co) and[0, L], respectively, ifn = 0,1 and
2, whereL = dist(P, Q) andW = {P, Q}. Sincef’(u) # 0 on the interior off, we have the
inverse functiont = u(f) of f, defined onf (7). The equation (5.4) implies thatdepends
only onu. Therefore, by taking the composition efu) andu(f), we see that can be
regarded as a function gf. Since

T or_v L oAf = —kvy
—_— = T = —— = — R
df 2

the curvatureX is given by

a//
(5.7) K=—7=U(f),
whereU (f) := —dzt/df.
We want to comput® VK under the assumption thédr /d f2 # 0 everywhere orf ().
Let " denote differentiation with respect ja Since

VK =U(N)VS,
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we have, from (5.4),
VVK =U(f)VfQVf+UVVS

U)
T ()2
Our assumption implies that there exists the inverse functiotl @f), denoted by, and
hencef = v(K). Itis easily shown that
Uf) = d*v/dK?
U2 dv/dK

— VK Q@ VK +U(f)t(f)g.

By usingv, we have

U(f)r(f) =

dv
/K— dK
Cdv /dK dK

1
= K)dK — Kv(K) ¢ .
dv/dK{/v( )d V( )}
Definep andy on the range oK by

d®J/dK3
d2J/dK? d2J/dK?’
whereJ(K) = [v(K)dK and the indefinite constant of the integral is chosen in such a way
thatt(f) = [v(K)dK — Kv(K). Thenk satisfies

(5.8) VVK = ¢(K)g + ¥ (K)VK @ VK .

(K) = J(K)—Kd—J} (K) =—
prR) = ak | VK=

We have shown the following.

THEOREM 5.2. If M admitsa concircular scalar field f with the characteristic func-
tion t and d%t/df? # 0 anywhereon f(I), then the curvature K satisfies (5.8).

We finally start from the assumption th&t satisfies (5.8). Substituting (5.8) into the
Ricci identity:
VaViViK = ViViViK — K8} g;j — 87 gn) VK
we easily obtain
Q(K)ViK g;; + ¥ (K)ViKV;KV;K + ¥(K)Vi KV, V;K
= ¢(K)ViK gy + ¥ (K)ViKV4K VK + Y (K)ViKViV; K
— K84 9i; =8 91))VpK

where " denotes differentiation with respect #6. Transvecting withg”/ and using (5.8)
again, we have

{9(K) + K + Y (K)AK + o(K)¥(K) + v2(K)|[VK|?}VK = 0.
Substituting
AK = —2¢(K) — y(K)|VK|?
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into this, we obtain
(5.9) O(K)+ K —o(K)Y(K) =0

on the set of non-critical points & .
Assume thatp(K) # 0 at an arbitrary critical point oK. Then the critical points are
isolated and (5.9) holds ai1. Consider a nontrivial function = v(K) satisfying

d%v

) —o
dK? dK

DefineJ (K) by
(5.10) J(K) = Kv(K) 4+ 0(K)p(K) .
Then, in virtue of (5.9),

J(K) = v(K) + {K — p(K)¥(K) + ¢(K)} b(K)
=v(K).

Therefore, if we set
(5.11) v(K) =C/e—"’<’<>d1<, U (K) =/w(K)dK

with some non-zero constagt, then J(K) defined by (5.10) satisfies(K) = v(K) and
hence

VVJ(K) = (K)VK @ VK + 0(K)VVK
={J(K) - KJ(K)}g.
because of (5.8) and (5.10).

THEOREM 5.3. If the Gauss curvature K of a compact, orientable, two-dimensional
Riemannian manifold M satisfies (5.8) and ¢(K) # 0 at any critical point of K, then the
metric of M isa critical point of the functional F; where J = v and v is defined by (5.11)

6. Surfacesadmitting a concircular scalar field. All facts in this section about el-
liptic functions are well-known; for instance, see [1, 7, 14].

If the equationVV f = tg¢ is restricted to a geodesic, then it reduces to an ordinary
differential equationf” = t(f). Whent is a linear function off, then the Riemannian
manifold which admits the concircular scalar fiefdwas determined in [18, 24]. So we
study the cases thatis a polynomial of degree 2 or 3 with constant coefficients under the
assumption tha¥f is a complete two-dimensional Riemannian manifold, although the results
are easily generalized to the case that the dimension is not restricted.

We consider real solutions of the following differential equations with constant real co-
efficients:

1
(6.1) =612~ >g2.

(6.2) " =e@f3+6arf + 2a3),
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wheres = £1. Since, making use of solutions of (6.1), we can obtain those of (6.2), we first
deal with (6.1). We have from (6.1)
(6.3) (f)? =41~ g2f = g3,
whereg 5 is a constant real number. The roots of the polynomial
p(x) = 4x° — gox — g3

will be denoted by1, e2> andes. The discriminanD is given by

D = 16(e1 — e2)%(e2 — €3)%(e3 — €1)°

= 9,° - 2795°.

We have the relations:

(6.4) e1t+e2+e3=0, erez+eze3+ezer = —%gz, ereze3 = %
Since f is a function defined oM, f restricted to a geodesic is defined Bn So we

have to exclude solutions which diverge at a finite numper R from nontrivial solutions of

(6.1). We shall set the initial conditions for solutions in the most suitable ones in each case,

so that every solution is obtained by the change of variable: r + d.
In the case thab > 0, the roots are real numbers. First, we assumeZfhat 0 and

e3 < e2 < e1. Clearly, the real solutiorf satifieses < f < ep ore; < f. In the case that

e3 < [ < ez, the solution with initial conditiong (0) = e3 and f"(0) = 0 is given by

(6.5) fO=pi+ao),

whereg is the Weierstrass elliptic function with periods 2 Rand 2’ € «/—1R (cf. [1, p.
105)):

93-

o d o0 d
w= / al , o =+-1 al .
e VA3 —gox —g3 —e3 /AX3— gox + g3
We note thatp (w) = e1, p(w + @) = e2 andp (0’) = e3. Using the Jacobi elliptic
functions, (6.5) becomes

(6.7) f(t) = e3+ (e2 — e3)srP(e1 — eat)

where the modulus is given byx2 = (e2 — e3)/(e1 — e3).
In the case thad; < f, the solution with initial conditiong (0) = e and f/(0) = 0 is
given by

(6.8) ) =p(t+o).

In this case, we have lim. _, f(¢) = co.

Second, we consider the case tliat= 0. Assume thatz < e» = e1. Then the real
solution f satisfieses < f < e1 or f > e1. Inthe case thatz < f < e1, the solution with
initial condition 1 (0) = e3 and f/(0) = 0 is given by

(6.9) f(t) = e3+ (e1 — e3) tantf(Ver — ear) ,

(6.6)
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which is the limit solution of (6.7) as2 — 1. We note that lim.o f(t) = e1. If f > e1,
then the solution with lim, o f () = e1 and lim_ o f/(t) = 0 (w = o0) is given by

1

which shows that lim., ¢ f () = co. Next, assume that = e < e1. In this casexk = 0 and
Je1 —esw = /2. The real solutiory satisfiesf > e1. The solution with initial condition
f(0) = e1 and f/(0) = 0 is given by

(6.11) F(1) = e1+ (e1 — e3) tarf(yer — eat) .

Thus lim_., f(t) = co, wheretg = /(2,/e1 — e3). Assume that, = ep = e3. From (6.4),
we see that; = e2 = e3 = 0. Therefore the solution is

1
(6.12) f0 =3,

(6.10) f@)=e1+ (e1—e

for which we have lim_, g f(#) = oc.

Third, let us assume thd? < 0. One of the roots, sag, is real and the others are
conjugate complex numbers. We also see that the periodm@ 20’ are conjugate complex
numbers and s@ + «' is real, which is given by

(6.13)

, /OO dx
w+w =—
er J4x3 — goX — g3
(cf. [1]). In this case, the real solution with(0) = ¢, and f/(0) = 0 is given by
(6.14) fO=pt+ow+a).
Thus we have lim., _,+.) f(t) = oco. In consequence, we have

LEMMA 6.1. Among the nonconstant solutions of (6.1), the solutions which are de-
fined on the wholeline R are (6.7)inthe case (D > 0, e3 < e2 < e1), and (6.9)in the case
(D =0, e3 < e2 =e1), Uptoachange of variable: ¢t — r + d and a scalar multiple of f.

Let us turn to the differential equation (6.2). We assume that the polynomial
q(x) = x*+ 6a2x2 + daszx + aa

has at least a real root. We denote the minimum of the real roots;.byrhe nontrivial
solutions of (6.2) satisfy

(6.15) (fH%=eq(f).

First, assume that, is a simple root. Lekq, ..., x4 be the roots ofy(x). Put f =
x4 + 1/z. Then we have

()% = —sa(z — a1)(z — a2)(z — a3) ,



242 K. SAKAMOTO

wherea = (x1 — x4) (x2 — x4)(x3 — x4) > 0 anda; = (x; —x2)~1 (i = 1, 2, 3). Furthermore
we putz = Ay + B. Then

N2 _ B—a B—ao B — a3
(6.16) )= 8aA<y+ 2 )(y+ 1 >(y+ 2 >

So if we defineA andB by A = —4¢/o andB = (o1 + a2 + «3)/3, respectively, then we
can rewrite (6.16) as

(6.17) ()2 =4y — ey — e2)(y —e3) ,
where
. — B
e,-:a’A (i=1203) if e=1,
a3 — B ar — B o1 — B it 1
= . = , = E=—1.
e1 2 e2 2 e3 I

This means that a part of real solutions of (6.15) can be obtained by sgttings+1/(Ay +
B) for areal solutiong of (6.17). We note tha#t, B € Rand

1 1
e1 = Z(Zaz — X1X4 — x2x3), €2 = —(2ap — xpx4 — X1X3),

(6.18") ! 4
e3 = Z(Zaz — X3X4 — X1X2) if e=1,
1 1
e1 = —Z(Zaz — X3X4 — X1X2), e€2= —Z(Zaz — X2X4 — X1X3) ,
(6.187)
€3=—Z(2a2—x1X4—x2x3) if e=-1.

Let us consider the case that < x3 < x2 < x1 (real). By (6.18) we see that < e2 <
e1. The solutions of (6.15) corresponding to (6.7) are

x3(x2 — x4) — xa(x2 — x3)SMP( /1 — eat)

6.19t T =
( ) fr® (x2 — x4) — (x2 — x3)sr?(mt)
(6.197) - = x1(x2 — x4) + x4(x1 — x2)SIP(/e1 — e3t)

(x2 — x4) + (x1 — x2)SIP(/e1 — eat)

according ag = +1. The solutionf ™ (resp. f ) attains the minimums (resp.x2) atz = 0
(resp.t = w ), the maximunmxy (resp.x1) att = w (resp.t = 0) and is a periodic function
with period 2o. The solutions corresponding to (6.8) are

x1(x2 — x4) — X2(x1 — x4)SIP(/e1 — e3t)

6.20" HOE
( ) ST (x2 —x4) — (x1 — x4)3ﬁ(mt)
(6.207) -y  Fabiz = x) = xa(xa — xa)SP(/er — eat)

(x2 — x4) — (x3 — x4)SIP(\/e1 — ear)
The solution (620") diverges at = 1 such that sf(\/e1 — eatg) = (x2 — x4)/(x1 — Xx4).
The solution (6207) attains the maximums at¢ = 0, the minimumxs att = w and is a
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peiodic function with period @. The functiong (¢) is certainly a real solution of (6.3) which
coincides with (6.8) up to a change of variable— ¢ + w. The solutions corresponding to
e (1) are

xa(x1 — x3) — x3(x1 — x4)SIP(/e1 — e3t)

6.21+ MOES
( ) ST @) (x1 —x3) — (x1 — x4)sr?(mt)
(6.21) (1) — X401 =39+ x1ag — @S fer — ean)

(x1 — x3) + (x3 — x4)SPP(/e1 — e3t)
The solution (621%) attains the maximums atz = 0 and lim_.,, fT(t) = —oco, where
SrP(y/e1 — eatg) = (x1 — x3)/(x1 — x4). The solution (617) coincides with (620~) up to a
change of variabler +— ¢ + w.

Next, we consider the casg < x3 < x2 = x1. We haveez < e2 = e1if ¢ = 1 and
e3 = ex < e1 if e = —1. The solutions corresponding to (6.9) (i.e., the limit oftl@") as
k% — 1) and (6.11) (the limit of (R0~) ask — 0) are

x3(x1 — x4) — x4(x1 — x3) tankf(\/e1 — e3t)

( ) 7o (x1 — x4) — (x1 — x3) tantP(/e1 — eat)
(6.22°) 1) = x3(x1 — xa) — x1(x3 — x4) SINP(\/e1 — e3t)

(x1 — xa) — (x3 — x4) SIP(\/e1 — eat)
respectively. The function (82") satisfies f*(0) = x3, which is the minimum, and
lim; 5400 fT(t) = x1. For (6.10), we can show that if = 1, there existgg such that
Ay(t0) + B = 0. Indeed, the range of the function (6.10)és, co) and—B/A = (a2 +
x4%)/2 > (a2 + x1%)/2 = ey if & = 1. Thus we have lim., | f*(7)| = oo for the limit solu-
tion of (6.20") ask? — 1. Since O< (x1 — x3)/(x1 — x4) < 1, we also see that there exists
1o such that lim_,, | f*(1)] = oo for the limit solution of (621") ask? — 1. On the other
hand, (6227) attains the maximums atz = 0 and the minimunxs att = 7/(2/e1 — e3).
The limit solution of (6217) ask — 0 coincides with (22~) up to a change of variable:
>t +7/(2e1 — e3).

Consider the case thaj < x3 = x2 < x1. Thenwe havesz = e» <e1 (¢ = 1) and
e3 <ex=e1 (e =—1). Thus the solutions corresponding to (6.11) and (6.9) are

x1(x2 — xa) — x2(x1 — x4) SINP(/e1 — e3t)
(x2 — x4) — (x1 — xa) SINP(y/e1 — eat)

x1(x2 — xa) + xa(x1 — x2) tankf(\/e1 — e3t)

(x2 — x4) + (x1 — x2) tantf(/e1 — eat)
respectively. The solution (83") is the limit of (620") ask — 0. Since 0< (x2 —
x4)/(x1 — x4) < 1, there existsp such that lim_,,, | f*(t)] = co. For (623"), the func-
tion f+(t + w/(2\/e1 — e3)) is the real solution which is the limit of (81") and satisfies
fT(O+ m/(2\/e1 — e3)) = xa. For this solution, there exists such that lim_,,, | f*(r +

(6.234) @) =

(6.237) @) =
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7/(2/e1 — e3))| = oo. The solution (&3°), which is the limit of (6197) ask? — 1, attains
the maximumxy atz = 0 and lim_ 1 f~(t) = x2, which is the infimum. The solutiofi~
which attains the minimumy atz = 0 and satisfies lim, Lo, f~ () = x3is given by

xa(x1 — x3) + x1(x3 — x4) tantf(y/e1 — e3t)
(x1 — x3) + (x3 — xa) tant?(Je1 — eat)
which is the limit of (6217) as«k? — 1.

In the case thats < x3 = x2 = x1, we havee; = e» = e3 and hence the solutions
corresponding to (6.12) are

(6.247) ) =

— 4)C13t2

6.25" iy =2""10
(625) =S
_ x4 + 4x1312

6.25~ = —S.
( ) o 1+ 4x12¢2

We have lim_ 11/ | fT(1)] = oo for (6.257). We note thatf ™ (1) > x1 (resp. < x4) if
[t] > 1/(2x1) (resp.|t| < 1/(2x1)). The solution (&57) attains the minimunx4 at = 0
and lim_ 1o f~ () = x1, which is the infimum.

In the case thats < x2 andxz = X1 ¢ R, we see thae; is real andez(= e1) is not
real. The real solution withf *(0) = x» corresponds to (6.14) and that with (0) = x4 to
y(t) = g (t). The range of (6.14) ang is [e2, o) and—B/A > ez if ¢ = 1. Thus we see
that f(t) = x4 + 1/(Ay(t) + B) diverges at someg). The solutionf~ corresponding to
(6.14) is given by

1
Ap(t+o+o)+B
_ x2lxr — x4l + xalx1 — x2| + (x2|x1 — x4 — x4lx1 — x2))Cn(y1)
T lxn—xal + x1 — x2f 4 (lx1 — x4l — [x1 — x2)en(yo)

@) =xa+
(6.267)

’

(cf. [7, p. 86]), wherey = /]x1 — x2||x3 — x4] and the square of the moduluf cn(yr) is
equal to(leg — e2| + R[e1 — e2])/(2]e1 — e2]). The solutionf~— attains the minimum,4 at
t = w + o’ and the maximum; at: = 0. The period is equal to(@ + ). We shall make
use of the following equation:

_ 4
©|xr — xal(x2 — xa)
Next, assume that; is a real double roaotxs = x3). Consider the case thaj = x3 <
x2 < x1. Setf(r) = — f(¢). Thenf satisfies
(F)2 = e(f*+6a2f? — dazf +as).

The roots of the polynomial(x) = x*+ 6aox2 — 4azx + as arefs = —x1, X3 = —x2, Xo =
X1 = —x4. We note thae; (i = 1, 2, 3) does not change. Therefore the real solutions with

(6.27) A

Aes + B =

X2 — X4
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initial condition % (0) = x» can be obtained by making use ofZ8") and (622°):
x2(x1 — x4) — x1(x2 — xa) tantf(/e1 — eat)

6.28+ T =
( ) 7o (x1 — xa) — (x2 — x4) tanif(Jer — ear)
(6.287) 1y P23 el = x2) Sir( e — ean)

(1 — x4) — (x1 — x2) SINP(\/e1 — e3t)
respectively. We note that™ attains the maximumy atz = 0 and lim_ 10 f () = x4.
The solution (6287) attains the maximumy atz = 7 /(2,/e1 — e3) and the minimumnx; at
t = 0. The other real solution irnis case with initial conditiory ™ (0) = x1 (or x4) satisfies
lim; | f(t)| = oo for somerg € R.

In the case thats = x3 < x2 = x1, we directly solve (6.15). Sineg( f) > 0, there does
not exist a nontrivial solution if = —1. Using the relation1 + x4 = 0, we have the solution
with initial condition f+(0) = O:

(6.291) FT () = £xytanh(x11) ,
which satisfiess < () < x1. Moreover, we have the solution such thatling | f ()| =
0!
(6.301) FT () = £x1 coth(x11) .
We consider the case that = x3 andx, (= x1) is not real. In this case, there is not a
nontrivial solution ife = —1. We putf = x4+ 2/(y + a1+ a2), whereo; = 1/(x; —xa) (i =
1, 2). We note thatry = @1 and sax1 + a2 is real. Then we have
(6.31) O =aly? — (2 —a?, (@ = (x1—xa)(x2—x4) > 0).
Itis easy to solve (6.31). If we pub — a1 = +/—1b, then the solution is

y = +bsinh(at) .
Thus we have

2
6.32+ + t) = )
( ) VO x4+ibsinf(ﬁt)+a1+a2
and hence there exists € R such thatf (¢) diverges ag — 1.

If x4 is a triple root, then the solutions of (6.15) are given by

— 4X43t2

6.33" T = AL )
(6.33") 0=
_ x1 + 4xg3?

6.33" =,
( ) o 1+ 4x42t2

We obtain these solutions by settifgr) = — £ (¢) in (6.25).
If x4 is a real quadruple root, then

f+(r>=x4i%,
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and hence lim, o | f T (7)| = oco.

The remainding case is that the polynongidias not a real root. Sineg f) > 0, (6.15)
has no solutions if = —1. If x4 = ¥3 = X2 = x1, then(f)2 = (f — x0)2(f — ¥1)? and
hencef () = Mx1 £ (Jxp) tan{(Ix1)t + ¢}, which shows that there existssuch thatf+(¢)
diverges as — 1.

Finally, we deal with the case thai = x3, X2 = x1 andxy # x4. We reduce

(6.34)

[ ==
==
VIf = x| f = x1]?
to a Jacobi normal form (cf. [1, pp. 106—109]).Mfc1 = Rxy4, thenRx, = 0, so that (6.34)
becomes
d

/ / -

V(24 b12)(f2 + ba?)
whereb; = Jx; (i = 1, 4). Suppose thatix; # Rxg. We pute; = Rx; (( = 1, 4). Let us set
f=(py+q)/(y+1),wherep andg (p > ¢) are roots of the equation:

(6.35)

1 1
X2+ —(bg? — h1?)X — Z(2c12 4+ b1® + b4?) = 0.
+2€1(4 1%) 2(61+1+4)
Then the integral of (6.34) becomes
P—q dy
lp—xillp —xal ) /62 + a2 + D)
( ‘q —x1 ‘q — x4
o = , =
p—x1 pP— x4
Since the integrals of (6.35) and (6.36) reduce to the normal form:

(6.36)

).

du 2o .
/\/(1—u2)(1—,<2u2) (® = (@ = p9)/e%)

by puttingy? = 82u?/(1 — u?), a straightforward computation shows that

q + pptn(yt)
1+ gtn(yr)
In particular, there existg such thatf (¢) diverges ag — 1.

Summing up, we obtain

1
(6.377) o= <72 = Z(IX4—X1I + IX4—X2|)2).

LEMMA 6.2. Among the nonconstant solutions of (6.2), the solutions which are de-
fined on the whole line R are, up to a change of variable: ¢ — r + d and a scalar multiple of
f,(6.19%), (6.197) and (6.217) inthecase (x4 < x3 < x2 < x1), (6.227) and (6.227) inthe
case (x4 < x3 < x2 = x1), (6.237) and (6.247) inthe case (x4 < x3 = x2 < x1), (6.257)
inthecase (x4 < x3 = x2 = x1), (6.267) inthecase (x4 < x2, x3 = x1 ¢ R), (6.28") and
(6.287) inthe case (x4 = x3 < x2 < x1), (6.297) inthe case (x4 = x3 < x2 = x1) and
(6.337) inthecase (x4 = x3 = x2 < x1).
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REMARK: All solutions givenin Lemmas 6.1 and®are characterized by the property
that their ranges coincide with open, open half or closed bounded intdrgish that the
infimum and supremum are real roots of the polynomi@al) or ¢(x) and there are no real
roots in the interiod .

Let us return to the study of the manifold admitting a concircular scalar field.
Tashiro [24] determined/ when the polynomial is of degree 1. We consider the case that
the characteristic function is a polynomial off whose degree is less than 3 in the following
theorem.

THEOREM 6.3. Let M beacompletetwo-dimensional Riemannian manifold, and sup-
pose that it admits a nontrivial concircular scalar field f whose characteristic function is a
polynomial of f. If the degreeis2 or 3, then M is homothetic to one of the following man-
ifolds. The function f given in the list coincides with the concircular scalar field f up to a
linear transformation : f +— Af + u.

[I] (deg=2). R?witha metric:

1 tanl’?(«/el — egu)secﬁ(\/el — e3u)d92

e1 — e3
in terms of the geodesic polar coordinates {u, 6} in R2 whereeq > ez and 2e1 + e3 = 0. It
isisometric to the surface of revolution which is obtained by rotating the unit speed curve:

x(u) = % tanh(y/e1 — egu)secﬁ(«/el — e3u),
1 fw 1
W)= — “p e - £)@en? + 870

6612 e3 €1

ds? = du? +

in the x-z plane around the z-axisin R®, where f (1) = e3 + (e1 — e3) tant?(y/e1 — eau).
[T (deg=3). (1) R x Z with awarped product metric:

ds? = du? + x14secl4(x1u)d92 ,
where 6 is a local coordinate in a complete one-dimensional manifold Z, x1 is a positive
congtant and £+ (u) = x1tanh(xyu).
(2) R?with a metric:
ds? = du® + a(u)2d92,
where {1, 6} isthe geodesic polar coordinates in R?. The function a is one of the following:

(i)

) = 2(f1) ()
(x3 — x1)%(x3 — x4) |
) = x3(x1 — xa) — xa(x1 — x3) tanif(yu)

(x1 — x4) — (x1 — x3) tantP(yu)

1
y =+e1—e3= Ex/(X1—X3)(X1—X4),
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where x1, x3, x4 are constants satisfying x4 < x3 < x1 and 2x1 + x3 + x4 = 0,

(ii)

) = —2(f7) (w)
(x3 — x1)%(x1 — x4) |
_ o x1(x3 — x4) + xa(x1 — x3) tant? (y u)
=

(x3 — x4) + (x1 — x3) tankf(yu)
1
y =+e1—e3= Ex/(X1—X3)(X3—X4),

where x1, x3, x4 are constants satisfying x4 < x3 < xy and x1 + 2x3 + x4 = 0,

(iii)

vy = 20
(x1—x4)%"
_ x4 + 4x1%u?
S =T e

where x1, x4 are constants satisfying x4 < x1 and 3x1 + x4 = 0.
(3) 2 with a metric:

ds? = du® + a(u)2d92 ,

in terms of the geodesic polar coordinates {u, 6} whose center is a critical point of f. The
function a is one of the following:

0)
a(u) = (f Y ()
T xo(x1? —x2?)
1 - — 2x18I7
frw =xs+ — Lo+ 22 1Sy
Ap(u+ o)+ B (x1 + x2) — 2x28rP(yu)
Y= %(M +x2) ,
where0 < x2 < x1, A = —2/{)6]_()612 —x29)}, B = (5x1? — x22)/{6x1(x12 — x2%)} and the
modulus of the Jacobi elliptic function snisequal to 2x1x2/(x1 + x2).
(i)
Y
a(u) = (f7) (u)2 7
x2lx1 — x2|
_ 1
W) = x4+ Aputota) LB = xoCn(yu),
Yy = |x1—x2|,

wherexs > 0, x1(# 0) isapureimaginary, A = 2/(x2|x1+x2|%), B = (5x22—x12)/(6x2|x1+
x2|%) and the modulus of the Jacobi elliptic function cnis equal to x2/|x1 + x2|.
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ProOOFE Recall the results proved by Tashiro ((1) through (3) in Section 5). The integral
curves of gradf are geodesics. When the concircular scalar ffeld restricted to a geodesic,
it satisfies (6.1) (resp. (6.2)), after a suitable linear transformatiesn Af + wu, if the degree
of the polynomialr (f) is 2 (resp. 3). Thug restricted to a geodesic is one of the solutions
given in Lemmas 6.1 and 6.2.

Suppose that the degree off) is equal to 2. Then we see from Lemma 6.1 that the
numberm of the critical points of the concircular scalar fiefdis 1 or 2. Ifm = 1, thenf
restricted to the geodesjcwhich coincides with the integral curve of grAds given by (6.9).

If m = 2, thenf|, is given by (6.7). Sinc@s? = du® + a(u)?dH? (see (3) in Section 5)
and the metria/s?(= ¢) is smooth at the critical poinP € W, we require the function to
satisfy

(6.38) a0 =0, d0=1, a®0)=0 *k=12...),
(see [2, p. 96] and [16, Proposition 2.7]). ff, is given by (6.9), them = c¢f’ is an odd

function and satisfies the conditia(0) = 1 by settinge = 1/{2(e1 — ¢3)?}. Let fl, be
given by (6.7). Since we have from (6.4)

1
d'(0) = cp" (o) = c<650 (@)? - 9 2)
= 2c(e1 — e3)(e2 — e3) ,

we have to put = 1/{2(e1 — e3)(e2 — e3)}. Furthermore, sincés? gives the smooth metric
g at another critical poin@ € W, we also require to satisfy

aw =0, dw=-1, a®w=0 k=12...).
However we have

9" (0 + ') = 2(e2 — e3)(e2 — e1)

and hence
a'(w) = cf"(w)
:—61_62 =K2—1> —1
e1—e3

We conclude that the cage = 2 does not occur if the degree is equal to 2. It is easy to see
thatR? with metric given in [I] is isometric to a surface of revolution.

Suppose that the degree«(f) is equal to 3. Ifm = 0O, thenf|, is the function given
in (6.29") and M is isometric toR x Z with warped product metric given in [I1](1)(i).

Assume thain = 1. Thenf|, is one of the functions given by &%), (6.237),
(6.247), (6.257), (6.28") and (6337). By replacingf with — f, we see that the solutions
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(6.28%), (6.247) and (6337) are essentially the same as28"), (6.237), (6.257), respec-
tively. Therefore, if we set

2/{(x3 — x1)%(x3 —xa)}  for (6.22),

¢ =1-2/{(x1 —x3)%(x1 — x9)} for (6.237),

—2/(x4 — x1)°® for (6.257),

so thata satisfies (6.38), we obtain the cases [l1](2)(i), (ii) and (iii).

Next, assume that = 2. The functionf|, is one of the functions given by (891),
(6.197), (6.217), (6.227), (6.267) and (6287). By replacingf with — f, we see that the
solutions (6217) and (6287) are essentially the same as1® ) and (6227), respectively.
In order thatz satisfies (6.38), it is necessary that the constaattisfies

2/{(x1 — x3)(x2 — x3)(x3 — x4)} ~ for (6.19"),
—2/{(x1 — x2)(x1 — x3)(x1 — x4)} for (6.197),
—2/{(x1 — x3)%(x3 — x4)} for (6.227),
—2/{(x2 — x4)|x1 — x2/?} for (6.267).

We denote by 2 the period of the even functions.(®"), (6.197), (6.227) and (6267). At
another critical point where = L, we require

(6.39) a(l)=0, d@L)=-1, a®L)=0 *k=12...),

(see [2, p. 96]). We can easily show that the above four solutions satisfy (6.39) except for
a’(L) = —1. We first consider (89"). Noting thatL = w, x1 + x2 + x3 + x4 = 0 and
(2 — x1)(x2 — x4)

(x3 — x1)(x3 — x4)

d(w) =cf(w) =

we see that’(L) = —1 if and only ifx3 = —x». ThusM is diffeomorphic tas? and
(5 (w)

x2(x12 — x22)

—x2 {x1 + x2 — 2x1SPP((x1 + x2)u/2) }
(x1+ x2) — 2x2SMP((x1 + x2)u/2)

where we note thal/e; — ez = (x1 + x2)/2. We have obtained the case [l1](3)(i). We then
consider (6197). Noting thatL = w and

a(u) =

ffw =

_ (x2 — x3)(x2 — x4)

(x1 — x3)(x1 — x4)
we havexy = —x3 andxq = —x3 from the equatiom’(L) = —1. However, sincey < x3 <
x2 < x1, this case does not occur. We now conside2Z6). Noting thatL = 7/(2,/e1 — e3)
and

d'(w) = cf(w) =

(x1 — x4)2

L) = //L:_i’
a(L)=cf"(L) 1 — 12
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we see thaks + x3 = 2x; if and only if a’(L) = —1. Since 21 + x3 + x4 = 0 and
x4 < x3 < x2 = x1, this case deos not occur. Finally, we conside26). Noting that
L = o + o' and using (6.27), we have
2
d(L) = cf"(L) = — 1= x4l
lx1 — x2/?
Thusa’(L) = —1ifand only ifxg = —x2(# 0). Sincexz = X1 andx1 +x2+x3+x4 = 0, we
see thaky (= —x3) is a pure imaginary. Thu¥ is diffeomorphic tas? and (626~) becomes

1
- = - cn .
) = xS = o)

This case is [11](3)(ii).
We have completed to examine all cases. i

COROLLARY. Let M be a complete two-dimensional Riemannian manifold. If the
Gauss curvature K satisfies VVK = tg, then K isconstant or M isisometric to R? with the
metric whose curvature isgiven by K = —x”/x, x being the function given in [I] of Theorem
6.3.

PROOF SinceVVK = tg, we have—AK = 2t andVAK = 2KVK = VK2 |t
follows that—2t = K2 — A, wherex is a constant. Thus we have

1
(6.40) VVK = _E(KZ —N)g.
We putf = —K /12 andg, = 1/12. Then (6.40) becomes
2 1
(6.41) VVf=|6f —592)9-
The characteristic function(f) is a polynomial of f of degree 2. Thus the assertion is
obtained from Theorem 6.3. O

Now we consider the functional of14:
(6.42) Folgl = C/M(a — K)?dvy, (c #0),

8 being a constant. Suppose tlgais a critical point of7,. Then f = J(K) = 2c(K = 8) is
a concircular scalar field iK is not constant. Thus, from the above Corollary, we conclude
the following:

THEOREM 6.4. Let M be a compact orientable two-dimensional Riemannian mani-
fold. If the metric g of M iscritical with respect to F», then the Gauss curvatureis constant.

Next for a given real numbet, we consider the functional aM% ; = {g € M|0 <
§—¢eK on M}

(6.43) F5olg] = c/ (6 —eK)¥2dvy, (c #0).
M
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If the metricg is critical for the functionaﬂ-‘g/z, thenf = J(K) satisfies (5.3) and hence

4

(6.44) VVf = S(ﬁ

f2- 8f>g :
Thus it is convenient to put = +/2/(3v/3). If the metricg is critical for the functional
F32lmy, then

(6.45) VVf =e@f3—68f +2a3)g .
where the constant; is chosen in such a way thﬁ,&(2f3 —&f + 2a3)dvy = 0.

THEOREM 6.5. Let M beamanifold diffeomorphic to S2. Let § be areal number such
thatd > 4n ife = 1and |§| < 4 if e = —1. If ametric g on M is critical with respect
to 73 /2| M, then the Gauss curvature of g is equal to 47 (constant), g is the metric given
in [111(3)(i) of Theorem 6.3, where x1 = /3 + 47 /+/2 and x2 = /5 — 4r /2, or the metric
givenin [I11(3)(ii), where x1 = v/—1v/4n — §/+/2 and x2 = /47 + 5/+/2. They are on the
boundary of/\/l‘;’(3 N Mj.

PROOF. SinceM is diffeomorphic tos?, it suffies for the proof to consider the solu-
tions, T in [](3)(i) and £~ in [11](3)(ii), of the equation (6.45). In both cases, we have
az3 =0, 8§ = x12+ x22. UsingK = f”/f’, we also have % = § — ¢K. Since the metric is
normalized as Va@M) = 1, we have, by the equatien= cf”,

2 L
1=\VWol(M) = / / a(u)dud6
0 0

{4n/<x12 —x?) (=1,

4r/(lx1 —x21%) (e =-1).

It follows thatx; andx; are equal to the values in the assertion. Since the maximukhisf
equal tos in the case [ll](3)(i) and the minimum & is equal to—§ in the case [11](3)(ii), the

metrics are on the boundary M;)S N Mji. O
SinceJ (K) = ¢(8 — ¢K)%/2, K satisfies
2 £
6.46 VVK = =(§ —eK) (26§ Ky ——VK® VK,
(6.46) 3¢ —eK)@+eK)g — 5o VK ®

(cf. (5.8)). However, the coefficient 3 K ® VK has a singular point wher€ = ¢§ and

K is critical. The coefficientt ¢(K) in (5.8)) of ¢ vanishes at the critical point. It seems

to be interesting that we determine complete two-dimensional Riemannian manifolds whose
Gauss curvatur& satisfies (6.46), or, more generally, complete Riemannian manifolds which
admit a function satisfying the equation of the type (5.8), (where we should assunge fhat
possesses a singular point).
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