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Abstract. We find new examples of harmaonic maps between compact Riemannian
manifolds. A section of a Riemannian fibration is called harmonic if it is harmonic as a map
from the base manifold into the total space. When the fibres are totally geodesic, the Euler-
Lagrange equation for such sections is formulated. In the case of distributions, which are
sections of a Grassmannian bundle, this foarigldescribed in terms of the geometry of base
manifolds. Examples of harmonic distriboris are constructed when the base manifolds are
homogeneous spaces and the integral submanifolds are totally geodesic. In particular, we show
all the generalized Hopf-fibrations define lmamic maps into the Grassmannian bundles with
the standard metric.

1. Introduction. Let M and N be complete Riemannian manifolds. AssuMeis
compact. A smooth may : M — N is called harmonic if it is a critical point of the
energy functional. IV has non-positive curvature, then there exists a harmonic map in each
homotopy class. However, i¥ has positive curvature, this is no longer true and it always
has been meaningful to find examples of harmonic map between compact manifolds with
nonnegative curvature. In this paper, we produce some new type of harmonic maps between
compact Riemannian manifolds.

We consider the case wheéw is a fibre bundle oveM and f : M — N is a smooth
map which happens to be a section of this fibrationN Ifs a vector bundle oveds with a
connection type metric, thefi is a harmonic map if and only if it is a parallel section. We
will consider the case when the fibres are totally geodesic compact submanifolds, and hence
N is also a compact Riemannian manifold. In particularNifis a Grassmannian bundle
associated to the orthogonal bund¢M), then the map’ defines a smooth distribution on
M. A distribution on a Riemannian manifol will be called harmonic if it is harmonic
as a map fromV into the total space of the Grassmannian bundle a¥eMe will find the
Euler-Lagrange equation of a harmonic m&jn a general setting and find a solution to this
equation to construct examples of harmonic distributions.

The definition of harmonic distributions, or harmonic sections in general, is used by
other authors [7], [8], [9], [13] in a similar context but for a different concept. They call a
section harmonic if its vertical energy is stationary with respect to vertical variations. If one
is looking for a better section, this notion of harmonic section makes more sense. A variation
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through sections is necessarily a vertical ond #ris easy to see that the horizontal energy
does not change by the vertical variations. Therefore this vertically harmonic section will be
a critical point of energy functional among smooth sections. In our case, however, we are
more interested in the harmonic map itself, and therefore we have to consider both vertical
and horizontal parts.

In [6], it is proved that a unit vector field on the round sphé&feis a harmonic map
into its unit tangent bundle if and only if it is tangent to the Hopf-fibration. In this case, a
unit vector field is considered as a one-dimensional distribution. This result was improved by
Gluck and Gu [5] that a unit vector field is tangent to the Hopf-fibration if it is stationary only
for the horizontal variations. They also gave an interesting interpretation of such horizontally
harmonic vector fields on the standard 3-sphere that it corresponds to the so-called Beltrami
field in fluid mechanics. This horizontal harmonicity apparently carries more geometry of
manifold, but its geometric meaning is not yet well-understood.

In the following sections, we will consider sections of a fibre bundle with totally geodesic
fibres, and find a formula of tension fields feections as maps into the total space. In the
case of Grassmannian bundles, this tension field will be written in terms of geometry of the
base manifold. In the last section we will provide examples of harmonic distributions on
Riemannian manifolds. The only known example on which the horizontal distribution is
completely understood is the round sph&fewe mentioned above. When a vector field is
harmonic ons3, it is invariant underSU (2)-action and its integral curves are necessarily
geodesics. Since it is extremely difficult to find a harmonic map for general Riemannian
manifolds, we follow this line of reasoning, and study invariant distributions on homogeneous
spaces with totally geodesic integral submanifolds. There is a standard way of constructing
such manifolds. In fact, for compact Lie groulisc H C G with suitable metric, the natural
fibration

n:M=G/K— G/H

has the totally geodesic fib# /K. It is known that some homogeneous Einstein spaces can
be constructed in this way, and in particular this construction includes distributions tangent to
fibres in all of the generalized Hopf-fibrations. We will be able to show that all the generalized
Hopf-fibrations define harmonic distributions in our sense.

We refer to [2], [3], [12] for basic tools and more detailed description of harmonic maps
between Riemannian manifolds.

2. Harmonicity of sections. In this section, we will describe the Euler-Lagrange
equation for the harmonic map, which is a section of a Riemannian fibration with totally
geodesic fibres.

Let M and N be complete Riemannian manifolds. AssuMeis compact. A smooth
mapr : N — M is called a Riemannian submersionrifis a submersion and for each
x € N, the horizontal subspace @f N (orthogonal to the fibre over(x) in N) is mapped
isometrically bydx|, to Tr()M. We denote byH andV the horizontal and the vertical
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distribution, respectively. Then we can decompose the tangent blindle TN & TNV,
where we denote by N7t andT NV the horizontal and the vertical subbundle, respectively.
We now consider a Riemannian submersion with totally geodesic fibriat is, for
eachx in N with p = n(x), 7=1(p) = F, is a totally geodesic submanifold &f. Then
all the fibres are isometric to each other ands a Riemannian fibration [1]. Furthermore,
the horizontal distribution defines a connection on this fibre bundle.fLet¥ — N be a
smooth map which happens to be a section. The segtiizna harmonic map if and only if
it is a critical point of the energy function@(f) = fM e(f)dv, wheree(f) = (1/2)||df||?
is the energy density of. The differential maplf is a differential 1-form with values in the
pull-back bundlef ~1(7'N) and hence a section @M ® f~1(TN). Decomposef ~1(T N)
as f~YTN") @ 1T NV). We then havelf = df™ +dfY, wheredf" € I'(T*M ®
FHTNMY), dfY e T(T*M ® F~YTNY)), andI"(-) denotes the set of all smooth sections
of the corresponding bundle. Then the enekdy) is given by

1 1
E(f) = EM(f)+ EV(f) = Ef IIdellzdv+§/ ldrY v .
M M

Since f is a section of a Riemannian fibration, the linear mgp’ : 7,M — (T, N)"*is an
isometry for eactp = 7 (x), and hence we have’ () = (m/2)Vol(M) (m = dim(M)).

In the case of a vector bundle with metric connection, it is easy to see that a section
is harmonic if and only if it is parallel. In fact, for a sectioh : M — N, consider a
variation of f given by f;(p) = tf(p), p € M. For an orthonormal basig;} of T,M,
df (e;) = e; + V,, f, whereg; is the horizontal lift ofe;. Hencedf;(e;) = ¢; +tV,, f, and

1 1
E(f) =3 fM ldf; |12dv = 5<mVOI(M> +12 fM ||ve,-f||2dv).

Therefore(d/dt)|;,=1E(f;) = 0 impliesV f = 0 (In the case of tangent bundle, see [9].).

For f : M — N we now consider the Euler-Lagrange equation of the energy functional.
Let V and V be the Levi-Civita connection o and N, respectively, and leV be the
induced connection on the pull-back bunglel(TN). Then we havé/(df) € I'((S2M ®
FUTNM) @ (52M ® f~YTNY))), whereS2M is the space of symmetric covariant 2-
tensors. Taking trace of the second fundamental form gives the tension field,

t(f) = —V*(df) = Tr(Vdf) e T(fX(TN)).

Thenf : M — N is a harmonic map if and only if (f) = 0. In fact, for a vector field/
alongf,letX : (—e,e)xM — N be avariation suchthat (0, p) = f(p), (0X/9t)(0, p) =
V(p), and f;(p) := X(¢, p). Then

d
E(fi) = —/ (V.t(f)ndv,
=0 M

dt

where(., -) y denotes the Riemannian metric & We decompose( f) ast(f) = t " (f) +
tV(f), wheret"(f) e I(f~HTN™)) andtV(f) € I'(f~X(TNVY)). Then we have
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() = Tvdf™HM + Trvarr,
V(f) = MvdfHY + (TrvdfY)V .
LEMMA 1. For asmoothsection f : M — N, we have
(TrvdfyY =0, Trvdf) = Trvdarr.

PROOF  For a vector fieldY on M let X denote the basic vector field which is a hori-
zontal lift of X. Then for a local orthonormal frame fie{d;} of M, df™(¢;) = ¢; and

Trvdf™ = Z(v df )(e,)—Z(vele, (Verei)).

SinceV,, & = Vg éi + Vv, € andV; & = (Vc,e,) by O’'Neill's formula ([10]), we have
TIvdft =Y, Vdfv(e)e, Since fibres are totally geodesic, we haW/(gcv(e)e, € H, and
hence

(TVdf™Y =0, (V™™ =" Vv 6 -

For the vertical component, we locally extedd (e;), a vector field alongf, to a
vertical vector field onV, which we also denote by (¢;). We then have

TVdfY =Y (VodfV)e) =Y (VedfY(e) — dfY (Vee)

=Y " (VadfY(e) + Vv df (i) — df¥ (Veen)

wheredfY (V,,e;) andV, v, dfY (e;) are inV because the fibres are totally geodesic. Fur-
thermore, sincé; is a basic vector field andfY (¢;) is vertical, we havée;, dfY (e:)] € V.
Therefore
(Ve dfY ()™ = (Vgdf Y (e)™ = Ve
Thus we conclude thalrvdf )™ =3, Vv, é = (Trvd )7t O
Denote by’'V and V'V the horizontal and the vertical component'ef respectively.
Since TKHVdfH) = (Trvdf )M and TV VdfY) = (TrvdfY)Y, we use the rough Lapla-
cian notation of the induced connections.
DEFINITION 1. Forf : M — N as abovewe denote
A () =MV @dfM) = —Tr(tVaf™
AV(f) =YV @dfY) = =Tr(VVdfY).

Then Lemma 1 implies the following theorem.
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THEOREM 1. For f: M — N asabove, we have
() =N + V() = AT + AV ().

This result is intriguing in the sense that the vertical tension coincides with the vertical
Laplacian, but the horizontal one has the factor 2. Nonethefessharmonic if and only if it
is harmonic with respect to both Laplacians.

SinceE(f) = EM(f)+ EV(f) andEM(f) is constant as long a&is a section, we see
thattV(f) = 0if and only if EV(f) is stationary with respect to vertical variations (compare
[13], Theorem 2). The horizontal tension field alofidgs a horizontal lift of a vector field on
M, and it apparently carries more geometryMfthan the vertical one. In the remainder of
this section we will try to find a more geometric description of the horizontal tension fields.

Let7 : P — M be the principalG-bundle associated ¥, F the fibre space on which
G acts,andp : P x F — N the principal map. Leb ands2 be the corresponding connection
form and the curvature form oR. For p € M, choose(u, £) € P x F such thaip(u, §) =
f(p). We then fix¢ and consider the map: : P — N defined byge (¢) = ¢(a, §). The
connection orV is associated to that a?, and therefore the horizontal spacefis, by
definition, the image of the horizontal space Bfby ¢:. Lete; be the horizontal vector
field on P such thatdgs (¢;) = ¢;. Then by the structure equation we hayg([e;, ¢;1) =
—$£2,(e;, ej), and hence

(81, ¢11Y = dgz ([;,¢j1Y) = —dgs (0uly) " (2u(@i, €)))) -
We use this fact to prove the following proposition.

PrROPOSITION 1. Letw : N — M bea Riemannian submersion with totally geodesic
fibresand f : M — N asection. Then

) = tdes (@uly) ™ (20 (@, 8))), df Y (e))nE;
iJ
where {¢;} and {e;} are the horizontal liftsto P and N of an orthonormal frame field {e;} of
M.

ProoOF For alocal orthonormal frame fiel@;} on M, by Lemma 1, we have
AM(f) == (VadfY(en™ ==Y (VedfY(e). éj)né
i i,j
= (dfY (e, V& éjIne; .

i,J
SinceV;é; = (V;é;)™ + A;é;, whereA is the O'Neill tensor (see [10]) and; ¢, =
(1/2)[e;, E,-]V for horizontal vector fields, we have

1
H s sV eV ~
AT =3 Z<[e,-, ¢jl”,dfY(en)ne; .
L]

Then the proposition follows from Theorem 1 and the above remark. O
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3. Digtributions on Riemannian manifolds. In this section, we apply the results in
Section 2 to smooth distributions on Riemannian manifolds. We note that in general it is not
very difficult to find an equation for harmonic maps between two Riemannian manifolds as
long as Riemannian metrics are given. In fact, an explicit formula for the tension field of
distributions in terms of local coordinates appears in [14] (This result has not been published
to the best of author's knowledge), and the vertical component was also studied in [13]. For
the sake of completeness, we will show how they can be derived from the general formula we
found in the previous section. We also need the equation in a specific form so that we can find
solutions in the next section.

A k-dimensional distribution on anrdimensional manifold/ is a smooth section of the
Grassmannian bundi8; (M) of k-dimensional planes in tangent spaceg/af Throughout
this section we use the index convention,

1<i,j<k, k+1l<ao,B<n, 1<A,B<n.

The Grassmannian bundie, (M) is associated to the orthogonal bundl¢M), which is a
principal O (rn)-bundle, and has the fibi€;(R") = 0(n)/(0(k) x O(n — k))(= G/K).
An invariant metric onG,(R") is determined by an Agl(K)-invariant inner product on a
subspacen C o(n), which is an Ad; (K)-invariant complement t@o(k) x o(n — k)) and is
identified withT(. k)G« (R™) by the projection map. LeEg‘ denote then x n)-matrix such
that(A, B)-th entry is 1 and others are all zero. Then for the standard metrig,0R"), we
takem(R") as a subspace with the orthonormal bdsis:= E* — E' }.

Consider the principal map : O(M) x Gx(R") — Gy(M). Let& be the origin of
Gr(R™), i.e., the coseD (k) x O(n — k). Thengs : O(M) — Gi(M) is nothing but the
projectionO(T,M) — G(T, M) on fibre over eaclp € M, anddgz : o(T,M) — m(T, M)
is the corresponding projection in Lie algebra.

Let D be ak-dimensional distribution o, which we also denote by a mgp: M —
Gr(M). Denote byD+ the orthogonal complement @. Choose a local orthonormal frame
field {e4} on an open subsét of M such that

e, €D, 1<i<k, e €D, k+l<a<n.

Then this frame field defines a local section: U — O(U) such thaty: o 0 = fly.
With respect to this frame field, we can locally trivializZ&(U) asU x O(n), and through
¢: We obtain a local trivializatio/ x G¢(R") of Gx(U). Then the distributiorD appears
as the origin inG¢(R"). Let w and$2 be the connection form and curvature form of this
principal bundle. Fop € M letu € O(M) denote the orthonormal bagis,} of 7, M. Then
forv e T,M, do¥ (v) = (wu|y) Y wu(do (v)) is a skew-symmetric matrix whose, B)-

th entry is given by(Vyeg, e4), where(-, -) is the metric ofM. Note that with respect to
our trivialization, (w, |y) is simply the identification of the tangent spacefn) to its Lie
algebra. We now improve Proposition 1 to have a more explicit formula for the horizontal
tension field of a distribution. We denote by ™ and(-)* the projections ont® and D+,
respectively.
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ProPOSITION 2. For adistribution D on M, let {e4} be a local orthonormal frame
field such that e; € D. Then

(D) =) R(Vesei). ei)ea .
i,A

where R is the curvature tensor of M, and t7(D) is identified with its image on M by the
isometry df " T,M — Ty, N

PROOF  Sincedy: : o(T,M) — m(T,M) is a projection such thaifY (v) =
deos (do¥ (v)), we have

dfY () = (Voei, e Ef + (Voea, eV Ely = Y _(Vyei, eq)el, .
i,a i,

Furthermore, for the horizontal lifiz4} of {e4} in O (M), we see thatw,|y) 12, (4, &p)
is the skew-symmetric endomorphisRie,, ep) : T,M — T,M, and hence

dpe (@uly) " Q2u(@a, 28)) = Y (R(ea, ep)ei, eq)el, -

i,o
Then by Proposition 1 and the fact tha;} is an orthonormal basis df, M, which is identi-
fied withm, we have

(D) = Y ((R(ea. e)e)™. (Vezei)M)ea .
i,A,B
Then the proposition follows from the symmetry of the curvature tensor. O

As an example, we consider the case widén= S” is a round sphere with constant
curvatureK > 0 andD is a unit vector fieldt . Then the curvature tensat is given by
R(X,Y)Z = K({X,Z)Y — (Y, Z)X). Choose an orthonormal frames}, i = 1,...,n.
Since(V,&, &) = 0 for any vectomw, the horizontal tension field dfis

&) =Y R(Ve ), §)ea

A=1
—K Z((Vmé‘, en)E — (€, ea) Ve, §)
A=1

= K((div§)s — Veé),

where div¢ denotes the divergence of the vector figldrhereforet is horizontally harmonic
if and only if divé = V& = 0, which means the flow is volume preserving and the integral
curves are geodesics.

The vertical tension field for distributions has been studied extensively [13] and we will
only mention a few facts. From the equation &t (v) in the above proof, it is now easy to
see that for an)X € T, M, we have (compare [13], Theorem 3)

dfY 0)(X) = Py(X) 4+ 0u(X) = (VuX DL + (VX HT,
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where P,(X) and Q,(X) are independent of any extensionXfto a vector field and hence
dfY(v) is a tensor. MoreoveP,|p € Hom(D, D) and Q,|p. € Hom(D+, D) satisfy
Pylp = —(QulpL)™.

In the case of Grassmannian bundles, the induced vertical connéoapplied to
the vertical vector field/fY (e4) in fact coincides with the covariant derivative of the local
tensor fielddfY (ea). Sincet” (D) € m(T,M), by the same argument @§" (v), we can
decomposeV(D). Therefore

V(D) = -VV*dfY) = -v*@dfY) =P+ 0.

where P|p € Hom(D, D+) and Q|p1 = —(P|p)* € Hom(D+, D). ltis then an easy
computation of tensor derivation to see the following.

PRoOPOSITION 3. Suppose that we identify m(7), M) as the space of skew-symmetric
operators on 7, M, which can be decomposed as Hom(D, D+) & Hom(D+, D). Then for
eachv € D, we have

Y (D)(v) = Plp(v)

= ((Vey (Ve, )t = (Veu (Ve 0) DY = (Vg 0,00 h)
A

and 7V(D)|pr = —(tV(D)|p)*.

An immediate consequence of our discussion above is that we can obtain the tension field
of the complementary distributicR by simply reordering the indices, and hena®) =
7(D1).

4. Examples of harmonic distributions. In this section, we will find examples of
Riemannian manifolds with harmonic distributions.

In [6], it is shown that on the 3-dimensional unit sphere, a smooth unit vector field is
a harmonic map into the unit tangent bundle with the Sasaki metric if and only if it is the
tangent vector field of the Hopf-fibration. A crucial fact about the Hopf vector field is that it
is invariant undeSU (n + 1) action onS2'*1 = SU(n + 1)/SU (n) and the integral curves
are geodesics. Here we note that in this case the mettf@an + 1) is not the standard bi-
invariant metric. In generagn irreducible symmetric space/K presented by a symmetric
pair (G, K) does not carry ang-invariant distribution.

Let M = G/K be areductive homogeneous space with transitive action by a Lie group
G. Let g be the Lie algebra off andt C g the corresponding subalgebra % and choose
an Adg (K)-invariant complementn to ¢ in g. A distribution D is called G-invariant if
dy(D,) = Dy (p) foreachp e M andy € G. Itis then easy to see that by the isomorphism
m — T(.x)M there is a one-to-one correspondence betweesAd-invariant subspaces of
m andG-invariant distributions o/

In order to produce examples with harmonic distributions, we now recall a standard
technique to construct homogeneous Riemannian fibration with totally geodesic fibres (see

[1])-
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Let G be a compact Lie grougH, K two compact subgroups @f with K ¢ H. Then

we have the natural fibration

7n:M=G/K— G/H
with fibre H/K. We further assume that/H is an irreducible symmetric space with the
symmetric paifG, H). Lett C h C g be the Lie algebras of, H, andG, respectively. We
choose an Ad(H)-invariant complement to  in g, and an Ag¢; (K )-invariant complement
ptotinh. Thenm := p ® nis an Ad;(K)-invariant complement té in g, and we have
[h,n] Cn, [& p] C p. Furthermore, sincéG, H) is a symmetric pair we haje, n] C . An
Adg (H)-invariant scalar product om defines aG-invariant Riemannian metri¢ on G/H,
and an A¢; (K)-invariant scalar product om defines aH -invariant Riemannian metri¢ on
H/K. Finally, the orthogonal direct sum for these scalar productsiog p & n defines
a G-invariant Riemannian metrig on G/K. Then we see that the mapis a Riemannian
submersion fromG/K, g) to (G/H, §) with totally geodesic fibres isometric {¢/ /K, g).

For example, leG = SU(n + 1), H = S(U(1) x U(n)) andK = SU(n). Then we
see that the corresponding fibratiorris $2't1 — CP”, which is called the Hopf-fibration.
Notice that the standarfiU (n + 1)-invariant metricg on $2**1 is not the round metric.
However by re-scaling the metricalong the fibre we can produce the standard round sphere,
and obtain arSU (n + 1)-invariant distributionD tangent to the Hopf-fibration. In general,
for the homogeneous spacks= G/K as above, we need to chande bi-invariant metric
on G in order to obtain interesting metrics afi. We show that this type of modification can
be done in a general setting.

Let ((-, -)) be a bi-invariant metric o and let(-, -) a new left invariant metric defined
by re-scaling(-, -)) onh such that:, -)| = A((:, -)) fora constant > 0. Itis easy to see that
this new metric orG is still H-biinvariant, and hence its restriction enis Adg (K )-invariant.
Therefore, it determines an invariant metric &= G/K that we also denote by, -). The
projectionr : G — M is a Riemannian submersion. By choosing- 0, we produce a
family of new metrics onM, and it is known that some homogeneous Einstein manifolds can
be produced in this way [1]. In particular, this construction includes all of the generalized
Hopf-fibrations. Since this new metric @& is not bi-invariant and/ is not necessarily a
normal homogeneous space, it takes some effort to understand the geoniétiy efrms of
the algebraic structures.

Let M = G/K be a homogeneous space with the mefrie) defined as above. The
compact Lie groupG acts onM by isometries and hence also acts on the Grassmannian
bundleGy (M), k = dim(p), with the standard metric as in Section 3. The;Af )-invariant
spacep generates &-invariant distribution onM, which we denote byD, and henceD+
is generated by. SinceD is G-invariant, so is the tension vector fietdD) on G¢(M).
Since theG-action onG (M) clearly preserves the horizontal and vertical spaces, we see
that V(D) andt7¥(D) are bothG-invariant. Moreoverz* (D) can be identified with its
image onM by the isometnyI' G (M)" — T M, and hence it is &-invariant vector field on
M. Therefore there exists a corresponding;AR )-invariant element im, which we again
denote byr (D). We will not distinguish these vector fields because no confusion will be
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caused. We claim that faW = G/K with a metric modified by any > 0, this distribution
D defines a harmonic map froM to G (M).

LEMMA 2. Let G beacompact Lie group with the modified metric (-, -) and the Levi-
Civita connection V. We then have the following facts about the covariant derivatives of |eft
invariant vector fieldsin m.

(1) IfX,Yep,orX,Y en,thenVyxY = (1/2)[X,Y].

(2) IfX epandY en,then VxY and Vy X areinn.

PROOF  Since(., -) is Adg (H)-invariant, for anyV, W € g andX € b, we have
(LV, X1, W) =(V,[X, W]).
ForanyX,Y e p=hnNnmandV e g, by the Koszul formula, we have
2(VxY, V)= —(X,[Y.V]) = (Y.[X, V]) + ([X, Y] V)
=(X,Y],V).
Similarly, for anyX, Y, V € n, since[n, n] C b andn L b, the Koszul formula gives
2(VxY, V)= —(X,[Y,V]) = (Y, [X,V])+ ([X, Y], V) =0.

Therefore, we hav&xY € h for X, Y € n and it is easy to see again by the Add)-
invariance of the metric that(¥x Y, V) = ([X, Y], V) for V e b.

Since the covariant derivative of an invariant vector field with respect to an invariant
vector field is again invariant, it is also easy &rify the statement (2) with the Koszul formula
and the fact thafth, h] C h andn L b. O

COROLLARY 1. For X € por X € n, the one-parameter subgroup «(¢) = exptX is
a horizontal geodesic with respect to the Riemannian submersion = : G — M. Furthermore,
each element X € p generates a horizontal Killing vector field on G.

PROOF ForX e porX € n, sinceVxX = (1/2)[X, X] = 0, the one-parameter
subgroupx(t) = expr X is a geodesic.

A left invariant vector fieldX € m is certainly a horizontal vector field, and its flow
is given by the right multiplication bw(r) = exprX. Since the modified metric is still
H-biinvariant, this flow is an isometry as long Ess in b. O

Since the one-parameter subgraup) = exprX, X € p orn, is a horizontal geodesic
with respect to the Riemannian submersion G — M, its imager o «(t) is a geodesic in
M.

We now take a small neighborhodtlof 0 inm, and let> = expU be then-dimensional
submanifold near the identity i@, wheren = dim(m) = dim(M). Let{ea} Ccm, 1< A <
n, be an orthonormal frame field along such that{e;} € p, 1 < i < k and{e,} C n,
k+ 1 < a < n. Note that we are using the same index convention as in Section 3,
and this leftG-invariant frame field is not necessarily tangentdobut horizontal with re-
spect to the Riemannian submersion. Denotgdyy} the image of{e4} by the projection
7 :G — M. ltisthen clear thate,} is an orthonormal frame off near the pointeK) such
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thatdn(%A ep) = V.,ep, whereV is the Levi-Civita connection oM. All these covariant
derivatives of invariant vector fields im have invariant horizontal componentsah which
correspond to covariant derivatives M via the projection. We plan to carry out the compu-
tation of covariant derivatives i in terms of horizontal invariant fields iG up to second
order.

PROPOSITION 4. For M and D as above, we have t V(D) = 0.

PROOF  SincerY (D) is G-invariant, it suffices to show this vector vanishes at the point
(eK). We take a frame fiel¢ke 4} as above. Sinc¥,,e4 = 0, by Proposition 3, for any; we
have

Y (D)(ei) = Y (Ve (Vese) )t = (Ve, (Vese) )Y
A

wheretY (D) is identified as an element in Ha®, D+) & Hom(D+, D).

For the first term in the right hand side of the above equation, we observe that the fibres
are totally geodesic and hence for alle D we have(Ve_,e,-)l = 0, where(-)* denotes as
before the projection ontP+ = dx (n). Moreover, by Lemma 2 (2), we ha¥e,é; € n, and
hence(Vea.e,-)L = V,,e; is the image of an element in Since[n, n] C h, we now see that
(Vey (Vegen) ) = 0.

For the second term, again by Lemma 2 (2), we see(#gk;) " = 0. Sincelp, p] C b,
we have(V;e)' € p and hence for the same reasow,; (Ve e;)")= = 0. Therefore
V(D)|p = 0, and sinceV(D)|pL = —(zY(D)|p)*, we can now conclude tha? is verti-
cally harmonic. O

By Lemma 2, we see that the covariant derivaiieY coincides with the Lie bracket as
long asX andY are both inp orn. For other cases, although it is more complicated, we could
still carry out the computation through algebraic operations and it would be possible to write
down the curvature of; or M. But, for this type of modified metric oM, we already have a
nice formula for the curvature a#.

LEMMA 3 ([11], Lemma 3.6). Let A : g — g be a linear transformation such that
(X,Y) := ((AX, Y)). Then the curvature of the invariant metric (-, -) on the compact homo-
geneous space M = G /K isgiven by

1
(RX,Y)Z, W) =§{((37(X, Y),[Z, WD) + {[X, Y], B_(Z, W)))}
1

+{((BL(X, W), AT BL(Y, Z))) — (B4 (X, Z), A" By (Y, W)},

where B (X, Y) = (1/2)([X, AY]+[Y, AX]), B_(X,Y) = (1/2)([AX,Y]+[X, AY]), and
[-, -]m denotes the m-component.
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Note that in the above formula for the curvature®fK the second line with then-
components accounts for the O’Neill's term of the Riemannian subme¢sion G/K, and
all the computations are donegrwith invariant vector fields im.

COROLLARY 2. Forall W € D+, wehave (z7{(D), W) = 0. In particular, t"(D) €

PROOF Let {e4} be the same local orthonormal frame field df as in Proposition
4. Since the fibres are totally geodesic, foralle; € D we have(Vejei)L = 0. Thus by
Proposition 2,

(D) =) " R((Veye) ™, ei)en
i,A

=Y R((Vegei)". ei)ep
LB

=) R((Veyea) . a)ep = T"H(D).
o,
The Riemannian metric o = G/K is determined by-, -) with (-, -)|5 = A((-, -)),
thatis,Alp = A - Id andA|, = Id. ForanyX e p, Y, Z, W € n, we obtain

B_(X,Y)= %([AX, Y1+ I[X, AY]) = %(A+1)[X, Y],

and similarly we haveB_(Z, W) = [Z, W], B+ (X, W) = (1/2)(1 — M)[X, W], BL(Y, W)
= By(Y,Z) = 0. Since,[n,n] C h = t@p, [h,n] € nand[p,n] C n, by
Lemma 3, we have

1
(R(X,Y)Z, W) :Z(3+ MUX, Y] [Z, W1))

1
+ me’ WL Y, Zlm) — {[X, Z], [Y, W]m)
- 2([X,Y],[Z, W]n)} =0.
PUtX = (Vegea) T, Y = eq, Z = eg. Then we have ™ (D) € D. Sincer™ is aG-invariant
vector field tangent t@, we conclude that’ (D) is an Ad; (K)-invariant element irp by
the canonical identification df, M with m. 0

By the above corollary, we see that tirwomponent ot (D) € m vanishes. However,
thep-component can not be controlled in this way and we need a direct approach.

PROPOSITION 5. For M and D as above, we have t7{(D) = 0.

PrOOF It suffices to show that™ (D) = 0 at(eK). Let f : M — Gi(M) be a
section given by the distributiofv, and letX : (—¢,¢) x M — Gy(M) be a horizon-
tal variation such tha® (0, p) = f(p), (0X/91)(0, p) = t"(D), and f;(p) := X(t, p).
Along f the horizontal vector field ( ) is a horizontal lift of its image o, which we do
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not distinguish. Denote by, the flow of t*?{(f) on M, i.e.,¢; = 7 o f;. Sincet™(f) is
lifted to an Ad; (K)-invariant vector fieldr7'(f) € p on G with respect to the Riemannian
submersiorG — G/K, by Corollary 1, it is a Killing field onG. Furthermore, the image of
this horizontal vector field by the projection: G — M gives rise to a Killing vector field
tH(f)onM.

Sincet — f;(p) is a horizontal lift of the curve — ¢;(p), it represents the parallel
transport of f(p) along the curve. Furthermore, by Corollary 1, fer= (eK) € M the
flow ¢, (p) = m exp(tt7L(f)) is a geodesic and hence is contained in a totally geodesic fibre.
Therefore the tangent space of fibre is invariant under the parallel transport along the flow.
Thus we havef, = f og¢;. Sincey; is an isometry for each we see thaff df;||? is a constant.
Therefore

/ ", Mydv = 4 E(f) =0,
M dt (=0

and hence’ = 0. m
Combining Propositions 4 and 5, we now have the following.

THEOREM 2. Let M be amanifold constructed as above. Then the G-invariant distri-
bution D is a harmonic map into the Grassmannian bundle G (M).

As we mentioned, all of the generalized Hopf-fibrations are constructed in this way,
and hence distributions tangent to the Hopf fibre are harmonic maps into the Grassmannian
bundle.
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