- T. Šalát, Department of Algebra and Number Theory, Comenius University, Mlynská dolina, 842 15 Bratislava, Slovakia
- J. Tóth, L. Zsilinszky, Department of Mathematics, College of Education, Farská 19, 949 74 Nitra, Slovakia

ON THE STRUCTURE OF THE SPACE OF METRICS DEFINED ON A GIVEN SET

Abstract

This paper is a continuation of the authors' earlier paper [4]. Denote by \mathcal{M} the metric space of all metrics on a given nonvoid set X with the sup-metric. In this paper some subsets of \mathcal{M} are investigated, namely subsets consisting of all metrics $d \in \mathcal{M}$ for which (X, d) possesses prescribed topological (metric) properties.

1. Introduction

Let X be a given nonvoid set. Denote by $\mathcal{M} = \mathcal{M}(X)$ the set of all metrics on X endowed with the metric

$$d^*(d, d') = \min\{1, \sup_{x,y \in X} |d(x,y) - d'(x,y)|\} \text{ for } d, d' \in \mathcal{M}.$$

It is the purpose of this paper to investigate the structure of the metric space (\mathcal{M}, d^*) and examine the properties of the following sets:

 $\mathcal{U} = \mathcal{U}(X) = \{d \in \mathcal{M}; (X, d) \text{ is a complete metric space } \}$

 $S = S(X) = \{d \in \mathcal{M}; (X, d) \text{ is a separable metric space } \}$

 $\mathcal{K} = \mathcal{K}(X) = \{d \in \mathcal{M}; (X, d) \text{ is a compact metric space } \}$

 $\mathcal{C} = \mathcal{C}(X) = \{d \in \mathcal{M}; (X, d) \text{ is a connected metric space}\}, \text{ and }$

Mathematical Reviews subject classification: 54E35

Received by the editors April 29,1993

Key Words: metric, complete, separable, compact, connected metric space, residual set, Borel set

 $\mathcal{T} = \{t_a \in \mathcal{M}; t_a(x, y) = a > 0 \text{ for } x \neq y \in X, \text{ and } t_a(x, x) = 0 \text{ for } x \in X\}^1$ For each a > 0 put

$$\begin{split} \mathcal{H}_a^* &= \{d \in \mathcal{M}; \forall_{x, \, y \in X} d(x, y) < a\}, \\ \mathcal{H}_a &= \{d \in \mathcal{M}; \, \bigvee_{\substack{x, \, y \in X \\ x \neq x}} d(x, y) \geq a\} \text{ and } \mathcal{H} = \cup_{a > 0} \mathcal{H}_a. \end{split}$$

We have ([4], Lemma 2)

Lemma A The set \mathcal{H} is an open and dense subset of \mathcal{M} .

Throughout this paper we will use the notation from [4]. In what follows suppose that $|X| \geq 2$.

2. Main Results

The equivalence of metrics determines an equivalence relation \sim on \mathcal{M} . The symbol $\mathcal{M}|_{\sim}$ stands for the set of all equivalence classes generated by \sim .

Let \mathcal{O}_0 be the class from $\mathcal{M}|_{\sim}$ whose elements d fulfill the following property: the sequence $x_k \in X$ $(k \in \mathbb{N})$ converges with respect to d if and only if $\{x_k\}_{k=1}^{\infty}$ is almost stationary (i.e. $d(x_k, x) \to 0$ as $k \to \infty$ for some $x \in X$ implies that $x_k = x$ for all but at most finitely many k).

The class \mathcal{O}_0 contains all trivial metrics, but there are other metrics, too. For instance if $X=(0,+\infty)$ and $\varrho(x,y)=\max\{x,y\}$ for $x\neq y$, and $\varrho(x,x)=0$, then $\varrho\in\mathcal{O}_0\setminus\mathcal{T}$ (cf. [2]).

Theorem 1 The sets \mathcal{O}_0 and \mathcal{U} are residual subsets of the 2nd category in (\mathcal{M}, d^*) .

PROOF. It is an easy consequence of Lemma 2 and Theorem 3 in [4].

Remark 1 It is worth saying that the spaces (\mathcal{O}_0, d^*) and (\mathcal{U}, d^*) are not complete, since the sequence $t_{\frac{1}{k}} \in \mathcal{T} \subset \mathcal{O}_0 \subset \mathcal{U}$ $(k \in \mathbb{N})$ is fundamental and has no limit in \mathcal{O}_0 and \mathcal{U} , respectively.

Theorem 2 Each of the sets S, K and C can be represented as a union of classes from $M|_{\sim}$.

PROOF. The assertion follows from the fact that the properties of separability, compactness and connectedness, respectively are topological properties. Thus if $d \in \mathcal{S}$ $(d \in \mathcal{K}, d \in \mathcal{C})$ is in the class \mathcal{O} , then $\mathcal{O} \subset \mathcal{S}$ $(\mathcal{O} \subset \mathcal{K}, \mathcal{O} \subset \mathcal{C})$. \square

The analogous theorem for $\mathcal U$ does not hold in general. Actually we have

¹the elements of \mathcal{T} are the so-called trivial metrics.

Theorem 3 (i) If X is a finite set, then $\mathcal{U} = \mathcal{M} = \mathcal{O}_0$.

(ii) If X is an infinite set, then $\mathcal{O}_0 \cap \mathcal{U} \neq \emptyset \neq \mathcal{O}_0 \cap (\mathcal{M} \setminus \mathcal{U})$.

PROOF. Case (i) is trivial.

(ii) Let X be an infinite set. Then there exists a one-to-one sequence $x_k \in X$ $(k \in \mathbb{N})$. Put $X' = X \setminus \{x_1, x_2, \dots, x_k, \dots\}$ and define the metric ϱ on X as follows: $\varrho(x, x) = 0$ for $x \in X$, $\varrho(x, y) = 1$ if $x \neq y$ and at least one of x, y belongs to X', further $\varrho(x_i, x_j) = \max\{\frac{1}{i}, \frac{1}{j}\}$ for $i \neq j, i, j \in \mathbb{N}$. We prove that $\varrho \in \mathcal{O}_0 \cap (\mathcal{M} \setminus \mathcal{U})$.

Let $\varrho(y_k,y) \to 0$ as $k \to \infty$ $(y_k,y \in X, k \in \mathbb{N})$. Then $\varrho(y_k,y) = 1$ if $y \in X', y \neq y_k$ and $\varrho(y_k,y) \geq \frac{1}{m}$ if $y = x_m, y_k \neq x_m$ $(k \in \mathbb{N})$. Thus $y_k = y$ for every $k \geq k_0$ $(k_0 \in \mathbb{N})$, which implies that $\varrho \in \mathcal{O}_0$. Further the sequence $\{x_k\}_{k=1}^{\infty}$ is evidently fundamental in (X,ϱ) , but does not converge because it is not almost stationary. Consequently $\varrho \in \mathcal{M} \setminus \mathcal{U}$.

On the other hand the trivial metric $t_1 \in \mathcal{O}_0 \cap \mathcal{U}$. \square

Lemma 4 Every class $\mathcal{O} \in \mathcal{M}|_{\sim}$ is a dense in itself subset of \mathcal{M} . Moreover each point of \mathcal{O} is its point of condensation.

PROOF. Let $\varepsilon > 0$. Let $\mathcal{O} \in \mathcal{M}|_{\sim}$, $d \in \mathcal{O}$. It suffices to consider the metrics $d_a = d + a \cdot \min\{1, d\}$ for $0 < a < \varepsilon$, and notice that $d_a \in \mathcal{O} \cap K(d, \varepsilon)$ for all $0 < a < \varepsilon$. \square

Theorem 5 Each of the sets S, K, C and U is a dense in itself subset of (\mathcal{M}, d^*) .

PROOF. The union of an arbitrary system of dense in itself sets is dense in itself (see [1], p.46). Accordingly for \mathcal{S} , \mathcal{K} and \mathcal{C} the assertion follows from Theorem 3 and Lemma 4. In view of Theorem 3(ii) we have to deal with \mathcal{U} separately. Let $d \in \mathcal{U}, \varepsilon > 0$ and $0 < a < \varepsilon$. Put $d_a(x, y) = d(x, y) + a$, for $x, y \in X$, $x \neq y$ and $d_a(x, x) = 0$ for $x \in X$. Then $d_a \in \mathcal{U} \cap K(d, \varepsilon)$ for each $0 < a < \varepsilon$. \square

Theorem 6 The set S is closed in (\mathcal{M}, d^*) .

PROOF. Suppose that d belongs to the closure of \mathcal{S} in (\mathcal{M}, d^*) . Then there exists a sequence $d_n \in \mathcal{S}$ $(n \in \mathbb{N})$ such that $\lim_{n \to \infty} d^*(d_n, d) = 0$. There is a countable set $M_n \subset X$ dense in (X, d_n) $(n \in \mathbb{N})$. Put $M = \bigcup_{n=1}^{\infty} M_n$. Then M is countable. To prove M is dense in (X, d) let $x_0 \in X$ and $0 < \varepsilon < 1$. Since $d^*(d_n, d) \to 0$ $(n \to \infty)$, there exists $n_0 \in \mathbb{N}$ such that $|d_{n_0}(x, y) - d(x, y)| < \frac{\varepsilon}{2}$ for every $x, y \in X$ whence $d(x, y) < d_{n_0}(x, y) + \frac{\varepsilon}{2}$ $(x, y \in X)$. Since M_{n_0} is dense in (X, d_{n_0}) , there is $y_0 \in M_{n_0} \subset M$ for which $d_{n_0}(x_0, y_0) < \frac{\varepsilon}{2}$. Consequently we get $d(x_0, y_0) < d_{n_0}(x_0, y_0) + \frac{\varepsilon}{2} < \varepsilon$. \square

Remark 2 In view of Theorems 5 and 6 it turns out that S is a perfect subset of (\mathcal{M}, d^*) .

Theorem 7 We have

- (i) if $2 \leq |X| \leq \aleph_0$, then S is of the 2nd category in M, and
- (ii) if $|X| > \aleph_0$, then S is nowhere dense in M.

Proof.

- (i) If $2 \le |X| \le \aleph_0$, then $\mathcal{S} = \mathcal{M}$ and Theorem 3 in [4] yields the desired result.
- (ii) If $|X| > \mathbf{c}$, then $S = \emptyset$ (see [1], p.140). Therefore it suffices to consider the case $\aleph_0 < |X| \le \mathbf{c}$. The trivial metric t_1 is evidently in $\mathcal{O}_0 \setminus \mathcal{S}$. Furthermore, according to Theorem 2 $d \sim t_1$ implies $d \notin \mathcal{S}$. Thus $\mathcal{O}_0 \subset \mathcal{M} \setminus \mathcal{S}$. The assertion follows from Theorems 1 and 6. \square

Theorem 8 We have

- (i) if $2 \leq |X| < \aleph_0$, then K is of the 2nd category in M,
- (ii) if $|X| \geq \aleph_0$, then K is nowhere dense in M.

PROOF.

- (i) In this case we have $\mathcal{K} = \mathcal{M}$.
- (ii) Let $|X| \geq \aleph_0$. Then similar to the proof of Theorem 7(ii) we can show that $\mathcal{O}_0 \subset \mathcal{M} \setminus \mathcal{K}$. Thus $\mathcal{K} \subset \mathcal{M} \setminus \mathcal{O}_0 \subset \mathcal{M} \setminus \mathcal{H}$, Hence Lemma A applies.

Theorem 9 The set K is closed in (U, d^*) .

PROOF. If X is a finite set, then $\mathcal{K} = \mathcal{U}$. So we can suppose that $|X| \geq \aleph_0$. Let $d_n \in \mathcal{K}$ $(n \in \mathbb{N}), d \in \mathcal{U}$ and $d^*(d_n, d) \to 0$ as $n \to \infty$. Assume that $d \in \mathcal{U} \setminus \mathcal{K}$. Then (X, d) is not totally bounded. Hence for some $1 > \varepsilon_0 > 0$ X has a countable ε_0 -discrete subset, i.e. there exists a sequence $x_n \in X$ $(n \in \mathbb{N})$ such that

$$d(x_k, x_l) \ge \varepsilon_0$$
, for all $k, l \in \mathbb{N}, k \ne l$. (1)

Let $n \in \mathbb{N}$ be fixed. The metric space (X, d_n) is compact. So $\{x_k\}_{k=1}^{\infty}$ has a convergent subsequence $\{x_{k_j}\}_{j=1}^{\infty}$ in (X, d_n) . Then from (1) we have $|d(x_{k_i}, x_{k_j}) - d_n(x_{k_i}, x_{k_j})| \ge \varepsilon_0 - d_n(x_{k_i}, x_{k_j})$, for $i, j \in \mathbb{N}, i \ne j$, So

$$\sup_{i,j\in\mathbb{N},i\neq j}|d(x_{k_i},x_{k_j})-d_n(x_{k_i},x_{k_j})|\geq \varepsilon_0.$$

This implies that $d^*(d, d_n) \ge \varepsilon_0 > 0$ for every $n \in \mathbb{N}$, which is a contradiction. \square

Remark 3 It is not true in general that K is closed in (M, d^*) . To see this, let $X = \{x_1, \ldots, x_i, \ldots\}$ be a countable set. Define metrics $d, d_n \ (n \in \mathbb{N})$ as follows: d(x,x) = 0 for all $x \in X$ and $d(x_i,x_j) = \max\{\frac{1}{i},\frac{1}{j}\}$ for all $i,j \in \mathbb{N}, i \neq j$. Further for each $n \in \mathbb{N}$ put $d_n(x,x) = 0$ for $x \in X$ and for $i,j \in \mathbb{N}, i \neq j$

$$d_n(x_i, x_j) = \left\{ egin{array}{ll} d(x_i, x_j), & \mbox{if } \min\{i, j\} \neq n \ \min\{rac{1}{i}, rac{1}{j}\}, & \mbox{if } \min\{i, j\} = n. \end{array}
ight.$$

Then $d \in \mathcal{M} \setminus \mathcal{U} \subset \mathcal{M} \setminus \mathcal{K}$. Further, $d_n \in \mathcal{K}$ for each $n \in \mathbb{N}$, since every sequence in (X, d_n) is either almost stationary or d_n -converges to x_n . On the other hand, as $n \to \infty$

$$d^*(d, d_n) = \sup_{\min\{i, j\} = n} |d(x_i, x_j) - d_n(x_i, x_j)|$$

$$= \sup_{j > n} |d(x_n, x_j) - d_n(x_n, x_j)| = \sup_{j > n} \left| \frac{1}{n} - \frac{1}{j} \right| = \frac{1}{n} \to 0.$$

Theorem 10 The set C is nowhere dense in (\mathcal{M}, d^*) .

PROOF. Suppose $\mathcal{O}_0 \cap \mathcal{C} \neq \emptyset$ and let $d \in \mathcal{O}_0 \cap \mathcal{C}$. Then by Theorem 2 $\mathcal{O}_0 \subset \mathcal{C}$ which contradicts the fact that $t_1 \in \mathcal{O}_0 \setminus \mathcal{C}$. Thus $\mathcal{O}_0 \subset \mathcal{M} \setminus \mathcal{C}$ whence $\mathcal{C} \subset \mathcal{M} \setminus \mathcal{O}_0 \subset \mathcal{M} \setminus \mathcal{H}$. Thus Lemma A implies that \mathcal{C} is nowhere dense. \square

Remark 4 We do not know whether C is a Borel subset of (\mathcal{M}, d^*) .

Let (X, K) be a linear space over the field K and define the set

$$\mathcal{N} = \mathcal{N}(X) = \{d \in \mathcal{M}(X); d(x,0) \text{ is a norm on } X \}.$$

Theorem 11 The set \mathcal{N} is nowhere dense and closed in (\mathcal{M}, d^*) .

PROOF. Every normed linear space is connected (cf. [3], p.148). So the nowhere density of \mathcal{N} in \mathcal{M} follows from Theorem 10.

Let $d \in \mathcal{M}, d_n \in \mathcal{N}$ $(n \in \mathbb{N})$ such that $d^*(d_n, d) \to 0$ $(n \to \infty)$. Then $\lim_{n \to \infty} d_n(x, 0) = d(x, 0)$ for each $x \in X$. It is now not hard to see that $d \in \mathcal{N}$. Consequently \mathcal{N} is closed in \mathcal{M} . \square

Theorem 12 The set \mathcal{T} is perfect in (\mathcal{M}, d^*) . Further, if $|X| \geq 3$, then \mathcal{T} is nowhere dense in \mathcal{M} . (In case |X| = 2 we have $\mathcal{T} = \mathcal{M}$.)

PROOF. It is obvious that \mathcal{T} is closed in \mathcal{M} . Further, \mathcal{T} is dense in itself since for $d \in \mathcal{T}$, $\varepsilon > 0$ $d + t_a \in K(d, \varepsilon) \cap \mathcal{T}$, where $0 < a < \varepsilon$. We shall show that $\mathcal{M} \setminus \mathcal{T}$ is dense in \mathcal{M} .

Let $|X| \ge 3, d \in \mathcal{T}, \varepsilon > 0$ and $\emptyset \ne A \subset X, A \ne X$. Define the metric d':

$$d'(x,y) = d'(y,x) = \left\{ \begin{array}{ll} \frac{\varepsilon}{2} & \text{if } x,y \in A, x \neq y \\ \frac{\varepsilon}{4} & \text{if } x,y \in X \setminus A, x \neq y \\ \vartheta & \text{if } x \in A, y \in X \setminus A, \frac{\varepsilon}{4} < \vartheta < \frac{\varepsilon}{2} \end{array} \right.$$

and for each $x \in X$ put d'(x,x) = 0. One can see that $d' \in \mathcal{M} \setminus \mathcal{T}$. So $d' + d \in \mathcal{M} \setminus \mathcal{T}$ and further $d' + d \in K(d,\varepsilon)$. \square

If we consider the set $(0, +\infty)$ with the usual metric, then the function $F(a) = t_a \ (a \in (0, +\infty))$ is a homeomorphism. Therefore we have:

Theorem 13 The space (\mathcal{T}, d^*) is connected.

Let \mathcal{A} and \mathcal{B} denote the set of all metrics on X that are unbounded and bounded, respectively. It is proved in [4] (Theorem 5) that \mathcal{A} , \mathcal{B} are nonempty, open subsets of the Baire space (\mathcal{M}, d^*) (cf. [4], Theorem 3) provided $|X| \geq \aleph_0$. Consequently we have

Theorem 14 The sets A, B are sets of the 2nd category in M if X is infinite. (If X is finite, then B = M and $A = \emptyset$.)

We can strengthen this theorem as follows:

Proposition 15 The set \mathcal{H}_a^* (\mathcal{H}_a) is of the 2nd category in \mathcal{M} for every a > 0.

PROOF. Let a>0. Since \mathcal{M} is a Baire space, it suffices to show that \mathcal{H}_a^* contains a ball. Choose an arbitrary $d_0\in\mathcal{H}_{\frac{a}{2}}^*\subset\mathcal{H}_a^*$. Then $K(d_0,\frac{a}{2})\subset\mathcal{H}_a^*$.

The proof for \mathcal{H}_a is similar. \square

Remark 5 It is well-known that $K \subset \mathcal{B}$. In this connection observe that according to Theorem 8(ii) and Theorem 14 $\mathcal{B} \setminus K$ is of the 2nd category in \mathcal{M} , provided $|X| \geq \aleph_0$.

References

- [1] K. Kuratowski, Topologie, Warszawa-Wroclaw, (1948)
- [2] D. D. Rothmann, A Nearly Discrete Metric, Amer. Math. Monthly 81, (1974), 1018–1019.

- [3] G. F. Simmons, *Topology and Modern Analysis*, Mc Graw-Hill, New York-San Francisco-Toronto-London, (1963).
- [4] T. Šalát, J. Tóth and L. Zsilinszky, Metric space of metrics defined on a given set, Real Analysis Exchange, 18(1), (1992–93), 225–231.