Jozef Doboš, Katedra matematiky SjF, Technická Univerzita, Letná 9, 040 01 Košice, Slovak Republic (email: dobos@ccsun.tuke.sk)

 Zbigniew Piotrowski* Department of Mathematics, Youngstown State Univer sity, Youngstown, OH 44555 (email: zpiotr@macs.ysu.edu)

SOME REMARKS ON METRIC PRESERVING FUNCTIONS

Abstract

 The purpose of this paper is to study a behavior of continuous metric preserving functions f with $f'(0) = +\infty$. First we show, via a simple example, that it is possible that such a function has no finite derivatives at any point. Then in Example 2 we construct a nondecreasing, differ entiable, metric preserving function having infinite derivative at least at the points $x = 2^{-n}$ for each natural number, n.

Definition 1 We call a function $f : \mathbb{R}^+ \to \mathbb{R}^+$ metric preserving iff $f(d)$: $M \times M \to \mathbb{R}^+$ is a metric for every metric $d : M \times M \to \mathbb{R}^+$, where (M, d) is an arbitrary metric space and \mathbb{R}^+ denotes the set of nonnegative reals. We denote by M the set of all metric preserving functions. (See [1].)

In the paper $[2]$ it is shown that each metric preserving function f has a derivative (finite or infinite) at 0. Such functions f with $f'(0) < +\infty$ are Lipschitz functions with Lipschitz constant $f'(0)$. (See Theorem 3 in [2].)

 In contrast with the property we will construct a continuous metric pre serving function which is nowhere differentiable. This function is a slight modification of Van der Waerden's continuous nowhere differentiable function. (See [4].)

Mathematical Reviews subject classification: 26A30

 ^{*}The second named author wishes to express his appreciation to the Department of Mathematics at Techncal University of Košice, Slovakia for their hospitality during his sabbatical stay.

Key Words: metric preserving functions

Received by the editors March 9, 1993

Example 1 Define $h : \mathbb{R}^+ \to \mathbb{R}^+$ as follows

$$
h(x) = \begin{cases} x & x \leq \frac{1}{2} \\ \frac{1}{2} + |x - [x] - \frac{1}{2} & x > \frac{1}{2} \end{cases}
$$

(where [a] denotes the integer part of a). Define $f : \mathbb{R}^+ \to \mathbb{R}^+$ as follows

$$
f(x)=\sum_{n=1}^{\infty}2^{-n}.h(2^n.x) \text{ for each } x\in\mathbb{R}^+.
$$

 Then f is continuous and nowhere differentiable. It is not difficult to verify that $f \in \mathcal{M}$.

Definition 2 Let $a, b, c \in \mathbb{R}^+$. We call the triplet (a, b, c) a triangle triplet iff $a \leq b + c$, $b \leq a + c$, and $c \leq a + b$. (See [3].)

The following assertion is a generalization of Proposition 2.16 of [1].

Theorem 1 Let g, $h \in \mathcal{M}$. Let $d > 0$ be such that $g(d) = h(d)$. Define $w : \mathbb{R}^+ \to \mathbb{R}^+$ as follows

$$
w(x) = \begin{cases} g(x) & x \in [0, d), \\ h(x) & x \in [d, \infty) \end{cases}
$$

Suppose that g is nondecreasing and concave. Let

$$
\forall x,y\in[d,\infty):|x-y|\leq d\Rightarrow |h(x)-h(y)|\leq g(|x-y|).
$$

Then $w \in \mathcal{M}$.

PROOF. Let $a, b, c \in \mathbb{R}^+$, $a \le b \le c \le a + b$. We show that $(w(a), w(b), w(c))$ is a triangle triplet. We distinguish two non-trivial cases.

a) Suppose that $a, b \in [0, d)$, and $c \in [d, \infty)$. Evidently $w(a) \leq w(b)$ $w(b) + w(c)$. Since $|g(d) - f(c)| \le g(|c - d|)$, we obtain $w(b) = g(b) \le g(d) +$ $[g(a) - g(c - d)] \le g(a) + h(c) = w(a) + w(c)$. Since g is concave, we have $g(d) + g(a + b - d) \le g(a) + g(b)$, which yields $w(c) \le g(d) + g(c - d)$ $g(d) + g(a + b - d) \leq w(a) + w(b).$

b) Suppose that $a \in [0, d)$, and $b, c \in [d, \infty)$. Since (d, b, c) is a triangle triplet, we obtain $w(a) \leq g(d) = h(d) \leq h(b) + h(c) = w(b) + w(c)$. Since $|h(b) - h(c)| \le g(|b - c|)$, we have $w(b) \le g(c - b) + h(c) \le g(a) + h(c) = w(a) + w(c)$, and $w(c) \le g(c - b) + h(b) \le g(a) + h(b) = w(a) + w(b)$. $w(a) + w(c)$, and $w(c) \leq g(c - b) + h(b) \leq g(a) + h(b) = w(a) + w(b)$.

 The following example shows that there is a monotone continuous function $f \in \mathcal{M}$ such that in every neighborhood of 0 there is $x_0 > 0$ such that $f'(x_0) = +\infty.$

Example 2 There is $f \in \mathcal{M}$ such that

 (i) f is continuous and nondecreasing, (ii) $f'(x)$ exists for each $x \in \mathbb{R}^+$ (finite or infinite), (iii) $f'(2^{-n}) = +\infty$ for each $n \in \mathbb{N}$.

Define $g : \mathbb{R}^+ \to \mathbb{R}^+$ as follows

$$
g(x) = \begin{cases} \sqrt{2x - x^2} & x \in [0, 1), \\ 1 & x \in [1, \infty). \end{cases}
$$

Evidently g is nondecreasing and concave. Define $h : \mathbb{R}^+ \to \mathbb{R}^+$ as follows

$$
h(x) = \begin{cases} 0 & x = 0, \\ 1 & x \in (0,1), \\ \frac{1}{2} \cdot [3 - g(2 - x)] & x \in [1,2), \\ \frac{1}{2} \cdot [3 + g(x - 2)] & x \in [2, \infty) \end{cases}
$$

Since $\forall x > 0 : 1 \leq h(x) \leq 2$, by Proposition 1.3 of [1] we have $h \in \mathcal{M}$. We shall show that the assumptions of Theorem 1 are fulfiled. Let $x, y \in$ $[1,\infty), |x - y| \leq 1$. We distinguish three cases.

a) Suppose that $1 \le x \le y < 2$. Since $2 - x = (2 - y) + (y - x)$, we have $g(2-x) \leq g(2-y)+g(y-x)$. Thus $|h(x)-h(y)| = \frac{1}{2} \cdot [g(2-x)-g(2-y)] \leq$ $\frac{1}{2}\cdot g(y-x)\leq g(|x-y|).$

b) Suppose that $1 \leq x < 2 \leq y$. Since g is nondecreasing, we obtain $g(2-x) \le g(y-x)$ and $g(y-2) \le g(y-x)$. Therefore $|h(x)-h(y)|=$ $\frac{1}{2} \cdot [g(2-x)+g(y-2)] \leq \frac{1}{2} \cdot [g(y-x)+g(y-x)] = g(|x-y|).$

c) Suppose that $2 \le x \le y$. Since $y - 2 = (y - x) + (x - 2)$, we have $g(y-2) \le g(y-x)+g(x-2)$. Thus $|h(x)-h(y)| = \frac{1}{2} \cdot [g(y-2)-g(x-2)] \le$ $\frac{1}{2}\cdot g(y-x)\leq g(|x-y|).$

Define $w : \mathbb{R}^+ \to \mathbb{R}^+$ as follows

$$
w(x)=\left\{\begin{array}{ll}g(x) & x\in [0,1),\\ \\ h(x) & x\in [1,\infty). \end{array}\right.
$$

By Theorem 1 we have $w \in \mathcal{M}$. It is not difficult to verify that

- 1. w is continuous and nondecresing,
- 2. $w(x) \leq 2$ for each $x \in \mathbb{R}^+$,
- 3. $w(x) = 2$ for each $x \ge 3$,
- 4. $w'(x)$ exists for each $x \in \mathbb{R}^+$ (finite or infinite),
- 5. $w'(2) = +\infty$.

Define $f : \mathbb{R}^+ \to \mathbb{R}^+$ as follows

$$
f(x) = \sum_{n=0}^{\infty} 2^{-n} w(2^n x)
$$
 for each $x \in \mathbb{R}^+$.

It is not difficult to verify that (i)-(iii) hold.

Question 1 It is possible to characterize the set $f'^{-1}(+\infty)$?

References

- [1] Borsik J., Doboš J., Functions whose composition with every metric is a metric, Math. Slovaca, 31 (1981), 3-12 (Russian).
- [2] Borsík J., Doboš J., On metric preserving functions, Real Analysis Exchange, 13 (1987-88), 285-293.
- [3] Terpe F., Metric preserving functions, Proc. Conf. Topology and Measure IV, Greifswald, 1984, 189-197.
- [4] Bilingsley P., Van der Waerden's continuous nowhere differentiable func tion, Amer. Math. Monthly, 89 (1982), 691.