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 SOME REMARKS ON METRIC

 PRESERVING FUNCTIONS

 Abstract

 The purpose of this paper is to study a behavior of continuous metric
 preserving functions f with /'(0) = +oo. First we show, via a simple
 example, that it is possible that such a function has no finite derivatives
 at any point. Then in Example 2 we construct a nondecreasing, differ-
 entiate, metric preserving function having infinite derivative at least at
 the points x = 2~n for each natural number, n.

 Definition 1 We call a function f : M+ - ► M4" metric preserving iff f(d) :
 M x M - > M+ is a metric for every metric d : M x M - > M+, where (M, d)
 is an arbitrary metric space and M+ denotes the set of nonnegative reals. We
 denote by M the set of all metric preserving functions. (See [1].)

 In the paper [2] it is shown that each metric preserving function / has
 a derivative (finite or infinite) at 0. Such functions / with /'(0) < H-oo are
 Lipschitz functions with Lipschitz constant /'(0). (See Theorem 3 in [2].)

 In contrast with the property we will construct a continuous metric pre-
 serving function which is nowhere differentiate. This function is a slight
 modification of Van der Waerden's continuous nowhere differentiate function.

 (See [4].)

 *The second named author wishes to express his appreciation to the Department of
 Mathematics at Techncal University of Košice, Slovakia for their hospitality during his
 sabbatical stay.
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 Example 1 Define h : M+ - > R+ as follows

 {x ± + |x-[x]-±| x>' X < I ± + |x-[x]-±| x>'
 (where [a] denotes the integer part of a). Define f : M+ - ► M+ as follows

 oo

 f(x) = ^ 2~n.h(2n.x) for each x G M+.
 72=1

 Then f is continuous and nowhere differentiable. It is not difficult to verify
 that f G M.

 Definition 2 Let a, 6, c G M+ . We call the triplet (a, 6, c) a triangle triplet iff
 a <b + c, b <a + c> and c < a 4- b. (See [3].)

 The following assertion is a generalization of Proposition 2.16 of [1].

 Theorem 1 Let g, h G M. Let d > 0 be such that g(d) = h(d). Define
 w : M+ - > M+ as follows

 ( g(x) x € [0,d),
 w(x) = <

 [ h(x) x G [d, oo).

 Suppose that g is nondecreasing and concave. Let

 Vx,2/ G [d, oo) : 'x - y' < d => 'h(x) - h(y)' < g('x - y').

 Then w G M.

 PROOF. Let a, 6, c G M+, a <b < c < a + b. We show that ( w(a),w(b)iw(c ))
 is a triangle triplet. We distinguish two non-trivial cases.

 a) Suppose that a, 6 G [0, d), and c G [d, oo). Evidently w(a) < w(b) <
 w(b) 4- tü(c). Since | g(d) - /(c) | < g('c - d|), we obtain w(b) = g(b) < g(d ) +
 [ g(a) - g(c - d)] < g(a) + h(c) = w(a) -f w(c). Since g is concave, we have
 g{d) + g(a + b - d) < g(a) + g(b ), which yields w(c) < g(d) H- g(c - d) <
 g{d) + g(a + b - d) < w(a) + w(b).

 b) Suppose that a G [0,d), and 6, c G [d, oo). Since (d, 6, c) is a triangle
 triplet, we obtain w(a) < g(d) = h(d) < h(b) -f h(c) = w(b) + w(c). Since
 'h(b) - h(c)' < g('b - c|), we have w(b) < g(c - 6) + h(c) < g(a) 4- h(c) =
 w(a) + w(c ), and w(c) < g(c - b) + h(b) < g(a) 4- h{b) = w(a) 4- w(b). □

 The following example shows that there is a monotone continuous function
 / G Ai such that in every neighborhood of 0 there is #o > 0 such that
 /'(x0) = 4-00.
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 Example 2 There is f G M such that
 (i) f is continuous and nondecreasing ,
 (ii) f'{x) exists for each x G M+ (finite or infinite),
 (Hi) f ( 2~n) = +00 for each n G N.

 Define g : R+ - ► M+ as follows

 {y/2x 1 - x2 xG x G [0,1), [1, oo). 1 x G [1, oo).

 Evidently g is nondecreasing and concave. Define h : M+ - ► M+ as follows

 0 x = 0,

 1 * e (0,1),
 h{x) - <

 ' • [3 - g{2 - x)] I 6 [1,2),

 k i-[3 + 5(x-2)] x E [2, oo).

 Since Vx > 0 : 1 < h(x) < 2, by Proposition 1.3 of [1] we have h G M .
 We shall show that the assumptions of Theorem 1 are fulfiled. Let x, y G
 [l,oo), I x - y I < 1. We distinguish three cases.

 a) Suppose that 1 < x < y < 2. Since 2 - x = (2 - y) + (y - x), we have
 5(2 -x) <g{2-y)+g{y-x). Thus |/i(x)-%)| = ± • 'g(2 - x) -g(2 - y)] <
 '-g{y-x) <5(k-2/l)-

 b) Suppose that 1 < x < 2 < y. Since g is nondecreasing, we obtain
 g( 2 - x) < g(y - x) and g(y - 2) < g(y - x). Therefore 'h(x) - /i(y)| =
 ' ■ b( 2 - x) + g(y - 2)] < ' ■ [g(y - x) + g(y - x)] = g('x - y').

 c) Suppose that 2 < x < y. Since y - 2 = (y x) + (x - 2), we have
 9(y- 2) < g(y-x)+g(x-2). Thus 'h(x)-h(y)' = ' ■ [g(y - 2) - g{x - 2)] <
 '-g{y-x) <g('x-y').

 Define w : M+ - ► M+ as follows

 ( g{x) x G [0, 1),
 w(x) = <

 [ h(x) x G [1, oo).

 By Theorem 1 we have w G M. It is not difficult to verify that

 1. w is continuous and nondecresing,

 2. w(x) < 2 for each x G M+,



 320 Jozef Doboš and Zbigniew Piotrowski

 3. w(x) = 2 for each x > 3,

 4. w'(x) exists for each x G M+ (finite or infinite) ,

 5. 2) = +00.

 Define / : M+ - * M+ as follows

 oo

 /(x) = ^ 2~n.iř;(2n.x) for each x G M+.
 71=0

 It is not difficult to verify that (i)-(iii) hold.

 Question 1 It is possible to characteńze the set //-1(+ oo) ?
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