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DIMENSIONS OF THE PERTURBED
CANTOR SET

1. Introduction

Let Iy =[0,1]. We obtain the left subinterval I,; and the right subinterval
I;2 of I, by deleting a middle open subinterval of I, inductively for each
o € {1,2}", where n = 0,1,2,--. Let E;, = Uge(1,2jnlo. Then {E,} is a
decreasing sequence of closed sets. For each n, we set |I5,1|/|Is| = an+1 and
lI5,2|/|Is| = bpt1 for all o € {1,2}", where |I| denotes the length of I. We call
F =N ,E, aperturbed Cantor set. In particular, if a,, = a, b, = b for all n,
we call F' a Cantor type set. In this paper we assume the sequences of ratios
{an}, {bn} and {d,}, where d, =1 — (a, + b,,), are uniformly bounded away
from 0. In [1] it was shown how to find the Hausdorff dimension and the pack-
ing dimension of a Cantor type set. In this paper we investigate these dimen-
sions for a perturbed Cantor set. We recall the s-dimensional Hausdorff mea-
sure of F, H*(F) = limg_,0 H(F), where H{(F) = inf{} oo, |Unl|® : {Un}3,
is a 8-cover of F}, and the Hausdorff dimension of F, dimy(F) = sup{s >
0 : H°(F) = oo}(= inf{s > 0 : H*(F) = 0})([1]). Also we recall the s-
dimensional packing measure of F, p*(F) = inf{}_.> | P*(F,) : U, F, = F},
where P*(F,) = lims_,q P{(F,) and P§(E) = sup{d o, |Un|* : {Un} is a é-
packing of E'}, and the packing dimension, dim,(F) = sup{s > 0 : p*(F) =
oo} (= inf{s > 0 : p*(F) = 0})([2]). We note that if {a,} and {b,} are
given, then a perturbed Cantor set F is determined. We introduce func-
tions h*(F) = liminfn .o [T—;(af + b%)(= iminfnoo 35, ¢(1,9)n 11o]°) and
qa(F) = lilnsupn—»oo H::l(a‘lgc + bi)(= limsupn—voo 206{1,2}" |I0|3) for s €
(0,1) and F a perturbed Cantor set. Clearly h®(F) and ¢*(F) are decreas-
ing functions of s. Using h° and ¢°* we define the lower Cantor dimension
and the upper Cantor dimension of a perturbed Cantor set F' by dim¢(F) =
sup{s > 0 : h*(F) = oo} and dimg(F) = sup{s > 0 : ¢°(F) = oo}. Then
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dimg(F) = inf{s > 0 : h*(F) = 0} and dimg(F) = inf{s > 0 : ¢*(F) = 0}
since h*(F) and ¢*(F) are decreasing functions of s. We note dim¢ and dimg
are functions whose domains are the class of the perturbed Cantor sets. Our
objective is to show that the obvious covering or packing of F' using the inter-
vals of E,, as n — oo yields the correct indices.

2. Main results

In this section F' denotes a perturbed Cantor set. Before going into the inves-
tigation of the relations of dimy and dim, with dim¢g and dimg, it is fruitful
to know where dim¢c and dimg are located in (0,1) related to {an} and {b,}.

Lemma 1 0 < liminf, o $n < dimg(F) < dimg(F) < limsup,,_,o, sn < 1,
where aj» +bir = 1.

PROOF. Since {a,} and {b,} are uniformly bounded away from 0, 0 <
liminf, s, < limsup, s, < 1. To prove liminf, s, < dimg(F'), we need only
show that h®(F) = oo for 0 < s < liminf, s,. Choose s and s’ such that
0 < s < §' < liminf, s,. Then there exists N such that sy > s’ > s for all
k > N. Since there is a number 3 < 1 such that ax, by < 3 for all k,

n

I1 (ai +5%) > ] (e + )6

k=N k=N
n
> [~
k=N
Then liminfp_, o0 [[5_n(af + bf) = co. Hence h*(F) = oco. Similarly we have
p'(F) =0 for t > limsup,, Sp. O

The definitions of Cantor dimension for F' show that 0 < h*(F) < oo
implies that dimg(F) = s while 0 < ¢°(F) < oo implies that dimg(F) = s.
We obtain a lower bound for dimg (F') by applying the density theorem to the
natural mass distribution on F'.

Theorem 2 dim¢(F) < dimp(F).

PROOF. Since {an}, {b»} and {d,} are uniformly bounded away from 0, we
may assume that a,, b,, d, > a for some a > 0 for all n. Suppose that
0 < s < dimg(F). Then h*(F) = co. We define a set function

\L|° _ L|°

w(ls) = =
(o) 2reqaye I [Tk=1(a} +57)
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for each o € {1,2}", wheren = 1,2, --. Then p extends to a mass distribution
on [0,1] whose support is in E = N, E,, since

_ (a1 + b5 ) 6)° _ ap 1ol + b5 41151
(a:z+1 + b:;+1) zre{l,z}ﬂ II‘rls 275{1_2}n+1 |I‘r|8
B(lo1) + p(Io2)

(cf. Proposition 1.7 [1]). Clearly u([0,1]) = 1. Let z € F = NS Ep. Then

there is a sequence {I,,}52,, where o, € {1,2}" such that N3 I, = {z}.

Given a small positive number r, there exists n such that |, .| <7 < |I5,].

Since djy1|l5;] > all,,| > ar for 0 < j < n, Bar(z) C [Ur(zo,)eq1,2yn 1)

where B, (z) is the ball of radius ar with center . Thus p(Bar(z)) < p(15,)-
For0 <t <s,

w(ls)

I

/J;(Bar(x)) < ”(Ian)

(ar)t 7 otllo,,, |t

I‘I'(Io'n)
at(at|lo, %)

|I¢7n|s )
oI, |t zre{l,z}n [z
IIanls_t

o [Ty (af +83)-

Then B I et
lim sup Lfﬂ:)) < limsup — |nan| _ =0.
r—0 T n—oo 2 [[i_,(af +b})
Thus H*(F) = oo by Proposition 4.9 [1]. Hence dimg (F) > s. a

The similarity of h*(F') and H*(F) guarantees the following .
Theorem 3 dimy(F') < dim¢g(F).

PROOF. Because the intervals of E,, become uniformly small as n — oo, for all
s > 0 we have H*(F) < h*(F) and the result now follows from the definition.
a

Corollary 4 dimg(F) = dimg(F).

We use a Baire Category argument to obtain a lower bound for the packing
dimension of F.

Theorem 5 dimg(F) < dim,(F).
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PROOF. As in the proof of Theorem 2, we may assume that a,,b,, d, > «
for some o > 0 for all n. Suppose that 0 < s < dimg(F). Then ¢*(F) =

Given 6 > 0, for n > F:()'f‘f_ai and I, where o € {1,2}"

P{(I,nF)>sup Y LI
k2np c1, req1, 2}k

> |I,|*® limsup H (af +0%) =
M7 k=n+1
Thus P*(I, N F) = oo. Consider {F,} such that U32F, = F. Since F is
compact, U F,, = F and there exists Fy,, such that the interior of Fy,, in
F is non-empty by the Baire Category theorem. Hence there is I,, where
o € {1,2}" for large n such that I, N F C F,,. Then P*(F,,) = P*(F,,) >
P3(I, N F) = 0o. Thus P*(F,,) = co. No,

p*(F) = mf{ZP’(F) u® ,F, = F} = o0,

i.e. dimy(F) > s. O
Using the packing density theorem we find an upper bound for the packing
dimension.

Theorem 6 dim,(F) < dimg(F).

PROOF. We may assume that a,, b, > a for some a > 0 for all n. Suppose
that dimg(F) < s. Then ¢°(F) = 0. We define a set function

”(I ) — |IG|“J — |I0|a
o) — - n
2reqap 1210 Tle=1(af + %)

for each o € {1,2}", where n = 1,2,-- -, as in the proof of Theorem 2. Then
u extends to a mass distribution on [0,1] whose support is in E = NS, E,,,
and p([0,1]) = 1. Let z € F = N3, Ey,. Then there is a sequence {I,, }32,,
where oy, € {1,2}" such that N3 ;1,, = {z}. Given a small positive number
T, there exists n such that |Ia,.+1| <r<|l,,| Fort>s,

1(Br(z)) > wlo,,,)
rt - Lt

ol

Since |I5,,,|/|Is,| = @ny1 oF byy1 > a >0 for all n,
p(Br(@) o pllonss)
T (R ot
of|Lg,,,|* "

Hn+l(ak +b%)
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Then “r ot
> liminf ——%F—*—‘I———

o [Teda (ag +67)
Thus p*(F) = 0 by the packing density theorem [2]. Hence dim,(F) <s. 0O
Corollary 7 dimg(F) = dim,(F).

lim int #(Br(z))
r—0 rt

Applying Lemma 1 gives the following assertion.

Corollary 8 If ai» + bi» = 1 defines s, and s, — s as n — oo, then
dimg (F) = dimp(F) = s.

If ima, = a and limb, = b with 0 < a, b and a + b < 1, then {a,}, {b,}
and {1 — (a, + by)} are uniformly bounded away from 0 and lim s, = s, where
a® + b* = 1. Thus we have the following Corollary.

Corollary 9 If lima, = a and limb, = b, then dimy(F) = dim,(F) = s,
where a® +b° =1 (0 < a,b and a + b < 1 are assumed).

Observation 10 The Cantor type set F' whose a, = a and b, = b for alln
has Hausdorff and packing dimensions s where a® +b° =1 ([1]).

(Using Corollary 9 or the fact that h*(F') = ¢°(F) = 1, we also obtain the
above result.)

Observation 11 The Cantor-like set F' whose a,, = b, for each n has Haus-

dorff dimension
lim inf L,iw
n—oo log[[i_; ak
and packing dimension
lim sup —— log 2
n—»oop lOg HZ=1 Qg )

This follows from Corollaries 4 and 7 and the argument of the proof of Lemma
1 (cf.[3]).
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