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 DIMENSIONS OF THE PERTURBED

 CANTOR SET

 1. Introduction

 Let /0 =[0,1]. We obtain the left subinterval I<Ji ' and the right subinterval
 I ^2 of I a by deleting a middle open subinterval of Ia inductively for each
 a G {l,2}n, where n = 0, 1,2, •••. Let En = Then { En } is a
 decreasing sequence of closed sets. For each n, we set 'Iati'/'Ia' = an+i and
 1-^7,2 1 /1-^7 1 = &n+i for all a G {1, 2}n, where 'I' denotes the length of I. We call
 F = n£Ļ0-®n a perturbed Cantor set. In particular, if an = a, bn = b for all n,
 we call F a Cantor type set. In this paper we assume the sequences of ratios
 {ûn}) {^n} and {dn}, where dn = 1 - ( an + 6n), are uniformly bounded away
 from 0. In [1] it was shown how to find the Hausdorff dimension and the pack-
 ing dimension of a Cantor type set. In this paper we investigate these dimen-
 sions for a perturbed Cantor set. We recall the s-dimensional Hausdorff mea-
 sure of F, H°(F ) = lim^o Hj(F), where H¡(F) = inf{£n=i 'Un'8 : {Un}%L i
 is a ¿-cover of F}, and the Hausdorff dimension of F, dim#(F) = sup {5 >
 0 : H3(F) = oo}(= inf{s > 0 : HS(F) = 0})([1]). Also we recall the s-
 dimensional packing measure of F, ps(F) = inf{^^Lļ Ps(Fn) : U^=1Fn = F},
 where P°(Fn) = lim^0 P¡(Fn) and P¡{E) = sup{£~ x 'Un's : {Un} is a Ć-
 packing of F}, and the packing dimension, dimp(F) = sup{s > 0 : ps(F) =
 oo}(= inf{s > 0 : ps(F) = 0})([2]). We note that if {an} and {6n} are
 given, then a perturbed Cantor set F is determined. We introduce func-

 tions hs(F) = liminfn^ooIļLiK + bk)(= liminfn^oo E<re{i,2}- W) and
 qO(F) = limSUp^^nLl« + K)(= limsUPn-ooE<r€{l,2}» W) for « €
 (0,1) and F a perturbed Cantor set. Clearly hs(F) and qs(F) are decreas-
 ing functions of s. Using h3 and qs we define the lower Cantor dimension
 and the upper Cantor dimension of a perturbed Cantor set F by dimç(F) =
 sup{s > 0 : hs(F) = oo} and dim^-(F) = sup{s > 0 : qs(F) = oo}. Then
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 dimç? (F) = inf{s > 0 : h3 (F) = 0} and dim^(F) = inf{s > 0 : qs(F) = 0}
 since h9 (F) and qs(F) are decreasing functions of 5. We note dime and dim^
 are functions whose domains are the class of the perturbed Cantor sets. Our
 objective is to show that the obvious covering or packing of F using the inter-
 vals of En as n - ► oo yields the correct indices.

 2. Main results

 In this section F denotes a perturbed Cantor set. Before going into the inves-
 tigation of the relations of dim// and dimp with dime and dim^r, it is fruitful
 to know where dimç and dim^j are located in (0,1) related to {an} and {6n}.

 Lemma 1 0 < lim infn_,oo sn < dim ç(F) < dim^(F) < lim supn_00 sn < 1,
 where a*n + =1.

 Proof. Since {an} and {6n} are uniformly bounded away from 0, 0 <
 liminfnsn < limsupn5n < 1. To prove liminfnsn < dimç(F), we need only
 show that h3(F) = oo for 0 < s < liminfnsn. Choose s and s ' such that
 0 < s < s' < liminfn sn. Then there exists N such that Sk > s' > s for all
 k > N. Since there is a number ß < 1 such that a*, bk < ß for all fc,

 f[K+m> nw+çr
 k=N k=N

 > n
 k=N

 Then liminfn_>oo rifc=7v(afc + K) = 00 • Hence hs(F) = oo. Similarly we have
 pl(F) = 0 for t > limsupn sn. □

 The definitions of Cantor dimension for F show that 0 < h*(F) < OO
 implies that dimc(.F) = s while 0 < qs(F) < oo implies that dim^(F) = s.
 We obtain a lower bound for dim h(F) by applying the density theorem to the
 natural mass distribution on F.

 Theorem 2 dimç(F) < dim# (F).

 PROOF. Since {an}, {bn} and {dn} are uniformly bounded away from 0, we
 may assume that an, 6n, dn > a for some a > 0 for all n. Suppose that
 0 < s < dim ç(F). Then hs(F) = oo. We define a set function

 „(J ) w lf°l'
 ET€{1,2}" 'It'S rifcrrl (ak + K)
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 for each a G {1, 2}n, where n = 1, 2, • • • . Then // extends to a mass distribution
 on [0,1] whose support is in E = n^=1En since

 a(I , = (<+i+K+i)'I*'3 = a^iW+K+iW
 (an+ 1 + ^n+l) l^"|S l^"|5

 = /¿(J<r,l)+/¿Ck,2)

 (cf. Proposition 1.7 [1]). Clearly /¿([0,1]) = 1. Let x e F = Cč£=lEn. Then
 there is a sequence {/<rn}£Li, where crn G {l,2}n such that = {x}.
 Given a small positive number r, there exists n such that 'I<jn+i I 5? r <

 (x) C [UT(^n)6{li2}«/T]c, Since dj+iļ/^ | ^ q?t* for 0 ^ J ^ tí , B ar

 where 5ar(^) is the ball of radius ar with center x. Thus ß(Bar(x)) < ß{Ian)'
 For 0 < t < 5,

 /i(j?ar(x)) ß(^(Jn)
 (arY ~

 <_ĶI£J_

 1 1* J*

 a2t'I<rn l' ST6{1,2}" 1^

 a2tr[fe=iK+6fc)-

 Then

 limsup ifWM r' < - iimsup n^ocťa2ínLiK+^) If-ļ'" = o. limsup r->0 r' - iimsup n^ocťa2ínLiK+^)

 Thus Hť(F) = oo by Proposition 4.9 [1]. Hence dim¿/(F) > s. □
 The similarity of hs(F) and HS(F) guarantees the following .

 Theorem 3 dim h{F) < dimç(F).

 Proof. Because the intervals of En become uniformly small as n - ► oo, for all
 5 > 0 we have HS(F) < hs(F) and the result now follows from the definition.
 □

 Corollary 4 dimç(F) = dim h(F).

 We use a Baire Category argument to obtain a lower bound for the packing
 dimension of F .

 Theorem 5 dim^(F) < dimp(F).
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 Proof. As in the proof of Theorem 2, we may assume that an , 6n, dn > a
 for some a > 0 for all n. Suppose that 0 < s < dim^(F). Then qs(F) = oo.
 Given 6 > 0, for n > loģ°fia) and Iai where a G {1, 2}n

 PHh nf)> sup l^l3
 fc-n/TC/„,r€{l,2}'<

 m

 > IJ^limsup TT ( a"k+bsk) = oo .
 m^°° k=n+ 1

 Thus Ps(Ia n F) = oo. Consider {Fn} such that = F. Since F is
 compact, 'J^=1Fn = F and there exists Fno such that the interior of Fno in
 F is non-empty by the Baire Category theorem. Hence there is IG, where
 a G {l,2}n for large n such that /ffnFc Fno. Then Ps(Fno) = P3(Fno) >
 Pa{I0 fi F) = oo. Thus P3(Fno) = oo. No,

 oo

 p°(F) = inf{£ P9(Fn) : U~ ,Fn = F} = oo,
 n= 1

 i.e. dimp(F) >5. □
 Using the packing density theorem we find an upper bound for the packing

 dimension.

 Theorem 6 dimp(F)

 Proof. We may assume that an, bn > a for some a > 0 for all n. Suppose
 that dim^(F) < 5. Then q3(F) = 0. We define a set function

 ,(J ) 'w
 £«(.,2,-1^1* IE-.to + H)

 for each a G {l,2}n, where n = 1,2,- • as in the proof of Theorem 2. Then
 /i extends to a mass distribution on [0,1] whose support is in E = njjl i Ent
 and //([0,1]) = 1. Let x G F = Then there is a sequence
 where an G {l,2}n such that = {x}. Given a small positive number
 r , there exists ti» such that | ^ r ^ l^nl- Fori > s ,

 ß{Br(x)) ß(Ign+i)
 r' - I I.J '

 Since |/<Tn+1 |/|/<,n| = a«+i or 6n+i > a > 0 for all n,

 ĶBr(x)) ß(Ia„+i)
 r* - (¿)ł|/an+1|ł

 nCi'w+t)
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 Then

 . cß(Br(x)) . r ať|/CTn+1|-ť 1
 lim . mf

 r^° r n^°° UltiK r-¡ + K)
 Thus pt(F) = 0 by the packing density theorem [2]. Hence dimp(F) < s. □

 Corollary 7 dim^-(F) = dimp(F).

 Applying Lemma 1 gives the following assertion.

 Corollary 8 If a + 6* 71 = 1 defines sn and sn - ► 5 as n - ► oo, then
 dim if (F) = dimp(F) = 5.

 If liman = a and limòn = b with 0 < a, b and a + b < 1, then {an}, {6n}
 and {1 - ( an + bn)} are uniformly bounded away from 0 and lim sn = s, where
 a3 + bs = 1. Thus we have the following Corollary.

 Corollary 9 //liman = a and limòn = b, then dim h(F) = dimp(F) = 5,
 where as + bs = 1 (0 < a, b and a + 6 < 1 are assumed ) .

 Observation 10 The Cantor type set F whose an = a and bn = b for all n
 has Hausdorff and packing dimensions s where as + bs = 1 ([1]).

 (Using Corollary 9 or the fact that hs(F) = qs(F) = 1, we also obtain the
 above result.)

 Observation 11 The Cantor-like set F whose an = bn for each n has Haus-
 dorff dimension

 . -n log 2
 liminf . - - =ñ

 n-*oo log [[k=1ak
 and packing dimension

 -n log 2
 lim sup - - =ñ

 Tl- >00 lOg 11^1 dk

 This follows from Corollaries 4 and 7 and the argument of the proof of Lemma
 1 (cf. [3]).
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