Real Analysis Exchange Vol. 19(1), 1993/94, pp. 269-273

In Soo Baek, Kyungpook National University, Taegu 702-701, Korea

DIMENSIONS OF THE PERTURBED CANTOR SET

1. Introduction

Let $I_{\emptyset} = [0,1]$. We obtain the left subinterval $I_{\sigma,1}$ and the right subinterval $I_{\sigma,2}$ of I_{σ} by deleting a middle open subinterval of I_{σ} inductively for each $\sigma \in \{1,2\}^n$, where $n = 0, 1, 2, \cdots$. Let $E_n = \bigcup_{\sigma \in \{1,2\}^n} I_{\sigma}$. Then $\{E_n\}$ is a decreasing sequence of closed sets. For each n, we set $|I_{\sigma,1}|/|I_{\sigma}| = a_{n+1}$ and $|I_{\sigma,2}|/|I_{\sigma}| = b_{n+1}$ for all $\sigma \in \{1,2\}^n$, where |I| denotes the length of I. We call $F = \bigcap_{n=0}^{\infty} E_n$ a perturbed Cantor set. In particular, if $a_n = a$, $b_n = b$ for all n, we call F a Cantor type set. In this paper we assume the sequences of ratios $\{a_n\}, \{b_n\}$ and $\{d_n\}$, where $d_n = 1 - (a_n + b_n)$, are uniformly bounded away from 0. In [1] it was shown how to find the Hausdorff dimension and the packing dimension of a Cantor type set. In this paper we investigate these dimensions for a perturbed Cantor set. We recall the s-dimensional Hausdorff measure of F, $H^s(F) = \lim_{\delta \to 0} H^s_{\delta}(F)$, where $H^s_{\delta}(F) = \inf\{\sum_{n=1}^{\infty} |U_n|^s : \{U_n\}_{n=1}^{\infty}$ is a δ -cover of F, and the Hausdorff dimension of F, $\dim_H(F) = \sup\{s > s \in S\}$ $0: H^{s}(F) = \infty \{ (= \inf\{s > 0 : H^{s}(F) = 0\})([1]). \text{ Also we recall the s-dimensional packing measure of } F, p^{s}(F) = \inf\{\sum_{n=1}^{\infty} P^{s}(F_{n}) : \bigcup_{n=1}^{\infty} F_{n} = F\}, \text{ where } P^{s}(F_{n}) = \lim_{\delta \to 0} P^{s}_{\delta}(F_{n}) \text{ and } P^{s}_{\delta}(E) = \sup\{\sum_{n=1}^{\infty} |U_{n}|^{s} : \{U_{n}\} \text{ is a } \delta - P^{s}_{\delta}(F_{n}) \text{ and } P^{s}_{\delta}(E) = \sup\{\sum_{n=1}^{\infty} |U_{n}|^{s} : \{U_{n}\} \text{ is a } \delta - P^{s}_{\delta}(F_{n}) \text{ and } P^{s}_{\delta}(E) = \sup\{\sum_{n=1}^{\infty} |U_{n}|^{s} : \{U_{n}\} \text{ is a } \delta - P^{s}_{\delta}(F_{n}) \text{ and } P^{s}_{\delta}(E) = \sup\{\sum_{n=1}^{\infty} |U_{n}|^{s} : \{U_{n}\} \text{ is a } \delta - P^{s}_{\delta}(F_{n}) \text{ and } P^{s}_{\delta}(E) = \sup\{\sum_{n=1}^{\infty} |U_{n}|^{s} : \{U_{n}\} \text{ is a } \delta - P^{s}_{\delta}(F_{n}) \text{ and } P^{s}_{\delta}(E) \text{ and } \text{ and$ packing of E}, and the packing dimension, $\dim_{p}(F) = \sup\{s > 0 : p^{s}(F) =$ ∞ = inf $\{s > 0 : p^{s}(F) = 0\}$ ([2]). We note that if $\{a_{n}\}$ and $\{b_{n}\}$ are given, then a perturbed Cantor set F is determined. We introduce functions $h^s(F) = \liminf_{n \to \infty} \prod_{k=1}^n (a_k^s + b_k^s) (= \liminf_{n \to \infty} \sum_{\sigma \in \{1,2\}^n} |I_{\sigma}|^s)$ and $q^{s}(F) = \limsup_{n \to \infty} \prod_{k=1}^{n} (a_{k}^{s} + b_{k}^{s}) (= \limsup_{n \to \infty} \sum_{\sigma \in \{1,2\}^{n}} |I_{\sigma}|^{s})$ for $s \in \mathbb{R}$ (0,1) and F a perturbed Cantor set. Clearly $h^{s}(F)$ and $q^{s}(F)$ are decreasing functions of s. Using h^s and q^s we define the lower Cantor dimension and the upper Cantor dimension of a perturbed Cantor set F by $\dim_C(F) =$ $\sup\{s > 0 : h^s(F) = \infty\}$ and $\dim_{\overline{C}}(F) = \sup\{s > 0 : q^s(F) = \infty\}$. Then

^{*}Supported in part by TGRC-KOSEF 1992.

Mathematical Reviews subject classification: 28A78, 28A80

Received by the editors October 23, 1992

 $\dim_{\underline{C}}(F) = \inf\{s > 0 : h^s(F) = 0\}$ and $\dim_{\overline{C}}(F) = \inf\{s > 0 : q^s(F) = 0\}$ since $h^s(F)$ and $q^s(F)$ are decreasing functions of s. We note $\dim_{\underline{C}}$ and $\dim_{\overline{C}}$ are functions whose domains are the class of the perturbed Cantor sets. Our objective is to show that the obvious covering or packing of F using the intervals of E_n as $n \to \infty$ yields the correct indices.

2. Main results

In this section F denotes a perturbed Cantor set. Before going into the investigation of the relations of dim_H and dim_p with dim_C and dim_{\overline{C}}, it is fruitful to know where dim_C and dim_{\overline{C}} are located in (0,1) related to $\{a_n\}$ and $\{b_n\}$.

Lemma 1 $0 < \liminf_{n \to \infty} s_n \le \dim_{\underline{C}}(F) \le \dim_{\overline{C}}(F) \le \limsup_{n \to \infty} s_n < 1$, where $a_n^{s_n} + b_n^{s_n} = 1$.

PROOF. Since $\{a_n\}$ and $\{b_n\}$ are uniformly bounded away from 0, 0 < $\liminf_n s_n \leq \limsup_n s_n < 1$. To prove $\liminf_n s_n \leq \dim_{\underline{C}}(F)$, we need only show that $h^s(F) = \infty$ for $0 < s < \liminf_n s_n$. Choose s and s' such that $0 < s < s' < \liminf_n s_n$. Then there exists N such that $s_k > s' > s$ for all $k \geq N$. Since there is a number $\beta < 1$ such that a_k , $b_k < \beta$ for all k,

$$\begin{split} \prod_{k=N}^n (a_k^s + b_k^s) &\geq \prod_{k=N}^n (a_k^{s_k} + b_k^{s_k}) \beta^{s-s_k} \\ &\geq \prod_{k=N}^n \beta^{s-s'}. \end{split}$$

Then $\liminf_{n\to\infty}\prod_{k=N}^{n}(a_k^s+b_k^s)=\infty$. Hence $h^s(F)=\infty$. Similarly we have $p^t(F)=0$ for $t>\limsup_n s_n$.

The definitions of Cantor dimension for F show that $0 < h^s(F) < \infty$ implies that $\dim_{\underline{C}}(F) = s$ while $0 < q^s(F) < \infty$ implies that $\dim_{\overline{C}}(F) = s$. We obtain a lower bound for $\dim_H(F)$ by applying the density theorem to the natural mass distribution on F.

Theorem 2 $\dim_{\underline{C}}(F) \leq \dim_{H}(F)$.

PROOF. Since $\{a_n\}$, $\{b_n\}$ and $\{d_n\}$ are uniformly bounded away from 0, we may assume that a_n , b_n , $d_n > \alpha$ for some $\alpha > 0$ for all n. Suppose that $0 < s < \dim_{\underline{C}}(F)$. Then $h^s(F) = \infty$. We define a set function

$$\mu(I_{\sigma}) = \frac{|I_{\sigma}|^s}{\sum_{\tau \in \{1,2\}^n} |I_{\tau}|^s} = \frac{|I_{\sigma}|^s}{\prod_{k=1}^n (a_k^s + b_k^s)}$$

for each $\sigma \in \{1,2\}^n$, where $n = 1, 2, \cdots$. Then μ extends to a mass distribution on [0,1] whose support is in $E = \bigcap_{n=1}^{\infty} E_n$ since

$$\mu(I_{\sigma}) = \frac{(a_{n+1}^{s} + b_{n+1}^{s})|I_{\sigma}|^{s}}{(a_{n+1}^{s} + b_{n+1}^{s})\sum_{\tau \in \{1,2\}^{n}} |I_{\tau}|^{s}} = \frac{a_{n+1}^{s}|I_{\sigma}|^{s} + b_{n+1}^{s}|I_{\sigma}|^{s}}{\sum_{\tau \in \{1,2\}^{n+1}} |I_{\tau}|^{s}} = \mu(I_{\sigma,1}) + \mu(I_{\sigma,2})$$

(cf. Proposition 1.7 [1]). Clearly $\mu([0,1]) = 1$. Let $x \in F = \bigcap_{n=1}^{\infty} E_n$. Then there is a sequence $\{I_{\sigma_n}\}_{n=1}^{\infty}$, where $\sigma_n \in \{1,2\}^n$ such that $\bigcap_{n=1}^{\infty} I_{\sigma_n} = \{x\}$. Given a small positive number r, there exists n such that $|I_{\sigma_{n+1}}| \leq r < |I_{\sigma_n}|$. Since $d_{j+1}|I_{\sigma_j}| \geq \alpha |I_{\sigma_n}| > \alpha r$ for $0 \leq j \leq n$, $B_{\alpha r}(x) \subset [\bigcup_{\tau (\neq \sigma_n) \in \{1,2\}^n} I_{\tau}]^c$, where $B_{\alpha r}(x)$ is the ball of radius αr with center x. Thus $\mu(B_{\alpha r}(x)) \leq \mu(I_{\sigma_n})$.

For 0 < t < s,

$$\begin{aligned} \frac{\mu(B_{\alpha r}(x))}{(\alpha r)^t} &\leq \frac{\mu(I_{\sigma_n})}{\alpha^t |I_{\sigma_{n+1}}|^t} \\ &\leq \frac{\mu(I_{\sigma_n})}{\alpha^t (\alpha^t |I_{\sigma_n}|^t)} \\ &= \frac{|I_{\sigma_n}|^s}{\alpha^{2t} |I_{\sigma_n}|^t \sum_{\tau \in \{1,2\}^n} |I_{\tau}|^s} \\ &= \frac{|I_{\sigma_n}|^{s-t}}{\alpha^{2t} \prod_{k=1}^n (a_k^s + b_k^s).} \end{aligned}$$

Then

$$\limsup_{r \to 0} \frac{\mu(B_r(x))}{r^t} \le \limsup_{n \to \infty} \frac{|I_{\sigma_n}|^{s-t}}{\alpha^{2t} \prod_{k=1}^n (a_k^s + b_k^s)} = 0.$$

Thus $H^t(F) = \infty$ by Proposition 4.9 [1]. Hence $\dim_H(F) \ge s$. The similarity of $h^s(F)$ and $H^s(F)$ guarantees the following.

Theorem 3 $\dim_H(F) \leq \dim_{\underline{C}}(F)$.

PROOF. Because the intervals of E_n become uniformly small as $n \to \infty$, for all s > 0 we have $H^s(F) \le h^s(F)$ and the result now follows from the definition. \Box

Corollary 4 $\dim_C(F) = \dim_H(F)$.

We use a Baire Category argument to obtain a lower bound for the packing dimension of F.

Theorem 5 $\dim_{\overline{C}}(F) \leq \dim_p(F)$.

PROOF. As in the proof of Theorem 2, we may assume that $a_n, b_n, d_n > \alpha$ for some $\alpha > 0$ for all n. Suppose that $0 < s < \dim_{\overline{C}}(F)$. Then $q^s(F) = \infty$. Given $\delta > 0$, for $n \ge \frac{\log \delta}{\log(1-\alpha)}$ and I_{σ} , where $\sigma \in \{1,2\}^n$

$$\begin{aligned} P^s_{\delta}(I_{\sigma} \cap F) &\geq \sup_{k \geq n} \sum_{I_{\tau} \subset I_{\sigma}, \tau \in \{1,2\}^k} |I_{\tau}|^s \\ &\geq |I_{\sigma}|^s \limsup_{m \to \infty} \prod_{k=n+1}^m (a^s_k + b^s_k) = \infty. \end{aligned}$$

Thus $P^s(I_{\sigma} \cap F) = \infty$. Consider $\{F_n\}$ such that $\bigcup_{n=1}^{\infty} F_n = F$. Since F is compact, $\bigcup_{n=1}^{\infty} \overline{F_n} = F$ and there exists $\overline{F_{n_0}}$ such that the interior of $\overline{F_{n_0}}$ in F is non-empty by the Baire Category theorem. Hence there is I_{σ} , where $\sigma \in \{1,2\}^n$ for large n such that $I_{\sigma} \cap F \subset \overline{F_{n_0}}$. Then $P^s(F_{n_0}) = P^s(\overline{F_{n_0}}) \geq P^s(I_{\sigma} \cap F) = \infty$. Thus $P^s(F_{n_0}) = \infty$. No,

$$p^{s}(F) = \inf\{\sum_{n=1}^{\infty} P^{s}(F_{n}) : \bigcup_{n=1}^{\infty} F_{n} = F\} = \infty,$$

i.e. $\dim_p(F) \ge s$.

Using the packing density theorem we find an upper bound for the packing dimension.

Theorem 6 $\dim_p(F) \leq \dim_{\overline{C}}(F)$.

PROOF. We may assume that a_n , $b_n > \alpha$ for some $\alpha > 0$ for all n. Suppose that $\dim_{\overline{C}}(F) < s$. Then $q^s(F) = 0$. We define a set function

$$\mu(I_{\sigma}) = \frac{|I_{\sigma}|^{s}}{\sum_{\tau \in \{1,2\}^{n}} |I_{\tau}|^{s}} = \frac{|I_{\sigma}|^{s}}{\prod_{k=1}^{n} (a_{k}^{s} + b_{k}^{s})}$$

for each $\sigma \in \{1,2\}^n$, where $n = 1,2,\cdots$, as in the proof of Theorem 2. Then μ extends to a mass distribution on [0,1] whose support is in $E = \bigcap_{n=1}^{\infty} E_n$, and $\mu([0,1]) = 1$. Let $x \in F = \bigcap_{n=1}^{\infty} E_n$. Then there is a sequence $\{I_{\sigma_n}\}_{n=1}^{\infty}$, where $\sigma_n \in \{1,2\}^n$ such that $\bigcap_{n=1}^{\infty} I_{\sigma_n} = \{x\}$. Given a small positive number r, there exists n such that $|I_{\sigma_{n+1}}| \leq r < |I_{\sigma_n}|$. For t > s,

$$\frac{\mu(B_r(x))}{r^t} \geq \frac{\mu(I_{\sigma_{n+1}})}{|I_{\sigma_n}|^t}.$$

Since $|I_{\sigma_{n+1}}|/|I_{\sigma_n}| = a_{n+1}$ or $b_{n+1} > \alpha > 0$ for all n,

$$\frac{\mu(B_r(x))}{r^t} \ge \frac{\mu(I_{\sigma_{n+1}})}{(\frac{1}{\alpha})^t |I_{\sigma_{n+1}}|^t} \\ = \frac{\alpha^t |I_{\sigma_{n+1}}|^{s-t}}{\prod_{k=1}^{n+1} (a_k^s + b_k^s)}$$

DIMENSIONS OF THE PERTURBED CANTOR SET

Then

$$\liminf_{r\to 0} \frac{\mu(B_r(x))}{r^t} \ge \liminf_{n\to\infty} \frac{\alpha^t |I_{\sigma_{n+1}}|^{s-t}}{\prod_{k=1}^{n+1} (a_k^s + b_k^s)} = \infty.$$

Thus $p^t(F) = 0$ by the packing density theorem [2]. Hence $\dim_p(F) \le s$. \Box Corollary 7 $\dim_{\overline{C}}(F) = \dim_p(F)$.

Applying Lemma 1 gives the following assertion.

Corollary 8 If $a_n^{s_n} + b_n^{s_n} = 1$ defines s_n and $s_n \to s$ as $n \to \infty$, then $\dim_H(F) = \dim_p(F) = s$.

If $\lim a_n = a$ and $\lim b_n = b$ with 0 < a, b and a + b < 1, then $\{a_n\}, \{b_n\}$ and $\{1 - (a_n + b_n)\}$ are uniformly bounded away from 0 and $\lim s_n = s$, where $a^s + b^s = 1$. Thus we have the following Corollary.

Corollary 9 If $\lim a_n = a$ and $\lim b_n = b$, then $\dim_H(F) = \dim_p(F) = s$, where $a^s + b^s = 1$ (0 < a, b and a + b < 1 are assumed).

Observation 10 The Cantor type set F whose $a_n = a$ and $b_n = b$ for all n has Hausdorff and packing dimensions s where $a^s + b^s = 1$ ([1]).

(Using Corollary 9 or the fact that $h^{s}(F) = q^{s}(F) = 1$, we also obtain the above result.)

Observation 11 The Cantor-like set F whose $a_n = b_n$ for each n has Hausdorff dimension

$$\liminf_{n \to \infty} \frac{-n \log 2}{\log \prod_{k=1}^n a_k}$$

and packing dimension

$$\limsup_{n \to \infty} \frac{-n \log 2}{\log \prod_{k=1}^n a_k}$$

This follows from Corollaries 4 and 7 and the argument of the proof of Lemma 1 (cf.[3]).

References

- [1] K. J. Falconer, Fractal geometry (John Wiley & Sons. 1990).
- [2] S. J. Taylor and C. Tricot, The packing measure, and its evaluation for a Brownian path. Trans. Amer. Math. Soc. 288 (1985), 679-699.
- [3] C. Tricot, Two definitions of fractal dimension, Math. Proc. Camb. Phil. Soc. 91 (1982), 57-74.