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 CHEBYSHEV INEQUALITIES AND
 COMONOTONICITY

 In Heinig and Maligranda [5] Chebyshev's inequality is phrased as follows.
 Let X and y be positive decreasing functions on I = [0, a]. In this case

 pCL pa, pa

 / x(s)ds / y(s)ds < a / y(f>)x(s)ds
 Jo Jo Jo

 Letting m(ds) be normalized Lebesque measure on I the above inequality may
 be rephrased as

 / xdm j ydm < j xydm.
 A close inspection of their first proof reveals that m may be replaced by any
 probability p on I so that

 / xdp j ydp < J xydp.

 This suggests an analogous inequality for random variables X and F on a
 probability space (7, E,p).

 E(X)E(Y) < E(XY)

 This is well known to be equivalent to positive correlation of X and Y , that
 cov(X, Y) >0. As a result, a paraphrase of Chebyshev's inequality is that
 two positive decreasing functions on I are positively correlated with respect to
 all probabilities on I. Here we extend this to give a characterization of those
 measurable functions on a measurable space which are positively correlated for
 all probabilities. This characterization is valid even for unordered measurable
 spaces, although order is implicit.
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 If ÍÍ is a set, two real functions / and g on ft are said to be comonotonic if
 f(x) > f(y) and g(y) > g(x) is impossible for any {x,y} C ft. An equivalent
 condition is that [/(#) - f(y)][g(x) - g(y)' > 0 for all {x, y} C ft. A real
 function / induces a weak order y¡ on ft via x y f y iff f(x) > f(y). The
 associated equivalence relation is given by x y iff f(x) = f(y). Two
 functions / and g are known to be comonotonic iff yf and yg admit a common
 extension to a weak order y on il (That is, as subsets of iî x ÎÎ, the union
 of the two relations y / and yg is contained in a weak order >- so that x y y
 if either f(x) > f(y) or g(x) > g(y).) The concept of comonotonicity has
 become important in non-linear expected utility theory. See Armstrong [1],
 Wakker [7], Schmeidler [6] and Dellacherie [3].

 Theorem 1 Let (iî, E) be a measurable space. Two H-measurable real func-
 tions f and g on ft satisfy

 ļ fdP j gdP< ļ fgdP
 for all countably additive probabilities P iff they are comonotonic.

 Proof. One direction is the first proof given by Heinig and Maligranda of
 their Theorem 2.1 [5]. Suppose that / and g are comonotonic

 0 < J J[f(x) - f(y)][g(x) - g(y)]P(dx)P(dy)

 = J J f(x)g(x) - f(y)9(x) - f(x)g(y) + f(y)g(y)P(dx)P(dy)

 = 2 J f(x)g(x)P(dx) - 2 J f(y)P{dy) J g(x)P(dx).
 As a result,

 J f(x)g(x)P(dx) > J f(x)P(dx) J g(x)P(dx).
 For the other direction suppose / and g are positively correlated with respect
 to P then

 ķf{x)g(x) + f(y)g(y)] > j[/(x) + f(y)}'g(x) + g(y)}.

 Simple algebra now yields

 f(x)g(x) - f(x)g(y) - f(y)g(x) + f(y)g(y) < 0 or

 [/(*) - f(y)][g(x) - 9(y )] > o.
 □
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 Remark 1 Theorem 2.1 of Heinig-Maligranda [5] dates back to at least Cheby -
 shev [2].

 Recall that a Radon measure on a compact Hausdorff space K is an element
 of M(K) = C'(K), or alternatively, is an inner regular Borei measure or a
 countably additive Baire measure.

 Corollary 1 Let K be a compact Hausdorff space. Continuous functions f
 and g are positively correlated with respect to all probability Radon measures
 iff they are comonotonic.
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