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 SUFFICIENT CONDITIONS FOR

 AN ALYTICIT Y

 1. Introduction

 A real valued function /, infinitely differentiate on an interval J, is said to be
 analytic at t in 7, if the Taylor series for / about t converges to f(x) for x in
 some neighborhood of t and / is analytic on I if it is analytic at every point
 of I. Thus a function analytic on a closed interval [a, 6] can be extended to be
 analytic on an open interval containing [a, b'.

 Sufficient conditions for analyticity exist in abundance, particularly those
 which arise from the theory of absolutely monotonie functions , i.e. functions
 which, along with all their derivatives, are non-negative. A survey of these
 results is available in [4]. The purpose of this paper is to present other sufficient
 conditions which also arise as extensions of absolutely monotonie functions and
 extend the results of [1], [2], and [3]. Specifically, there are two parts to this
 paper. In the first we show that [< pn(x)f(x )]^ > 0 for all n > 0 on [a, 6]
 is a sufficient condition for analyticity on [a, b) where </> is an entire function
 of a general class. In the second part, a sequence of differential operators
 introduced in [7] leading to a generalization of Taylor series will also provide
 a sufficient condition for analyticity when they are non-negative on the same
 set.

 A well-known theorem of much use in the following, normally attributed
 to Pringsheim [6], states that / is analytic on [a, b] if and only if there are
 constants M, r with |/^n^(x)| < M rnn' on [a, 6], for all n > 0. Actually
 Pringsheim's proof was faulty. A correct proof can be found in [5]. Never-
 theless, for easy reference, this result will still be referred to as Pringsheim's
 theorem.

 Bernstein [1] proved that a function is analytic on [a, 6) if it is absolutely
 monotonie on [a, b]. In fact / can be extended to be analytic on the set of
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 X for which 'x - a' < b - a and moreover its Taylor expansion about x = a
 converges with a radius at least b - a. Thus a function absolutely monotonie
 on [0, oo) can be extended to be analytic on (-00, 00) and representable by its
 Taylor series about x = 0 convergent on (-00, 00). It is thus the restriction of
 an entire function to the non-negative real axis.
 An obvious comment is that a power series (or polynomial) in powers of
 x is absolutely monotonie on [0, 00) if and only if all of its coefficients are
 non-negative.

 2. Extensions I

 The requirement that / be absolutely monotonie can be relaxed. Recently,
 [2], it was shown that

 [efcnx/(x)](n) > 0 (2.1)
 on [a, b] for all n > 0 is a sufficient condition for the analyticity of / on [a, 6)
 where k is any positive constant. This suggests that it may be possible to
 "boost" a C°° function / by an auxiliary sequence of C°° functions {<j)n} and
 use the condition [< pn(x)f(x )]^ > 0 to obtain analyticity. It turns out that a
 good choice occurs when </>n(x) has the form </>n(x) = <f>n(x) for a special class
 of functions <p which are now introduced.

 Definition 1 An entire function $ is said to be in class A if it is of the form:

 00 / ' 00 -i

 ^)=e'wn(i+¿). / ' ĘM<°° -i (i2>
 where either an > 0 or the an occur in complex conjugate pairs with Re(an) >
 0. Also g is an entire function with g(0) =0 and, when restricted to the real
 axis, is absolutely monotonie on [0, 00).

 Finite products in (2.2) are possible by having an = 00 for some n. Note
 that <p(z) = 1 is included. From the comments above we know that the
 coefficients in the Taylor series of g about z = 0 are non-negative.
 We observe that </> is real for real z. Also since the factors coming from

 conjugate pairs of roots contribute

 (1 ' + ^)(1 ari / ' + f)" "n/ + 2Z|fieM'1 |"n| + '2 ' ari / ' "n/ |"n|

 and thus give rise to non-negative coefficients of powers of z, we see that the
 resulting Taylor expansion for 0 about z = 0 contains only non-negative coef-
 ficients because of this and the other factors in (2.2). Thus </>, when restricted
 to the real line, is absolutely monotonie on [0, 00).
 Three preliminary lemmas are needed.
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 Lemma 2.1 For <ļ> in class A with g(z) = 0, let Pm(x) = ļļHi (* + ¿t)-
 Then for each fixed n > 1 and k > 0 the sequence (on m) {[-Prän(£)]^}
 converges to [(ļ)~n(x)}^ for all x > 0.

 This rather technical result is a consequence of the elementary theory of
 analytic functions of one complex variable. The sequence {Pm(x)} converges
 uniformly to <p(z) on compact sets in the plane and thus the sequence (on
 m) {Pm(z)} converges uniformly to 4>n(z) on the same sets for each n > 1.
 Restricting ourselves now to sets of the form Sa = {z : |arg(z)| < a}, for
 a < 7t/2, (these are closed angular sectors containing the origin and </>(z) ^ 0
 there), then Pm(z) does not vanish in these sets so that {P^l{z)} will converge
 uniformly on compact subsets of Sa to '(j>{z)]~l and hence the same applies
 to {Pñn(z)} converging uniformly to <1>~n(z) for each n > 1. Prom the same
 general theory, we know that derivatives also converge so that {[ P^n(z )]^}
 converges to [(f>~n(z)]^ as m - ► oo for all z in Sa and in particular for
 z = x> 0.

 Lemma 2.2 Let <fi be in class A. Then for every R > 0, there is a constant
 M for which for 0 < x < R, n = 1,2,..., and 0 < k <n,

 '(<1>-n(x))W' <Mknk.

 This will be proved in stages. First assume that g(z) = 0 in (2.2) and
 1 < k < n. Then for x > 0,

 r n (k)

 ( x ' 71 _ n(n + 1) • • • (n + k - 1) (2 n)k

 +^J J _ = K^rw
 because

 I1 + s:HRe (' + I = 0 + tíf) ž 1
 using the definition of class A. By Leibniz' Rule

 H)>=)T
 -|s©N)1>Ž)T
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 It follows by induction that

 where A = Yl^Li ¿y finite. The expression inside the absolute value
 converges to [ <j)~n(x )]^ as m - ► oo by Lemma 2.1. Thus

 '((fi-n(x))W' < (2 An)k

 valid for all x > 0, all positive integers n, and 1 < k < n. It also clearly holds
 for k = 0 since (¡>{x) > 1.
 We now assume that <p(x) = e9^ and show the same result however with
 x restricted. Since g is entire, then for every R > 0, there are constants
 B , r with 'g(k'x)' < Brkk' for 0 < x < R and k = 0,1,2, ... . This a
 consequence of Pringsheinťs theorem. We may, in fact, choose J3, r so large
 that |<7^(x)| < Brk~1(k - 1)! for k = 1, 2, . . . and 0 < x < R. It will be more
 convenient to use this form in what follows.

 Now let h(x) = <j)~n(x) = e~ng^. Then h'(x) = - ng'(x)e~ng and by
 Leibniz' rule,

 h(k+ D(x) = -nJ2 (k'h(k-i)(x)g^i+1)(x).
 i=o W

 Choose any M > B+r. We will show by induction on k that 'h^k'x)' < Mknk
 whenever 0 < x < R and 0 < k < n. The inequality obviously holds when
 k = 0 for any x and n. Then

 |/i(fe+1)(*)l <
 i- 0

 and then

 k A*!
 |/i(fc+1)(x)| < Mk+1nk+lB^2 J Af-^n-y.

 i=0 ^

 Now use <kl<n% to get

 ■D k . D 00 %
 IA<W)(X)| <

 ¿=0 i=0

 = Mk+1nk+1-ß-. M - r
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 Here we have used the formula for the sum of a geometric series. Since M - r>
 Bi the induction is complete.

 For the general case, write <1>{x) = e9^6(x) where 9(x) is of the form
 considered in the first part of this proof. Thus 0~n(x) = h(x)0~n(x) with h as
 in the previous paragraph. By the work just completed, for each R > 0, there
 are constants Mi,M2 for which 'h^k'x)' < Miknk and |[0~n(x)](*)| < M2knk
 for 0 < X < i?, k = 0, 1, 2, . . . and n = 1,2,... . Then Leibniz' Rule leads to

 (4>n(x))w' = ¿(*)(0-n(»))w/»(fc-ť)(«) ^ ' i=0 ^ '

 < Yl(k) (M2n)i(M1n)fe"i = [(Jlf2 + MJnf
 ¿= o W

 and this proves the lemma.

 Lemma 2.3 Let <j> be in class A and [ <j)n{x)f(x )]^ > 0 on [a, 6] for n =
 0,1,... with a > 0. Then [<ļ)n (x) f (x)]^ > 0 on [a, b] for n = 0, 1, . . . and
 0 < k < n.

 This will follow by induction on n. The result is clear for n = 0 and assume
 it true for some n and all fc, 0 < k < n. Then

 [<A"+1(x)/(x)p> = [«A(x)^(x)/(x)]W = ¿ ffcV(fc-ł>(x)[^(x)/(x)]W > 0
 ¿=o

 using the induction hypothesis for k = 0,1 , . . . ,n and the fact that <p is ab-
 solutely monotonie on [0, oo). The case k = n + 1 is a consequence of the
 hypothesis. The proof is complete.

 We can now obtain the main result of the section.

 Theorem 2.4 Let f be infinitely differentiable on [a, 6]. If[<j)n(x-a)f(x)}^ >
 0 on [a, b] for n = 0, 1, ... , for some function (f> in class A, then f is analytic
 on [a, b).

 The use of <f)(x - a) is due to the fact that the desirable properties of <ļ>
 occur on the non- negative reals. It is clear that the condition specified can be
 replaced by [<f>n(x)f(x + a)]^ > 0 on [0, b - a] and / will be analytic on [a, b)
 if g , defined by g(x) = f(x + a), is analytic on [0,6 - a). Thus it will be no
 restriction to assume in the proof that the interval [a, 6] is contained in the
 non-negative reals and [4>n (x) f (x)]^ > 0 on [a, 6] for all n > 0.
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 To prove the theorem, we use Taylor's Theorem. For x, t in [a, 6]

 r+1(x)f(x)

 = E^n+1(í)/(í)](fc)^r^ + ¿ jf V+1(«)/(«)](B+1)(® - urdu.

 By hypothesis and Lemma 2.3, every term on the right side is non-negative
 for a ^ t ^ oc ^ b. Thus for these values

 0 < '4>n+1(t)f(t) ](fe) < 0n+1(x)/(x) < ABn+1

 where A , B are bounds for / and </> on [a, b] respectively. Hence

 0 < [4>n+1(t)f(t)]w < ABn+1(x - t)~kk' (2.3)

 for a <t < x <b and k - 0,1, . . . ,n. Then we obtain

 F i i (»)

 |/C)(0l = !*»+■(«)/((). F __j i

 = ¿ © (r-'mf* [■¡'"'milti]''"'"

 and by (2.3) and Lemma 2.2 this is (we choose R so that 0<a<x<6<i?)

 < ¿ í™} Mk(n + 1 )kABn+1(x - t)~n+k(n - fc)!
 k=0 ^ '

 < ABn+1n'{x - t)-n £ [M(n + 1fcļ(X-°]fe
 fc=o

 [D „M(x-ť)1n+1
 = ABn+1n'(x - ť)-»eM(n+1'(I-(» = An!(x - 1) -

 L x - t

 Thus for a < t < c < x = b,

 rßeM(6-a)in+1
 |/(n)(í)| < AnHb - a)

 L b - c

 for some constants K, r, from which we conclude by Pringsheim's theorem
 that / is analytic on [a, c]. Since c is arbitrary, c < 6, then the result follows
 for [a, 6).
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 It also follows from this proof that if the hypothesis holds on [a, oo) for
 some a > 0, then / is analytic on [a, oo).

 Besides <f>(x) = 1 (giving Bernstein's result), the most interesting cases
 would seem to occur when <f>(x) = ekx for some positive constant k , and when
 <t>(x) is a polynomial. The former was proved in [2] where it was also shown
 that it is best possible in the sense that [eknxf(x)]^ > 0 can not be replaced
 by [ekn<*x f(x)](n) > 0 for any a > 1.

 3. Extensions II.

 In this section, some early work of Widder [7] will be the basic source. For
 / infinitely differentiate on [a, 6], define an operator Ln by Lo[f(x)] = f(x)
 and for n > 1,

 Ln[f(x)} = rn(x)D[r(x)Ln.1[f(x)}} (3.1)

 = <t>-n(x)D[4>(x)D[<t>(x) . . . D[cf>(x)f(x)} . . .]].

 We again assume without loss of generality that a > 0 while 0 is a function of
 class A defined above. A companion set of functions is defined by

 9n(x,t) = (1>n+1(t) <p~n~ 1 (u)gn- i(x,u)du, n > 1, g0(x, t) = (3.2)

 Let

 Rn(x,t) = gn(x,u)Ln+i[f(u)'du (3.3)

 = </>~n_1(u)ffn(x,u)<An+1(u)i/„+i[/(u)]du.

 Then an integration by parts shows that for n > 1,

 Rn(x,t) = -Ln[f(t)]gn(x,t) + Rn-1(x,t).

 Repeating a process which generalizes the usual proof of Taylor's Theorem,
 we get

 Rn(x,t) = -Ln[f(t)]gn(x,t) - Ln-i[f(t)}gn-i(x,t)

 Since Ro(x,t) = f(x) - go(x,t)Lo[f(t)}, then (cf. [7;136])
 n

 f(x) = + Rn(x,t). (3.4)
 j= 1
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 This suggests the possibility of expanding f(x) in a series of the form,
 YlkLo -kfcKOli/fcOM)» an approach used in [7] but not here. Note that if <f)(x ) =

 1 then Ln[f(x)] = Dnf(x) and gn(Xjt) = ^ so (3.4) becomes Taylor's
 theorem.

 Some preliminary results are needed. Observe first that

 9i(x' t)=w¡[ miu' t)=W>S' mdu f W)d"
 and a change in the order of integration leads to

 „M -öa r > * r
 <t>(x) Jt </>(v) Jt (ß(u)

 We deduce easily that, for k > 1,

 Although these functions have two variables, it is convenient to use the nota-

 tions: g(f^n'x,t) = d and g^n'x,x) = g(j^n'xit) 't=x. This notation
 will also be used for other multivariable functions.

 It is not difficult to see from (3.5) that

 g^n'xix) = 0, 0 < m < fc, g^'x,x) = 1. (3.6)

 Lemma 3.1 If f is infinitely differentiable on [a, 6], then for all n> 0,

 /(n) (x) = Lo [/(x)]s¿n) (x,x) + Li [f(x)]g[n) (x, x)

 + ■■■ + Ln-MWlg^fax) + Ln[f(x)).

 This is proved in [7; 131] in a more general setting but follows quickly from

 (3.4), since it suffices to show that i^n^(x,x) = 0. Repeated differentiations
 of the first equation in (3.3) and use of (3.6) results in

 i4n-1)(x,ť) = £ g^-1)(x,u)Ln+l[f(u)]du.

 Another differentiation gives us lék'x,x) = g^Ł~1'xix)Ln^.i[f(x)' = 0 by
 (3.6).

 We will need bounds for the factors that occur in the formula.
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 Lemma 3.2 For <f> in class A, there are constants A,C so that for 0 < a <
 X < b and 0 < k < n,

 'g£'x,x)'<ACn(k + l)n-k. (3.7)
 We note from (3.5) that gk{x, t) is the product of and a function whose

 derivative with respect to x is gk-i(x,t). Thus we may apply Leibniz' rule for
 differentiating a product and use (3.6) to get, for k > 1,

 g^'x, x) = <1>{x) ¿ Q (¿)) x)- (3-8) j=k

 On [a, 6], '<f>(x)' < A, for some A, and we can assume that A > 1. For
 the case n = k = 0, Equation (3.2) gives us g$(x,x) = 1. We will also use

 |(^y) ļ < Bi for some constant B , a consequence of Lemma 2.2. We
 now proceed by induction. Choose C larger than B and Ae and assume that

 (3.7) holds for g^n'xit) for all m < n and 0 < k < m. Then from (3.8) for
 l<fc<n(fc = 0isa special case),

 |pļn)(x,x)| < {^'Bn-jACj-lkj-k <
 j=k j=k

 = A2Cn~1k~k ¿ Qfc* < A2Cn~lk~k ¿

 = A2Cn-lk~k{k + ')n <ACn(k + l)n~k.

 The validity of the last step is a consequence of A (l + j¿)k < Ae < C. The
 exceptional case, k = 0, follows from (3.2)

 |í/¿n)(*,x)|=¿(*) (^y)(n) < ABn < ACn.

 This completes the proof.

 Lemma 3.3 If 0 is in class A , then for 0 < t < x and all n>0,

 *<*•«>

 A consequence of the definition of class A and absolute monotonicity is
 that the function <j> is positive and non-decreasing on [0, oo). The case n = 0



 144 G. G. Bilodeau

 follows from the definition of go(xìt) in (3.2). Now assume the result true for
 n replaced by n - 1. Then from (3.2),

 Jt (n-l)i
 and an integration completes the proof.

 Theorem 3.4 Let f be infinitely differentiable on [a, 6]. If there is a function
 (ļ> in class A for which Ln[f(x + a)] > 0 on [0, b - a] for n = 0, 1, ... , then f
 is analytic on [a, 6).

 As mentioned earlier, we can assume a > 0 and Ln[f(x)' > 0 on [a, 6].
 Since every term in the expression in Equation (3.4) is non-negative when
 0 < a < t < X < 6, we obtain Ln[f(t)'gn(x,t) < f(x) < M for some constant
 M. An appeal to Lemma 3.3 gives us

 o < Ln[f(t)} < M (^)n+1 - t)~n ■
 Restricting ourselves toa<i<c<6 and letting x = 6, we get

 o < Ln[f(t)} < MKn+1n'(b - c)~n, K -
 <P'a)

 Now it follows from the result in Lemma 3.1 that

 |/(n)0r)| < [/(*)] |ff<n) (*,*)| < ¿M^+1j!(6 - c)~i ACn(j + l)-'.
 j= 0 j= 0

 We have also used Lemma 3.2 and Equation (3.6). This inequality is simplified

 by using (j + l)n~j < (j + l)(j + 2) • • • (n) = jf to obtain

 |/(n)(x)| < AMKCnnl^(-^Y ^ < /'! j= 0 ^ '

 valid for some constant r > C because the sum is a geometric sum. Now we
 apply Pringsheim's theorem to conclude that / is analytic on [a, c] for arbitrary
 c < b. The proof is now complete.



 Sufficient Conditions for Analyticity 145

 References

 [1] S. Bernstein, Sur la definition et les propňétés des fonctions analytiques
 d'une variable réelle, Math. Ann., 75 (1914), 449-468.

 [2] G. G. Bilodeau, Extensions of Bernstein's theorem on absolutely monotonie
 functions , J. Math. Anal. Appl., 116 (1986), 489-496.

 [3] G. G. Bilodeau, Absolutely monotonie functions and connection coefficients
 for polynomials, J. Math. Anal. Appl., 113 (1988), 517-529.

 [4] R. P. Boas, Jr., Signs of derivatives and analytic behavior , Amer. Math.
 Monthly, 78 (1971), 1085-1093.

 [5] R. R Boas, Jr., A theorem on analytic functions of a real variable , Bull.
 Amer. Math. Soc., 41 (1935), 233-236.

 [6] A. Pringsheim, Ueber die nothwendigen und hinreichenden Bedingungen
 des Taylor'schen Lehrsatzes für Functionen einer reellen Variablen , Math.
 Ann., 44 (1894), 57-82.

 [7] D. V. Widder, A generalization of Taylor's series , Trans. Amer. Math.
 Soc., 30 (1928), 126-154.


	Contents
	p. 135
	p. 136
	p. 137
	p. 138
	p. 139
	p. 140
	p. 141
	p. 142
	p. 143
	p. 144
	p. 145

	Issue Table of Contents
	Real Analysis Exchange, Vol. 19, No. 1 (1993-94) pp. 1-349
	Front Matter
	EDITORIAL MESSAGES [pp. 1-1]
	CONFERENCE ANNOUNCEMENTS [pp. 2-5]
	CONFERENCE REPORTS
	REPORT ON THE SUMMER SYMPOSIUM IN REAL ANALYSIS XVII, MACALESTER COLLEGE, ST. PAUL, MINNESOTA, JUNE 23–27, 1993, PROGRAM of the MACALESTER SYMPOSIUM [pp. 6-10]
	THE CONTRIBUTIONS OF ANTONI ZYGMUND TO REAL ANALYSIS [pp. 11-12]
	LIPSCHITZ MAPS AND ω-LIMIT SETS [pp. 13-14]
	TRAJECTORY OF THE TURNING POINT IS DENSE FOR ALMOST ALL TENT MAPS [pp. 15-17]
	UNIONS OF PRODUCTS OF INDEPENDENT SETS [pp. 18-19]
	SOME OF KOLMOGOROV'S FUNDAMENTAL RESULTS IN FOURIER ANALYSIS: HISTORY, DEVELOPMENT, AND OPEN PROBLEMS (In honor of A. N. Kolmogorov's 90th birthday) [pp. 20-20]
	TWO SUMMABILITY PROBLEMS - SPEEDS OF CONVERGENCE AND A RESULT OF POLLARD AND BUCK [pp. 21-22]
	UNIFORM GENERALIZED ABSOLUTE CONTINUITY [pp. 23-23]
	NEW INTEGRABILITY CLASSES [pp. 24-26]
	TOTALIZER II: THE NIGHTMARE CONTINUES [pp. 27-27]
	RECENT DEVELOPMENTS IN GEOMETRIC INTEGRATION THEORY [pp. 28-31]
	REGULATED FUNCTIONS WHOSE FOURIER SERIES CONVERGE FOR EVERY CHANGE OF VARIABLE [pp. 32-32]
	BASIC CONSTRUCTIONS FOR THE FEYNMAN INTEGRAL [pp. 33-33]
	BANACH-VALUED HENSTOCK INTEGRATION [pp. 34-34]
	DIMENSIONS FOR SUBSETS OF [0, 1] [pp. 35-36]
	LUSIN'S PROBLEM [pp. 37-37]
	ANTIDERIVATIVES OF BAIRE FUNCTIONS [pp. 38-38]
	MUTUAL INDEPENDENCE OF CONVERGENCE CONDITIONS [pp. 39-39]
	LEBESGUE MEASURE AND GAMBLING [pp. 40-41]
	RECTANGULAR AND ITERATED CONVERGENCE OF MULTIPLE TRIGONOMETRIC SERIES [pp. 42-42]
	TWO DIMENSIONAL PARTITIONS [pp. 43-43]
	CONTROLLED INTERSECTION THEOREMS FOR CONTINUOUS NOWHERE MONOTONE FUNCTIONS [pp. 44-45]
	STORING BAIRE 1 FUNCTIONS [pp. 46-47]
	NORMAL NUMBERS AND SUBSETS OF ℕ WITH GIVEN DENSITIES [pp. 48-49]
	EXPANSION VIA LEGENDRE FUNCTIONS [pp. 50-51]
	UNIFORMLY ANTISYMMETRIC FUNCTIONS I [pp. 52-53]
	UNIFORMLY ANTISYMMETRIC FUNCTIONS II [pp. 54-55]

	ERRATA
	ERRATA TO "ON TWO GENERALIZATIONS OF THE DARBOUX PROPERTY" [pp. 56-56]
	ERRATA TO "A∞ TYPE CONDITIONS FOR GENERAL MEASURES IN ℝ [pp. 56-57]
	ERRATA TO "LIMITS OF SIMPLY CONTINUOUS FUNCTIONS" [pp. 57-57]
	ERRATA TO "ON BOREL SETS WITH SMALL COVER" [pp. 58-58]

	RESEARCH ARTICLES
	INVERSION OF THE CROFTON TRANSFORM FOR SETS IN THE PLANE [pp. 59-80]
	THE DESCRIPTIVE DEFINITIONS AND PROPERTIES OF THE AP INTEGRAL AND THEIR APPLICATION TO THE PROBLEM OF CONTROLLED CONVERGENCE [pp. 81-97]
	A CATEGORY BASE FOR MYCIELSKI'S IDEALS [pp. 98-105]
	ANALOGS OF THE HAUSDORFF-YOUNG INEQUALITY FOR THE RADON TRANSFORM [pp. 106-113]
	MONOTONICITY THEOREMS FOR SOME LOCAL SYSTEMS [pp. 114-120]
	MEASURE SPACES AND DIVISION SPACES [pp. 121-128]
	ON LIMITS WITHOUT EPSILONS [pp. 129-134]
	SUFFICIENT CONDITIONS FOR ANALYTICITY [pp. 135-145]
	ALGEBRA GENERATED BY A.E. CONTINUOUS DERIVATIVES OF INTERVAL FUNCTIONS [pp. 146-154]
	ON THE EQUIVALENCE OF FOUR CONVERGENCE THEOREMS FOR THE AP-INTEGRAL [pp. 155-164]
	HOW TO OBTAIN ALL FINE CATEGORY DENSITY TOPOLOGIES [pp. 165-172]
	UNIFORM KURZWEIL-HENSTOCK INTEGRABILITY [pp. 173-193]
	MEASURABLE RECTANGLE [pp. 194-202]
	THE H-SETS IN THE UNIT CIRCLE ARE PROPERLY Gδσ [pp. 203-211]
	TWO TYPES OF ABSOLUTE CONTINUITY USED IN HENSTOCK AND AP INTEGRATION ARE EQUIVALENT [pp. 212-217]
	ON UNIFORMLY ANTISYMMETRIC FUNCTIONS [pp. 218-225]
	UNIFORMLY ANTISYMMETRIC FUNCTIONS [pp. 226-235]

	INROADS
	EQUI-INTEGRABILITY AND CONTROLLED CONVERGENCE FOR THE HENSTOCK INTEGRAL [pp. 236-241]
	SOME CONSEQUENCES OF THE FREILING - HUMKE RESULT ON THE DENSITY PROPERTY [pp. 242-247]
	AN INTEGRAL INVOLVING THOMSON'S LOCAL SYSTEMS [pp. 248-253]
	A NECESSARY AND SUFFICIENT CONDITION FOR GAUGE INTEGRABILITY [pp. 254-255]
	ON THE CARATHÉODORY SUPERPOSITION [pp. 256-265]
	CHEBYSHEV INEQUALITIES AND COMONOTONICITY [pp. 266-268]
	DIMENSIONS OF THE PERTURBED CANTOR SET [pp. 269-273]
	AN ACG FUNCTION WHICH IS NOT AN ACGs FUNCTION [pp. 274-277]
	THE σ-ALGEBRA GENERATED BY THE JORDAN SETS IN ℝn [pp. 278-282]
	VANISHING DERIVATIVES AND NILPOTENCY [pp. 283-289]
	UNIFORM GENERALIZED ABSOLUTE CONTINUITY AND SOME RELATED PROBLEMS IN H-INTEGRABILITY [pp. 290-300]
	SCHAUDER BASES, SCHAUDER FUNCTIONS, AND THE GRAM-SCHMIDT PROCESS [pp. 301-308]
	TO THE QUESTION OF REALIZABILITY OF THE CROFTON FUNCTION ON SETS IN ℝ² [pp. 309-311]
	THE S-HENSTOCK INTEGRATION AND THE APPROXIMATELY STRONG LUSIN CONDITION [pp. 312-316]
	SOME REMARKS ON METRIC PRESERVING FUNCTIONS [pp. 317-320]
	ON THE STRUCTURE OF THE SPACE OF METRICS DEFINED ON A GIVEN SET [pp. 321-327]
	SOME INTERESTING SMALL SUBCLASSES OF THE DARBOUX BAIRE 1 FUNCTIONS [pp. 328-331]
	SOME ADDITIONAL NOTES ON GLOBALLY POROUS SETS [pp. 332-348]

	QUERIES
	A Query on Sard's Theorem [pp. 349-349]

	Back Matter



