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 ON SAKS-HENSTOCK LEMMA
 FOR THE RIEMANN-TYPE INTEGRALS

 The first key step in the theory of the Henstock integral is Henstock's
 lemma, or what Henstock called the Saks-Henstock lemma (see, for example,
 [2; p.12]). As we can see, the lemma makes easy many proofs of the theorems
 later on. If we consider the McShane integral [2,3] and mimic the proof of the
 lemma, we obtain the Saks-Henstock lemma for the McShane integral. Then
 the monotone convergence theorem using the lemma will have an easier proof
 for the McShane integral than otherwise (see [3; p. 86]). This observation
 leads us to conjecture that for the Riemann-type integrals it is easier to
 prove results using the corresponding Saks-Henstock lemma. In this paper,
 we elaborate our point by making use of the RL integral, a Riemann-type
 integral as defined in [1,2]. The motivation for considering the RL integral
 is computational. It is well-known that the Riemann integral provides a
 convenient way of computing the integral value. But the Lebesgue integral
 does not, and nor does the McShane integral because of unequally spaced
 divisions. Note that the RL integral uses equally spaced divisions which are
 useful in computation. We assume that the reader has some familarity with
 the Henstock integral.

 We recall that a non-negative function / is said to be RL integrable on
 [a, 6] if there exists a number A such that for every e > 0 and tj > 0 there
 exist an open set G and a constant S > 0 such that |(j| < r) and that for
 every division D = {([«, *>],£)} 0 < v - u < 8 and f G [«,«] we have

 l(¿>) E /«)(» -u)-A'<e,
 «G

 where the sum is taken over all ([u, v], f ) in D in which £ G [it, v] - G. In other
 words, the term f(£)(v - u) is not included in the above sum when [«, v' - G
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 is empty, and when [u, u] - G is nonempty we always take £ 6 [u, u] - G. For
 notation, see [2].

 In general, a function / is said to be RL integrable on [a, b] if both /+ =
 max(f, 0) and /" = max(- /,0) are RL integrable on [a, 6], and the integral
 of / is that of /+ - /"• It is known [2; p. 105] that the RL integral is equivalent
 to the absolute Henstock integral, and also to the Lebesgue integral.

 Theorem 1. A function f is RL integrable on [o,6] if and only if there
 exists an absolutely continuous function F such that for every e > 0 and
 r¡ > 0 there exist an open set G and a constant 6 > 0 such that |G| < t] and
 that for every division D = {([u,u],£)} with 0 < v - u < 6 and £ 6 [u,v] we
 have

 (,D),£'m)(v-«)-F(u,v)'<c.
 Ito

 where F(u,v) denotes F(v ) - F(u).

 To prove Theorem 1, we need the following lemma.

 Lemma 2. A nonnegative function f is RL integrable on [a, 6] if and
 only if there exists a number A such that for every e > 0 and T) > 0 there
 exist an open set G and a division Dq such that | C | < fļ and that for any
 division D = {([«,u],01 finer ^an Do and £ G [u, v] we have

 '(D)'E,f(0(v-u)-A'<£-
 iiG

 Proof. If / is nonnegative and RL integrable on [a, 6], choose Dq =
 {[«,«]} such that 0 < v - u < 6 and 6 is given as in the definition of
 the RL integral. Then the necessity follows. For sufficiency, let fN be the
 truncated function of /, i.e., fN(x) = f(x) when f(x) < N and fN(x) = N
 when f(x) > N. Following the proof in [2; p.105] we can show that fN is
 Henstock integrable on [a, 6]. Then for every N there is An such that for
 every e > 0 and r) > 0 there exist an open set Gn and a division Dn such
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 that |Gtv| < r) and that for any division D = {([«, *>],£)} finer than and
 Do with £ € [u, v] we have

 1(f) E /"« )(" - «) - < *•
 (to„

 It follows that

 < e + (£) £ - «)
 UGN

 < e + (D) 12fN(0{v-u) + 2Nt,
 UG

 < e + (0) D f(0(v - «) + 2 Nr)
 UG

 < 2e + A + 2Ntj.

 Since e and rj are arbitrary, we obtain An < A{ or all N. By the monotone
 convergence theorem for the Henstock integral, / is Henstock integrable and
 therefore RL integrable on [a, 6].

 Proof of Theorem 1. The necessity follows from the fact that if /
 is RL integrable on [a, 6] then it is absolutely Henstock integrable there [2;
 p. 105], and the required condition holds. To prove sufficiency, we first show
 that ¡/I is RL integrable on [a, 6]. Let F*(: r) denote the total variation of F
 on [a, a:] for x € [a, b]. Then for every e > 0 there is a division Do of [a, b]
 such that for any division D finer than D0 we have

 0<f(a,6)-(D)£|F(U,.,)|<£.
 We may choose Do = { [it, v] } so that 0 < v - u < 6. Then for any D =
 {([u,t;],£)} finer than Do and £ € [u,v] we have

 I U>) E I/Kill® -«)-*"(«,») I
 (to

 < I (D) E l/(f)l(» -»)-(£>) E lF(". »)l I
 (to

 + '(D)-£'F(u,v)'-F-(a,b)'
 < ( D ) E l/(í)(» - «) - Ff»,")! + (D) E 'F(«,v) I

 Í«G Í6C
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 +F*{a,b)-(D)ī2'F{u,v)'
 < 2e + (£>) £ |F(u,t>)|.

 <€G

 The last term in the above inequality is small because F is absolutely con-
 tinuous. Hence, by Lemma 2, |/| is RL integrable on [a, 6].

 Similarly, we can show that |/| - / is RL integrable on [a, 6]. Then so is
 /. The proof is complete.

 Theorem 1 is interesting in two ways. It gives the Saks-Henstock lemma
 for the RL integral. Also, it gives a one-step definition for the RL inte-
 gral without having to define non-negative functions first then the general
 case. Furthermore, as a consequence of Theorem 1, the integral of any RL
 integrable function, and therefore any Lebesgue integrable function, is the
 limit of a sequence of Riemann sums with equally spaced divisions and
 some suitable terms missing. More precisely, there is a sequence of partial
 divisions Dn, each of which is equally spaced, such that

 ttm(Z?n)£/(0(u ~u) = ja /(*)<**•

 Avoiding singularities is a standard technique in numerical integration. This
 is realized here by omitting some suitable terms.

 To illustrate the use of the Saks-Henstock lemma (Theorem 1 above), we
 prove the following mean convergence theorem.

 Theorem 3. Let fn be RL integrable on [a, b] with fn(x) -* f(x) almost
 everywhere in [a, fe] as n -* oo. If

 tb

 / l/n(®) - fm(x)'dx -»0 as n,m-»oo, Ja

 then f is RL integrable on [a, b] and

 f fn{x)dx - * f f(x)dx as n - ► oo. Ja Ja
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 Sketch of proof. Let Fn(u, v) denote the RL integral of /„ on [«, u] C
 [a, b]. It is obvious that {F„(u, ü)} is a Cauchy sequence, and the limit exists,
 denoted by F(u,v). Given e > 0, let

 Em,n = {*; |/m(z) ~ /n(*)| > En = {*5 I fn(x) ~ /(x)| > e}.

 Then we have

 e|£m,«| < Ja / I fm(x) - fn(x)'dx. Ja

 Taking m - » oo and then n - ► oo, we obtain |E„| - ► 0 as n - ► oo. Next, there
 exists no such that |F„(a,6) - F(a,b)' < e whenever n > no. Furthermore,
 there exists rj0 > 0 such that for any partial division D of [a, 6] with ( D ) £ -
 «I < i/o we have

 (£)Hl^n(u,u)| < / 'fn(x) - fno(x)'dx + (D)Y2'F»o(u,v)'
 Ja

 < le.

 Since fn is RL integrable on [a, 6], by Theorem 1, for every i/ > 0 there
 exist Gn and 6n > 0 such that |G„| < i//2 and that for any division D =
 {(KuhO} with 0 < v - u < 6n and £ € [u, u] we have

 (D) £ 'fn(()(v - u) - ^n(«,w)| < e.
 UGn

 We assume that 17 < i/o. Now choose a sufficiently large N > no such that
 ļ^Arļ < 17/2. Then choose an open set G D En U Gn such that ļCļ < 1/ and
 put 8 = 6n- Then for any division D = {([«, *>],£)} with 0 < v - u < S and
 £ 6 [u, u] using the inequalities above we have
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 '{D)Ylf(0(v-'u)-F(a^)' < P)EI/(0-/n(OI(v-«)
 «g «G

 +(D) H I/aKO(» - «) - Fn(u,V)'
 HG

 +|Fw(a, b) - F(a, 6)| + (D) £ |F*(ti, v)'
 (€G

 < e(b - a + 4).

 That is, / is RL integrable to F(a, b) on [a, 6],

 By means of Theorem 3, other convergence theorems follow. Similarly,
 using the Saks-Henstock lemma we can prove that if / is RL integrable on
 [a, 6] then its primitive F is differentiable and equal to f almost everywhere
 [2; p.21]. In conclusion, we have demonstrated once again the power of the
 Saks-Henstock lemma in proving results of the Riemann-type integrals.
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