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 THE PACKING MEASURE AND FUBINI'S
 THEOREM

 The question arose as to whether Fubini's Theorem holds in the plane with
 respect to the packing measure. In other words, if G is a closed set in the unit
 square, then is the packing measure of G equal to the integral of the packing
 measure of G'x' = {y : (x, y) € G} with respect to the packing measure of the
 projection of G onto the x-axis. The answer is no. The integral may be an
 equivalent measure to the packing measure (the two measures are at the same
 time zero, finite, of infinite on a set G) only when the dimension of the cartesian
 product of sets is equal to the sum of the dimensions of the original sets (e.g.,
 when Dim (E x F) = Dim E + Dim F). To prove this assertion, the following
 definitions will be needed.

 Definition 1: Packing Measure. The premeasure is (a - P){E) = inf^o
 {supE«(2r,)0r : B(xi,ri) = (x,- r,-, Xj+r,) is any disjoint sequence of open intervals,
 or open circles in the plane, with x¿ 6 E and r,- < <$]}. The packing measure is
 (a - p)(E) = inf{E,(a - L)(E¡) : E C U

 Definition 2: Symmetric derivation basis measure. Let S(x) be a positive
 real function. Then, (a - S)g(E) = sup{£"_1(2rt)a : £(x¿, rt) = (x,- - r¿,x¿ + r¿)
 is any disjoint sequence of open intervals, or open circles in the plane, with x¿ G E
 and r¿ < S(x¿)}. Then, the symmetric derivation basis measure is (a - s)(E) =
 inf{(a - S_)s(E) : S(x) is any positive real function).

 It was shown in [1] that the packing measure is the symmetric derivation basis
 measure.

 Definition 3: The Integral measure. Let S(x, y) > 0 be a positive real func-
 tion defined on the plane. Then, for 7 = a + ß, (7 - Sg(G) = sup{52,tJ(2r,)°'(2ťí)^:
 the supremum is over all disjoint sequences iž(x,, j/j; r,-, tj) = (x,- - r¿, x¿ + r,) x
 {y i ~ tji Vj + tj) °f open rectangles with center (x,-, yj) € G and with sides of length
 2ri,2tj such that R(xi,yj;ri,tj) C B{xiy yy, 6(xi, yj)), where B(xi,yyì8{xiìyj)) is
 a circle with center (x,-,y¿) and radius S(x¿, yj)}- Then the integral measure is
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 (7 - ¿KG) = inf {(-7 - Š_)s(G) : ö(x,y) is any positive, real function defined on the
 plane}.

 As suggested by the name given to the outer measure defined in Definition 3,
 the integral measure is the integral discussed above.

 First, let E and F be subsets of the interval [0, 1]. The following theorem
 shows that f(a - p)(E)d(ß - p)(F) = (a - p)(E) • ( ß - p)(F) is the integral
 measure. It should be stated that in general, it is false that [(a + ß) - p](E x F) =
 (a - p)(E) • (ß - p)(F).

 Theorem 1. Let E and F be sets in the interval [0, 1]. If (a - p)(E) and
 (ß - p)(F) are finite and non-zero, then (7 - s)(E x F) = (a - p)(E) • (ß - p)(F)
 where 7 = a + ß.

 Proof. In the following proof, (a - s)(E) and (/? - s)(F) will be used since the
 symmetric derivation basis measure is equal to the packing measure. Let e > 0 be
 given and choose ¿i(x) such that (a - 5)^ ( E ) < (a - .»)(£?) + e and (ß - 5)^ (F) <
 (ß-s)(F)+e. Then, there exists a packing r,) = r¿,x,-+r¿) witha;,- € E
 and r¿ < ¿i(x,)} such that (a - s)(E) - e < 13¿(2r,-)0'. Also, there exists a packing
 {B(y¡ ,tj) = (yj - tj, yj + tj) with y ¡ 6 F and tj < ¿i(y¿)} such that (ß - s)(F) -
 e < Therefore, [(a - s)(£) - e][(ß - s)(F) - e] < Z,i,j(2ri)a(2ti)ß ^
 (7 - Ë)s0(E x F) where ¿o(®ňí/j) = max{'/2 y/2 ¿i(í/j)}. Since the above
 can be done with any 6'(x) < ¿i(x) and S"(y) < Si(y), (a - s)(E)(ß - s)(F) <
 (7 - s)(E x F). Now, let 6(x,y) be any positive real bounded function. Then,
 there exists a packing of rectangles y j', ri, tj) C B(xi,yj-,6(xi,yj )) such that
 (7 - s)(E x F) - e < EťjrfíJ < (a - S)s2(E) ■ {ß - S)s3(F ) where 52(®) >
 {5(x,y) : y € F} and ^(y) > {¿(x>î/) : x € E}. Since ¿(x,y) was arbitrary,
 (7 -s)(ExF) < (a-s)(E)-(ß-s)(F). Thus, (7-s)(ExF) = (a-s)(E)-(ß-s)(F).

 One referee asks the question as to whether Theorem 1 can be extended to the
 case where E or F has measure 0.

 Notice that (7 - s)(E x F) is greater than or equal to a packing using squares
 with centers in E x F. A packing with squares centered on Ex F (calculated as in
 Definition 3) is equivalent to the packing measure only when the packing measure
 dimensions add (e.g. Dim(i? x F) = Dim E + Dim F).

 Now for the theorem that shows for a set G in the unit square, the integral of
 the packing measures of G[x] with respect to the packing measure of the projection
 of G onto the x-axis is the integral measure.

 786



 Theorem 2. Let G be a closed set. Let E be the projection of G onto the
 y-axis and let F be the projection of G onto the x-a xis. Set the Dim F = ß
 and assume that a = Dim E = Dim G[x' for each x G F. If 7 = a + ß and
 (7 - s)(£ x F) < 00, then f(a - p)(G[x])d(ß - p)(F) = (7 - s)(G).

 Proof. In Theorem 1, it was shown that f(a - p)(E)d(ß - p)(F) =
 (7 - s)(E x F). Let Hn be the collection of all dyadic squares with sides equal to
 2-n and contained in the complement of G. If G = (E x F) ~ Q, where Q is a
 dyadic square, then Theorem 2 is true since G can be divided into at most four dis-
 joint rectangles and Theorem 1 can thus be applied. Let now Gn = (E x F) ~ Hn.
 Therefore, an induction argument shows that

 (7 - J)(G,) = ļ (a- p)(Gi[x])d(ß - p)(F)

 and likewise,

 (7 - 3)(G„) = J (a - p)(Gn[x])d(ß - p)(F).

 Since (7 - s)(E x F) < 00 and {Gn} decreases montonically to G,

 Um (7 - i)(Gn) = (7 - s)(G)

 Ä> J(Q ~ P)(Gnlx]W - p)(f) = /(« - P)(G[x])d(ß - p)(F).
 Thus, (7 - J)(G) = /(a - p)(G[x])d(ß - p){F).

 In Theorem 2, one referee asks the question as to whether it is true that the
 set F will always have the property 0<(ß- p)(F) < +00.

 The question of what measure is the integral f(ocx - p)(G[x])d(ß - p)(F) when
 ax = Dim G[x] varies with each x was not considered by the author. It is con-
 jectured that it is the integral measure which would be equivalent to the packing
 measure under very restrictive conditions.

 It is known that if E is the Cantor Set, then Dim (E x E) = Dim E + Dim E.
 So, the integral measure is equivalent to the packing measure of E x E in the
 plane. An example of sets E and F such that the integral measure of E x F is
 not equivalent to the packing measure of E x F in the plane is the subject of the
 following example.

 Example. There exists a set E with packing measure dimension, Dim E =
 log 2/2 log(2s), and a set F with Dim F = log2/31og(2s), s > 1. The packing
 measure dimension of E x F is Dim (E x F) < 2 log 2/3 log(2s) < Dim E-'- Dim F.
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 Proof. Construct the Cantor-like set E as follows: Remove an open interval
 from the center of the interval [0, 1] leaving two equal closed intervals of length
 ūļ = (2s)-5. Remove an open interval from the center of these two closed in-
 tervals leaving 4 closed intervals of length a2 = (2s)-6. Continue this method
 so that Ü3 = (2s)-7 and a+ - (2s)-8. Notice that -8 = -2 • 4 = -2 • n.
 Form a5 = (2s)-25 where -25 = -5 • 5 = -5 n. Then, continue as before:
 a6 = (2s)~26, a7 = (2s)-27, . . . ,020 = (2s)"40, and then a2 1 = (2s)-105. There-
 fore, for each n, (2s)_5n < an < (2 s)-2n and Dim E = log2/21og(2s), [3].
 For the set F, do a similar construction to E where a' = (2s)-5, a2 = (2s)-6,
 03 = (2s)-15, a4 = (2s)-16, a5 = (2s)-17, a6 = (2s)-18, a7 = (2s)-35, a8 =
 (2s)-36, ag = (2s)-37, . . . , ai4 = (2s)-42, Ö15 = (2s)-75, and continue with öi6 =
 (2s)~76. Therefore, (2s)-5n < an < (2s)-3n, for each n, and hence Dim F =
 log 2/3 • log(2s). Examine a grid formed with the closed intervals of length and
 a n- The maximum size of the rectangles is (2s)-3" x (2s)-2n. Using squares with
 side (2s)-3n, the packing measure dimension of E x F [3] would be

 log2(2n)2 _ (2n + 1) • log 2 2 1og2
 - log V2(2 s)-3n 3 n • log(2s) - log V*2 3 • log(2s)

 as n - * 00. The most irregular rectangle is of size (2s)-5n x (2s)-2n and using
 squares of sides (2s)-5n, then log3(2n)2 would be used for the numerator of the
 above fraction. So, the Dim(i? x F) < (2-log2)/(3-log(2s)) and Dim E + Dim F =
 (5 • log2)/(6 • log(2s)).
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