Marek Balcerzak, Institute of Mathematics, Lódź University, ul. Stefana Banacha 22, 90-238 Lódź, Poland.

ANOTHER NONMEASURABLE SET WITH PROPERTY (s^0)

<u>Abstract</u>. It is observed that the Walsh set $E \subseteq X \times Y$ which has property (s^0) and is nonmeasurable can satisfy the following conditions simultaneously: E is nonmeasurable in some strong sense; E is the graph of a bijection; E meets each function of a fixed family of size c, in a set of size < c.

In the paper, X and Y are uncountable Polish (i.e. metric separable and complete) spaces. A set $A \subseteq X$ is said to have property (s^0) (or is called an (s^0) set) if any perfect set $P \subseteq X$ contains a perfect set Q disjoint from A (see [Sz] and also [Mi], [W1]). All (s^0) sets in X form a σ -ideal. In [W2] Walsh gave an example of an (s^0) set $E \subseteq X \times Y$ that has not the Baire property and is not $(\mu \times \nu)$ -measurable for any continuous finite Borel measures μ and ν on X and Y (respectively). The same result was obtained independently by Corazza in [Co]. It is well known that there exists a nonmeasurable set in the plane, \mathbf{R}^2 , being the graph of a bijection, i.e. meeting each of the horizontal and vertical lines at at most one point (this is due to Sierpiński who, in fact, showed a stronger version with the lines of arbitrary slope, cf. [S]). Recently, a simple proof of that result has been given in [vD]. We mix techniques of [W2] and [vD] to get the above effects and some additional properties. Namely, our set does not belong to a wide class of σ -algebras associated with Fubini products of σ -ideals (here Lemma 2 derived from [B3] is helpful). Moreover, we can ensure that, for a fixed family $\mathcal F$ of functions $f: X \to Y$ such that $|\mathcal{F}| = c$ (the cardinality of the continuum), our set meets each $f \in \mathcal{F}$ in a set of size < c (we identify f with its graph). If one considers the σ -ideal \mathcal{T} generated by \mathcal{F} (i.e. consisting of all sets A such that $A \subseteq \cup \mathcal{F}^*$ for a countable $\mathcal{F}^* \subseteq \mathcal{F}$), then our set E meets each member of \mathcal{T} in a set of size < c(hence E forms a $c-\mathcal{T}$ -Lusin set in the notation proposed in [Mi]). That property of E is established similarly as in [GL] and has the related application: it yields a nonmeasurable function $F: \mathbb{R}^2 \to \mathbb{R}$ with "nice" superpositions F(x, f(x)) for all Borel $f: \mathbf{R} \to \mathbf{R}$ (cf. condition (iii) in Example 4^o below; see also [B3]).

By $\mathcal{B}(X)$ we denote the family of all Borel sets in X. If \mathcal{T} is a σ -ideal of subsets of X, then $S(\mathcal{T})$ denotes the smallest σ -algebra containing $\mathcal{B}(X)$ and \mathcal{T} ; $S(\mathcal{T})$ consists of all sets of the form $(B \setminus A) \cup (A \setminus B)$ where $B \in \mathcal{B}(X)$ and $A \in \mathcal{T}$.

For σ -ideals \mathcal{T} and \mathcal{J} of subsets of X and Y, respectively, we define (cf. [CKP])

$$\mathcal{T} \otimes \mathcal{J} = \{ A \subseteq X \times Y : \exists B \in \mathcal{B}(X \times Y) (A \subseteq B \& \{ x \in X : B_x \notin \mathcal{J} \} \in \mathcal{T}) \}$$

where $B_x = \{y \in Y : \langle x, y \rangle \in B\}$ for $x \in X$. The family $\mathcal{T} \otimes \mathcal{J}$ forms a σ -ideal called the Fubini product of \mathcal{T} and \mathcal{J} .

The σ -ideal of all countable subsets of X will be written as \mathcal{T}_0^X .

Theorem. Let \mathcal{F} be a set of functions from X to Y such that $|\mathcal{F}| = c$. There is an $E \subseteq X \times Y$ such that

- (1) |E| = c and E has property (s^0) ,
- (2) E is the graph of a bijection $g: U \to W$ where $U \subseteq X$, |U| = c and $W \subseteq Y$,
- (3) $|E \cap f| < c$ for any $f \in \mathcal{F}$,
- (4) $E \notin S(\mathcal{T} \otimes \mathcal{J})$ for any σ -ideals $\mathcal{T} \supseteq \mathcal{T}_0^X$ and $\mathcal{J} \supseteq \mathcal{T}_0^Y$.

We need two lemmas.

Lemma 1. (cf. [W1], Th. 2.2). If $\{D_{\alpha} : \alpha < c\}$ is a disjoint family of uncountable Borel sets in a Polish space and $\{E_{\alpha} : \alpha < c\}$ consists of all perfect sets P such that $|P \cap D_{\alpha}| < c$ for each $\alpha < c$, then

(a)
$$|D_{\alpha} \setminus \bigcup_{\beta < \alpha} E_{\beta}| = c$$
 for all $\alpha < c$,

(b) any selector of the family $\{D_{\alpha} \setminus \bigcup_{\beta < \alpha} E_{\beta} : \alpha < c\}$ has property (s^0) .

Lemma 2. ([B3], Lemma 1.6). If E is the graph of a function $g: A \to Y, A \subseteq X$, which meets each member of $\mathcal{B}(X \times Y) \setminus (\mathcal{T}_0^X \otimes \mathcal{T}_0^Y)$, then $E \notin S(\mathcal{T} \otimes \mathcal{J})$ for any σ -ideals $\mathcal{T} \supseteq \mathcal{T}_0^X$ and $\mathcal{J} \supseteq \mathcal{T}_0^Y$.

Proof of Theorem. Arrange all sets from $\mathcal{B}(X \times Y) \setminus (\mathcal{T}_0^X \otimes \mathcal{T}_0^Y)$ in $\{B_\alpha : \alpha < c\}$. For any $\alpha < c$, the set $A_\alpha = \{x \in X : (B_\alpha)_x \notin \mathcal{T}_0^Y\}$ is analytic (see [K], p. 496) and since it is uncountable, $|A_\alpha| = c$ (see [K], §39 I). Pick $x_0 \in A_0$ and $x_\alpha \in A_\alpha \setminus \{x_\beta : \beta < \alpha\}$ for $0 < \alpha < c$. Denote $D_\alpha = (\{x_\alpha\} \times Y) \cap B_\alpha$ for $\alpha < c$. Arrange all functions from \mathcal{F} in $\{f_\alpha : \alpha < c\}$. Choose $p_0 = \langle x_0, y_0 \rangle \in D_0$ and, for $0 < \alpha < c$, pick $p_\alpha = \langle x_\alpha, y_\alpha \rangle \in (D_\alpha \setminus \bigcup_{\beta < \alpha} E_\beta) \setminus \bigcup_{\beta < \alpha} \{\langle x_\alpha, f_\beta(x_\alpha) \rangle, \langle x_\alpha, y_\beta \rangle\}$ (where the E_α 's are defined as in Lemma 1). That is possible by Lemma 1 (a). Put $E = \{p_\alpha : \alpha < c\}$.

Now, (1) follows from Lemma 1 (b). Assertion (2) is a consequence of the construction. To show (3), fix any $f_{\beta} \in \mathcal{F}$ and observe that $E \cap f_{\beta} \subseteq \bigcup_{\alpha < \beta} \{\langle x_{\alpha}, f_{\beta}(x_{\alpha}) \rangle\}$. Since E meets every B_{α} , by Lemma 2, we get (4).

Examples

1° Let \mathcal{K}_X and \mathcal{K}_Y denote the σ -ideals of all meager sets, i.e. those of the first category in X and Y, respectively. We can consider them as \mathcal{T} and \mathcal{J} in assertion (4) of the theorem. By the Kuratowski-Ulam theorem (see [0]), the product $\mathcal{K}_X \otimes \mathcal{K}_Y$ forms the σ -ideal of all meager sets in $X \times Y$. The family $S(\mathcal{K}_X \otimes \mathcal{K}_Y)$ consists of all sets with the Baire property in $X \times Y$.

20 Let μ and ν be σ -finite continuous Borel measures defined on X and Y, respectively, and let \mathcal{T}_{μ} and \mathcal{T}_{ν} denote the families of their null sets. Then, by the Fubini theorem, $\mathcal{T}_{\mu} \otimes \mathcal{T}_{\nu}$ is the family of all null sets with respect to $\mu \times \nu$, and $S(\mathcal{T}_{\mu} \otimes \mathcal{T}_{\nu})$ forms the σ -algebra of all $(\mu \times \nu)$ -measurable sets.

3° Let μ be the Lebesgue measure in **R**. For brevity, write $\mathcal{T}_{\mu} = \mathcal{L}$ and $\mathcal{K}_{\mathbf{R}} = \mathcal{K}$ (cf. 1° and 2°). The four products $\mathcal{K} \otimes \mathcal{K}$, $\mathcal{L} \otimes \mathcal{L}$, $\mathcal{K} \otimes \mathcal{L}$, $\mathcal{L} \otimes \mathcal{K}$ are incomparable in the sense of inclusion (see [Me]) and the same can be observed for the respective σ -algebras $S(\mathcal{K} \otimes \mathcal{K})$, $S(\mathcal{L} \otimes \mathcal{L})$, $S(\mathcal{K} \otimes \mathcal{L})$, $S(\mathcal{L} \otimes \mathcal{K})$ (see [B1]). In [B2] we gave examples of sets $E_1 \notin S(\mathcal{K} \otimes \mathcal{L})$ and $E_2 \notin S(\mathcal{L} \otimes \mathcal{K})$ which are the graphs of bijections. The present construction leads to one set good for both the examples.

 4° Let $X = Y = \mathbf{R}$ and let F be the characteristic function of E from the theorem. We then have:

- (i) $\{\langle x, y \rangle \in \mathbb{R}^2 : F(x, y) \neq 0\}$ is an (s^0) set of size c,
- (ii) all the functions

$$x \mapsto F(x, y_0), \qquad y \mapsto F(x_0, y),$$

for $x_0 \in X$, $y_0 \in Y$, are upper semicontinuous (since each of them equals zero everywhere except for at most one point),

- (iii) for any Borel $f : \mathbf{R} \to \mathbf{R}$, the superposition $x \mapsto F(x, f(x))$ equals zero everywhere except for a set of size < c (note that each set of size < c has property (s^0) , see [W1], Th. 2.1),
- (iv) F is neither Lebesgue measurable nor has the Baire property.

References

- [B1] M. Balcerzak, On some ideals and related algebras of sets in the plane, Acta Univ. Carolinae Math. Phys. **30** (1989), 3-7.
- [B2] _____, Some properties of ideals of sets in Polish spaces, Acta Univ. Lodziensis, Lódź 1991.

- [B3] _____, Some remarks on sup-measurability (submitted).
- [CKP] J. Cichoń, T. Kamburelis and J. Pawlikowski, On dense subsets of the measure algebra, Proc. Amer. Math. Soc. 94 (1985), 142-146.
- [Co] P. Corazza, Ramsey sets, the Ramsey ideal and other classes over **R** (preprint).
- [vD] E.K. van Douwen, Fubini's theorem for null sets, Amer. Math. Monthly 96 (1989), 718-721.
- [GL] Z. Grande and J. Lipiński, Un example d'une fonction sup-measurable qui n'est pas mesurable, Colloq. Math. 39 (1978), 77-79.
- [K] K. Kuratowski, Topology I, Academic Press 1966.
- [Me] C.G. Mendez, On sigma-ideals of sets, Proc. Amer. Math. Soc. 60 (1976), 124-128.
- [Mi] A.W. Miller, Special subsets of the real line, Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North Holland 1984.
- [O] J.C. Oxtoby, Measure and Category, Springer-Verlag 1971.
- [S] W. Sierpiński, Sur une problème concernant les ensembles mesurables superficiellement, Fund. Math. 1 (1920), 112-115.
- [Sz] E. Szpilrajn-Marczewski, Sur une classe de fonctions de M. Sierpiński et la classe correspondante d'ensembles, Fund. Math. 24 (1935), 17-34.
- [W1] J.T. Walsh, Marczewski sets, measure and the Baire property, ibid. 129 (1988), 83-89.
- [W2] _____, Marczewski sets, measure and the Baire property II, Proc. Amer. Math. Soc. 106 (1989), 1027-1030.

Key words and phrases: (s^0) set, σ -ideal, measurability.

Received July 22, 1991

¹⁹⁸⁰ Mathematical Subject Classification (1985 Revision) Primary 28 A 05; Secondary 54 H 05.