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ON JOINT SUMMABILITY OF FOURIER
SERIES AND CONJUGATE SERIES

1 Introduction.

It is well known that in spite of Fejers’ theorem guaranteeing that a continuous
function on [—=, 7] is uniformly approximable by its (C, 1) means, these means are
generally poor approximations in the sense of rate of convergence. The following
theorem to be found on p. 122 of Zygmund [2] demonstrates this fact. In this
note we use Zygmunds notations A%, K2%(t), K2(t), Dn(t), Da(t), for the cesaro
numbers, (C,a) kernel, conjugate (C,a) kernel, Dirichlet kernel and conjugate
Dirichlet kernel respectively. The notations o2(f;z), s.(f; z) are used for the nth
(C,a) mean and nth partial sum for the Fourier series for f at z.

Theorem 1. Let f € L'([—~,7]) be periodic. If ol(f;z) — f(z) = o(%)
uniformly as n — oo, then f is almost everywhere equal to its zeroth Fourier
coefficient co(f).

In other words for general functions, the rate of convergence is slower than
o(1). The following theorem is a pointwise convergence variant of this fact. It
implies that it is difficult for a function of the kind considered to have both rapidly
converging (C, a) means and conjugate means, even at a point.

Theorem 2. Fix z € [-x,«). Let f(z + t)cott/2 € L'([-~,x],dt). Assume
that if h(z) be any of the three functions f(z), f(z)sinz, f(z)cosz the following
hold for some a > —1

o3* (ki z) - h(z) = of )

and )
&3t (h;z) — h(z) = o(~)-
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Then | g
os(fiz) = o [ F(®)at

and
62(f;z) — 0.
The proof of Theorem 2 will proceed from the results of the next section.

Remark 1. Since the hypotheses involve higher order summability than the
conclusion, the theorem may be viewed as a Tauberian theorem with the hypoth-
esized rate of convergence as the Taubarian condition.

Remark 2. The first hypothesis can be better appreciated in view of the fact
that for almost all z € [—x, 7] the integral [ f(z +1t) cot(t/2)dt exists as a principal
value integral. (See Zygmund (1], p. 131.)

2 Integral representation and a recurrence for-
mula for the Cesaro kernel.

For fixed t € [-7, 7], a > —1 consider the function

(1=2)"

1-—eitz

hi(z) =
on the unit disk. By analytic continuation we may write:

(1-2)"= ZA“ 127 2| < 1.
n=0
So, the nth Taylor coefficient of h,(z) at the origin is:
(l — Z)—a — & a=1_i(n-k)t
C"[l—e“z _’§)Ak e .

But from Cauchy theory:
(1-2)"" 1 (1-2) 1
o]

1—eitz | 2m (r) 1 —eitz 2zntl
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where C(r) is a circle at 0 of radius r < 1. Hence,

it)2 1—z)a
Im {2Agesinit72i : 21? fC(r) %_—;2? zml,-rdz}
= Im { sk Thoo A7 eftn-kei/an)
= A3 Thzo A7 Duok(t) = K2(2).
Recalling that

- cot(t/2 1 &,y cos(k+ 1)
ke =g o 3 Ty

and performing a calculation similar to the above with Re replacing Im, it is seen
that the following lemma holds.

Lemma 1. Let t € [, 7], o > —1 and let I2(t) denote the integral

_ -a
L. / (1 z? ! dz.
27 Je(r) 1 —eitz 2ntl

Then

Kz%(t) = Im Lza(t) (1)
" - 2Aasin(t/2) "

cot(t/2) oo\ et/? o
T - I‘n(t) = RC{W In(t)} .

Note: Formula (1) is equivalent to formula (2.3) of appendix II of Hardy
(1]. This formula involves the Poisson kernel and makes the possiblitities for the
recursion in Lemma 2 below less clear.

Next a recurrence formula in a will be found for 72(t). Note that

1 1 z(et—1)
1—zeit 1—2 (1—2zet)(l-2z2)

SO

/C (I-2z) 1 d2=L(r)Mdz+(ei‘_l)/ (Gl —l—dz.

() 1—eitz zntl 2n+l cr) (1 —zeit)  zn

Recognizing the last integral as 2r:12*}(t) and calculating:

1 (1—z)—1 nf —a=1\_ (n+a
%L(r) zntl dz_(_l)( n )—( n
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we have the following recurrence formula.

Lemma 2. Fort € [-m,7], a > —1;

o= ("t )+ - oo

This recurrence leads to the following one for K2(t) and K2(t).

Lemma 3. Lett € [-m, 7], « > —1. Then

Ko(t) = %+ p(cost = DK (D) + — smt[°°t(2t/ 2 _ ko))
ko) = 5 (sint) K (1) — ——(cost - 1)[°°t(t/ 2 _ ket

Proof: Multiply the recurrence in Lemma 2 by €**/2/2A2 sin(t/2) and take real
and imaginary parts. Use

A% = n+a Agt}_ n
n n " Ae T a4l

We now take up the proof of Theorem 2.

Integrate the first equation of Lemma 3 over [—=, 7] after multiplying by
f(z +t)/=. This produces:

L[ e orzwdt=clf) + {2 [ e+ t)(eost) Kt ()

a+1

- % [ stz +1) Kg:r;(t)dt}

{ / fla +t)(smt)cot(t/2)dt

a+1

- 2 / f(m+t)(smt)I"'+1(t)dt}
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Next, we calculate

%/:r f(:l? + t)(COSt)K:jll(t)dt} = —/ f(s) cos(s — (L')I&’O"H(s _ z)ds
= % {cos :r/: f(s)(cos 8)K2H} (s — z)ds

+ sinz /’r f(s)(sins)K2H (s — m)ds}
= cosz 023)(f cos;x) + sinz 0% (f sin; 7).

Similarly,

L7 pte 4+ o)DM D gy gin o fegs)(a) — cos a( fain) (=),

+ / f(z +t)sint Kot} (t)dt = sinz 62 (f cos; z) — cos z 62F}(f sin; z).

Hence,

on(fiz) =c(f) +

a: T {cosx o2 (f cos; 7)
+ sinz 02} (fsin;z) — 02t (f;x )}

+ - {cos 2(874(f sim; z) — (f sin)(2))

— sina(82¥1(f cos; z) — (fcos)(2)) }

The last curly bracket is o(1). The expression in the first curly bracket can be

written
cos T [a’“'”(f cos; z) — f(z)cos z]

+sinz [a"'“ fsin;z) — f(z)sin a:]

+f(z) - on i (f2) = o)

Finally, after multiplying the second equation in Lemma 3 by f(z + t)/7 and
integrating over [—, 7], an entirely similar argument shows that &2(f;z) — 0.
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