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 PARAMETRIC SEMICONTINUITY
 IMPLIES CONTINUITY

 Abstract. Suppose a are non-zero. We prove that if either
 lim inft-o-C/í® + - f(x + °*)) > 0 or lim inf<- o+(/(® + bt ) - f(x + at)) > 0
 holds at each point of a set E CR which has the Baire property (is measurable),
 then f is continuous at each point of E apart from a first category set ( a set
 of measure zero). We prove this via a generalization of the Uher- Thomson
 symmetric covering theorem.

 1. Introduction. Investigations into the symmetric behavior of functions
 began in the 20's (see [7]). Later several papers appeared which specifically
 investigated the nature of sets with symmetry properties [1], [2], [3], [12]. By
 introducing the notion of symmetric cover, B. S. Thomson [13], [14] proposed
 a unified approach to both of these topics.

 A set S C R2 is a full symmetric cover of R if, for every x € R, there is
 6(x) > 0 such that (x - t,x + t) Ç S (0 < t < S(x)). We say that S partitions
 an interval [x, t/] if there are points x = xo < x' < . . . < xn = y such that
 (x¿_i,xt) € 5 (¿ = l,...,n).

 We note that there is also a connection between symmetric covers and in-
 tegration theory which was already observed by McGrotty in 1962 [9]. Recently
 D. Preiss and B.S. Thomson [11] defined an integral which integrates every con-
 vergent Fourier series based on the approximate symmetric covering theorem
 by C Greiling and D. Rinne [5], [6].

 j vas proved by D. Preiss and Thomson [10]* that for every full symmetric
 cover ere is a countable exceptional set E such that for every x,y ^ E, S
 partitions [x, y]. C. Freiling showed [4] that E can be chosen nowhere dense (a
 simple proof of this can be found in [8]).

 AMS Mathematics classification numbers 26A03, 26A15
 * The authors express their enduring gratitude for the inspiring last para-

 graph of this paper.
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 In [15] and [16] J. Uher proves that symmetric differentiability implies
 differentiability almost everywhere and semicontinuity implies continuity almost
 everywhere. In doing so he implicitely employs a new covering theorem which
 later was made explicit by Thomson in [14]. New in Uher's technique was the
 use of directed chains to obtain estimates on function growth.

 Uher's proof is rather complicated, and our first goal is to simplify his
 argument. At the same time, we give a generalization of the category version
 of his theorem which abo shows that in the covering theorems of [4], [8], [10]
 each subinterval of a dense open set can be partitioned into 5 intervals from S.

 In the next section we give our simplified proofs of Uher's theorems. In
 Section 3 we show that these results remain valid if the collection of symmetric
 intervals is replaced by the slightly more general collection of (x + at, x + bt),
 where a, b are given non-zero real numbers.

 These theorems could be applied to obtain continuity, monotonicity or
 differentiability results (see [13], [14]). In Section 4 we provide one such ap-
 plication, a continuity result, which generalizes Uher's theorem. We chose this
 application because a literal generalization of Uher's theorem is not true (see
 Theorem 4.2). The appropriate generalization states that lower parametric
 semicontinuity from either side implies continuity a.e. (Theorem 4.1).

 2. The Uher-Thomson covering theorems. Let S C R2. We shall say
 that xq, . . . , xn is an n- element S- chain, if (x¿_i , x¿) € S for every i = 1, . . . , n.

 Theorem 2.1. Let E C R have the Baire property, let S C R2 and
 suppose that for every x G E there is a S(x) > 0 such that either (x-t,x+t) G S
 for every 0 < t < S(x), or (x - t, x + 1) Ç S for every 0 > t > -6(x). Then there
 is an open set G such that E'G is of first category and for every [x,y] C G
 there is a 5-element S- chain connecting x and y.

 Proof. Let J denote the family of all open intervals I such that for every
 x, y G J, x < y, there is a 5-element 5- chain connecting x and y. We shall
 prove that if E is residual in an interval (a, b ) then there is an I C (a, b), I G X.
 From this the statement of the theorem easily follows by taking G as the union
 of a maximal disjoint subfamily of T.

 Let E be residual in (a, b) and let E+ = {x 6 E : (x - t, x + t) 6
 S if t > 0 is small enough}, and E~ = {x e E : (x - t, x + t) G S if - t >
 0 is small enough}. Then E = E+ U E~ and hence either E+ or E~ is of second
 category in (a, b ). We shall suppose that E+ is of second category in (a, 6); the
 same proof applies for the other case. Let

 E* = {x G E : (x - ť, x + 1) G S for every 0 < t < 1/n},

 E~ = {x G E : (x - t, x + t) G S for every 0 > t > -1/n} (n = 1,2,.. .).
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 Then E+ = and hence there is an n and an open subinterval I' C (a, 6)
 such that |/i| < 1/n and E+ is of second category in every subinterval of I'.
 Let /2 be the interval concentric with I' and of length ļJiļ/10; we shall prove
 that /2 € T.

 Let X, y G /2, x < y; we show that there is a 5-element 5"- chain from x to
 y. We may assume that x = 0. It is enough to prove that there is a subinterval
 J C (0.9 y,y) such that for every z G J there is a 4-element S- chain from
 x to z. Indeed, if this is true then we choose a w E (0.9 y, y) H E+ such that
 2w - y G «7, we connect 0 and 2w - y by a 4-element S- chain and complete
 this chain by adding (2 w - y, y) G S.

 Since E is residual and E+ + | y is of second category in (0.9y, y), E fi
 (E+ + |y) is also of second category in (0.9y, y). Therefore, by

 o 00 o

 înW + -y) = (J ((£+ u E-) n (£+ + í»))
 m= 1

 it follows that there is an m and an e € {+, - } such that E^ fi {E+ + |y)
 is dense in an open interval J C (0.9 y, y). Let z e J be arbitrary. We shall
 construct four points p, q, r, s such that the chain of reflections about the points
 p,q,r,s takes 0 to z.

 Since E is residual and E+ is of everywhere second category in Jj, A =
 ( 'E + I y) D {'E+ + f + I y) is dense in J. Therefore we can choose t 6 AO J
 such that 't - z' < 1/m and t < z if e = + and t > z if e = - . We put
 q = 2t - |y, r = 2t - | - |y; then q G E, re E+ and 0 < g < r < t.

 Since Efmn(E+ + 1 y) is also dense in «7, we can choose s G £?^n(£J+ + f y)fl J
 arbitrarily close to t. Let p = s - |y, then p G E+. If we choose s close enough
 to t then the following inequalities can be also satisfied: 0 < p < q, 2q - 2p<
 r, |2 p - q' < S(q), 2p < q if q € E+ and 2p > q if q G E~, |s - z' < 1/m,
 s < z if e = + and s > z if e = - .

 Then the consecutive reflections about the points p, q, r, s constitute a 4-
 element chain between 0 and z, since 2q - 2r = z-'y and 2s - 2p= |y. Also,
 as p, r G E£ , q G E, and s G E^, this chain is an 5"- chain. This completes
 the proof.

 Theorem 2.2. Let E C R be measurable , let S C R2 and suppose that
 for every x G E there is a 6(x) > 0 such that either (i-t,i + <)çS for every
 0 < t < 6(x), or (x - t,x + 1) G S for every 0 > t > -6(x). Then for almost
 every x G E there is a neighbourhood U of x such that for every y G U there is
 a 5-element S- chain connecting x and y.

 Proof. The Lebesgue outer measure will be denoted by A. Let D(H )
 denote the set of outer density points of H C R. Then D(H) is measurable,
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 A (H ' D(H)) = 0, D(D(H)) = D(H) and D(H) n D(K) = D(H n D(K)) for
 every H, K C R. Also, for every a, b G R we have D(aH + b) - aD(H ) + b,
 where aH + b = {ax + 6 : x G H}.

 Deleting a set of measure zero from E , we may assume that D(E ) = E.
 Let E+ , E~ ,E£ , E~ be defined as in the proof of the previous theorem. We
 shall prove that for every

 OO

 ■ E U(£>(£+)ux>(i;-))
 n=l

 there is a neighborhood U of x satisfying the requirements of the theorem. Since
 E = 'J^=l(E+ U E') and thus A (E ' U ^=1(D(E^) U D(E~ ))) = 0, this will
 prove the theorem.

 Let x = 0 be a point of full outer density of £7+ . Then there isa0<£<l/n
 such that, for every |y| < 6, each of the sets 2 E+ - y, ^E + | y, | E+ + |, and
 E H {E+ + I y) intersects the interval (0.9y, y) in a set of outer measure greater
 than 0.09y.

 We shall prove that for every y G (0, 6) there is a 5-element 5- chain from
 0 to y. (A similar argument shows that for every y G (- 6, 0) there is a 5-element
 5- chain from y to 0. Also, if 0 G D(E~) then there are 5-element chains from
 0 to the points of a small left neighborhood of 0 and from the points of a right
 neighborhood of 0 to 0.)

 The proof is basically the same as that of the previous theorem; only the
 selection of the number t is slightly more complicated.

 Let y G (0,¿) be fixed, and let B = {z G (0.9y,y) : ( z,y ) G S). Then
 A (B) > 0.09y. Indeed, if C = E+ D (0.95y, y) then B D 2 C - y and thus
 A (B) > A(2 C -y)> 0.09y.

 Therefore it is enough to show that there is a measurable set F C (0.9y, y)
 such that A (F) > O.Oly and for every z E F there is a 4-element S- chain from
 0 to z. Indeed, if this is true, then F fi B ^ 0. Selecting a z G F d B, we can
 connect 0 and z by a 4-element S- chain and adding (z, y) G S we obtain a
 5-element S- chain from 0 to y.

 Since

 x(eh (E+ + ^y) n (0.9y, y)) > 0.09y,
 there is an m and an e G {+, - } such that

 A^m n ( E+ + I y) D (0.9y,y)) > 0.04y.
 We shall prove that the measurable set

 F = (ïE + ly) n D ( Ie" + 1) n D n (E° + !v)) n (o-9!'' y)
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 satisfies the requirements. It follows from the choice of 6 that A (F) > 0.02y.
 Let z G F be arbitrary, we shall construct four points p, q, r, s such that the
 chain of reflections about the points p, q, r, s takes 0 to z.

 We have z G D(%E+ + 2.) and hence an elementary computation shows

 z e D('Ei + f + I»). Let

 A={ÌE + ï") n G®" + ï + I») n n (E " + !»>) n
 then z G D(A).

 Therefore we can choose t G A and define q and r such that they satisfy
 the same properties as in the previous proof. Since

 <ez>(£^n(j£ + |¡,)),

 t is a bilateral limit point of E^ D (E* + |y)), and we can choose s as before.
 The rest of the proof is the same.

 Remark 2.3. The proofs of these theorems give slightly more than just
 the existence of 5-element chains: they also give the direction of the chains. In
 the proof of Theorem 2.1 the open set G is constructed in such a way that if
 I is a closed interval contained in G then for every x,y G /, x < y, there is a
 5-element 5"- chain connecting x and y of the same direction (independently of
 x and y). Namely, if E+ (E~) is of second category in every subinterval of I
 then the chains go from x to y ( from y to x).

 Similarly, in Theorem 2.2, the direction of chains connecting x and the
 points y G U is either from left to right (if x G D(Eļ£ )) or right to left (other-
 wise).

 3. Parametric generalizations. In this section we generalize Theorems
 2.1 and 2.2 by replacing the pairs (x - t, x + 1) by (x + at, x + bt ), where a and
 b are different and non-zero real numbers. These theorems are stated below.

 Because of the similarity between these proofs and those of the last section, we
 only prove 3.1.

 Theorem 3.1. Let a and b be different , non- zero real numbers. Let E C R
 have the Baire property , let S C R2 and suppose that for every x G E there
 is a 6(x) > 0 such that either ( x + at, x + bt) G S for every 0 < t < 6(x),
 or (x + at, x + bt) G S for every 0 > t > -6(x). Then there is an open set
 G such that E ' G is of first category and for every [x, y] C G there is a 5-
 element S- chain connecting x and y. Moreover, for each component, I, of G
 the direction of the chains is the same. Namely, either
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 (i) for every [x,y] Gl, x < y, there is a 5-element S- chain from x to y, or
 (ii) for every [x, y] G I, x < y, there is a 5-element S- chain from y to x.

 Theorem 3.2. Let a and b be different, non-zero real numbers. Let E CR
 be measurable , let S G R2 and swppose that for every x G E there is a S(x) > 0
 such that either (x + at, x + bt) £ S for every 0 < t < 6(x), or (x + at,x + bt) £ S
 for every 0 > t > -6(x). Then for almost every x £ E there is a neighbourhood
 U of x such that for every y € U there is a 5-element S- chain connecting x and
 y. As for the direction of the chains , one of the following statements is true.
 (i) For every y £ U, y < x there is a 5-element S- chain from y to x, and for

 every y E U, y > x there is a 5-element S-chain from x to y;
 (ii) For every y G U, y < x there is a 5-element S- chain from x to y, and for

 every y 6 U, y > x there is a 5-element S-chain from y to x.

 Proof of Theorem 3.1. Replacing the pair (a, b) by (da, db), where d is
 any non-zero real number, affects neither the condition nor the conclusion of
 the theorem. Therefore we may assume that a = - 1.

 Let J denote the family of all open intervals I satisfying at least one of
 conditions (i) and (ii) of Theorem 3.1. As in the proof of Theorem 2.1, it
 is enough to show that if E is residual in an interval Io then X contains a
 subinterval of Io. We define E+, E~, E+, E~ as in the proof of Theorem 2.1
 (with the obvious modification), and suppose that E+ is of second category in
 Io- Then there is a subinterval I' G Io of length less than 1/n such that E£ is
 of second category in every subinterval of I' . Let the interval I2 be concentric
 with I' and of length 7|Ii|, where 7 is a positive constant depending only on b
 and is to be fixed later. We show that I2 € T.

 Let x,y E I2, x < y. We shall prove that if -1 < b then there is a 5-element
 S-chain from x to y. (It can be proved similarly that if - 1 > b then there is a
 5-element S-chain from y to x.)

 We may assume x = 0. Let t) be a small positive number to be fixed later.
 We shall prove that there is an interval J G ((1 - tf)y, y) such that for every
 z € J there is a 4-element S- chain from x = 0 to z. Since E* is dense in I',
 we can choose a w G li fi E+ and a 0 < k < 1/n such that w - k G J and
 w + bk = y. Then we connect 0 and z = w - k by a 4-element S- chain and
 complete this chain by adding (w - k, w + bk) € S. This will finish the proof of
 the theorem.

 We put c = 1 - 63/2(l + b). Since E is residual and E+ is of everywhere
 second category in Ą , by choosing 7 suitably, E fi (b3E+ + cy) will be of second
 category in ((1 - T])y,y). Therefore, by

 E n (b3E+ + cy) = 0 ((¿5 U E' ) n (b3E+ + cy))
 m= 1

 673



 it follows that there is an m and an e G {+, - } such that E ^ fl (b3E+ + cy ) is
 dense in an open interval J C ((1 - rf)y, y). Let z E J be arbitrary. We shall
 construct four points p, g, r, s G I' such that the chain of reflections about the
 points p , q , r, s takes 0 to z.

 Since E is residual and Ü7+ is of everywhere second category in I' ,

 is dense in J (again, supposing that 7 is chosen small enough). Therefore we
 can choose t G A fi J such that 't - z' < 'b'/m and t < z if eb > 0 and t > z if
 eb < 0. We put

 q = -p-(* - cy),
 and

 _ 1 + b z cy
 r~ _ V (1 + 6)6 b2 '

 then we have q G E and r G E+ .
 Since í?^n(63 E+ +cy) is dense in J, we can choose s G E^n^E^ļ +cy)r'J

 arbitrarily close to t. Let

 p = p-(s - cy)>

 then p G Eļ . We shall prove that s can be chosen in such a way that the reflec-
 tions about the points p, q,r, s constitute an 5- chain xo - 0, xi, X2, £3, £4 = z
 between 0 and z. Then we have x' = (1 + 6)p, x? = (1 + b)(q - bp ), X3 =
 (1 + b)(r - bq + b2p ). Since p G E+, q G E, r G E+, s G E we have to show
 that with a suitably selected s the following inequalities are satisfied:

 (1) 0 <p<~,
 n

 (2) 0 < q - xi < S(q) if q G E+ and 0 > q - x' > -f>(q) if g G E~,

 (3) 0 < r - X2 < - ,
 n

 (4) Is - X3I < - and e(s - £3) > 0.
 m

 Since q - xi = (1 + b)b~3(t - s ), (2) is satisfied if s is close enough to t and is
 on the correct side of t. Since s - x 3 = (z - s)/b and 1 1 - z I < |6|/m, it follows
 from the choice of t that (4) holds if s is chosen close enough to t.
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 By selecting 7 small enough, the construction gives 'p' < 1/n and |r - X2 1 <
 1/n. In order to show 0 < p and 0 < r - x 2, we shall have to choose 77 small
 enough, according to the following computation.

 Since z,t,s e J C ((1 - *?)y,y), we have

 y ^ w yi + &
 P 2(1 + b) ^ |6|3 ' q 2 I 6|3

 and

 2 + 6 I ^ ^ 1 ^ '
 r-2(ī+i)1'|<i-p-+(ĪT6)Ī6Ī>!'- + I ^ ^ '

 This implies, by r - X2 = r - (1 + 6)g + (1 + b)bp , that

 r-l2"2(TT6)|<Ji:',!''

 where K is a positive constant depending only on 6. Therefore, choosing

 0 < , < mio(5řaí_,

 0 < p and 0 < r - X2 are satisfied, completing the proof.

 4. Applications. Using the techniques described by Thomson in [13], [14]
 one can prove parametric versions of monotonicity, continuity, differentiability,
 etc. results. In this section we shall investigate one of these applications,
 a generalization of Uher's theorem ([16], Theorem 1, [14], Theorem 18 and
 Corollary 19). This theorem states that if / : R - * R, is upper or lower
 symmetrically semicontinuous at each point of a set E which has the Baire
 property (or is measurable), then / is continuous at nearly (almost) every point
 of E.

 It is interesting to note that the literal generalization of Uher's theorem is
 false. Indeed, this would say that if a function / : R - » R satisfies either

 (5) lim sup (f(x + bt ) - f(x + at)) < 0
 ť-0-

 or

 (6) lim inf(/(x + bt) - f(x + at)) > 0

 at each point of a set E which has the Baire property (or is measurable), then /
 is continuous at nearly (almost) every point of E. As we shall see later (Theorem
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 4.2), this condition in general does not imply even the measurability of /, even
 if E = R and the conditions (5) and (6) are satisfied bilaterally.

 However, for the symmetric case,

 limsup(/(x + t) - f(x - t )) = limsup(/(x -t) - f(x + t))
 t - *0 - t->0+

 = - liminf(/(x + t) - f(x - <)),

 and thus the condition of upper symmetric semicontinuity could equally well
 be defined as

 liminf(/(a: + t) - f(x - ť)) > 0.

 Generalizing in this way to the parametric case does lead to the appropriate
 generalization of Uher's results.

 A function / satisfying (5) will be called upper parametrically semicontin-
 uous from the left at x. Lower parametric semicontinuity from the left is defined
 by (6). Parametric semicontinuity from the right is defined analogously.

 Theorem 4.1. Suppose a,b are different, non-zero real numbers, E C R
 has the Baire property (is measurable), and f : R - ► R is lower parametrically
 semicontinuous at each point of E either from the left or from the right. Then f
 is continuous at each point of E apart from a first category set (a set of measure
 zero ).

 Proof. We shall prove that / is lower semicontinuous from one side
 and upper semicontinuous from the other side at nearly (almost) every point
 of E. This implies that / is continuous nearly (almost) everywhere on E as
 the following argument shows. Let E' be the set of points of E at which
 / is lower semicontinuous from one side and upper semicontinuous from the
 other side; then E ' E' is of first category (is of measure zero). Let f(x) =
 min(/(x), lim infy_»x f(y)), f(x) = max(/(i), limsup^j. /(y)), and put HPtq =
 {x G R : f(x) < p and f(x) > ç}. It is easy to see that if p < q then no bilat-
 eral point of accumulation of Hp¡q belongs to E'. This implies that E' D Hp<q
 is countable for every p < q. Since / is continuous at each point of the set
 E ' U {Hp>q : p < q, p,q are rational}, the assertion follows.

 Let e > 0 be fixed, and put Se = {(«, v ) : f(v) > f(u)-e}. If x G E and / is
 lower parametrically semicontinuous at x from the right, then ( x+at , x+bt ) G Se
 for every 0 < t < S(x). Similarly, if / is lower parametrically semicontinuous at
 x from the left, then (x + at, x + bt) 6 Se for every 0 > t > -S(x). Applying
 Theorem 3.1 (3.2), it is easy to see that for nearly (almost) every x G E there
 is a neighbourhood U of x such that either (i) or (ii) of Theorem 3.2 holds.
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 Obviously, if (i) holds then /(y) > f(x) - 5e for every x < y, y G U and
 /(y) < f(x) + for every x > y, y Ç.U. Therefore,

 (7) liminf /(y) > f(x ) - 5e and limsup/(y) < f(x ) + 5e.
 y-*x-

 Similarly, if (ii) holds then

 (8) lim sup /(y) < f(x) + 5e and liminf /(y) > f(x) - be.
 y- x+ y- *-

 This easily implies that at nearly (almost) every x e E, either (7) or (8) holds
 for infinitely many e = 1/n. In the first case / is lower semicontinuous from
 the right and upper semicontinuous from the left; in the second case / is lower
 semicontinuous from the left and upper semicontinuous from the right. This
 completes the proof.

 Next we show that (5) and (6) do not imply continuity, even if they are
 interpreted bilaterally.

 Theorem 4.2. Let a and b be non-zero real numbers and let a = b/a.
 Suppose that either a is transcendental, or it is algebraic and either a. or one
 of its conjugates is real and positive. Then there is a non-measurable function
 f : R - ► R such that for every x E R either

 (9) f(x + bt ) - f(x + at) > 0 (t € R)

 or

 (10) f(x + bt) - f(x + at) < 0 (t 6 R)

 holds.

 Proof. Let F = Q(ot) denote the smallest subfield of R containing a. If a
 is transcendental, then let s = |a|, and if a is algebraic then let s be any of its
 positive real conjugates. In either case there is a field isomorphism <f> : F - ► R
 such that <f>{a) = s > 0.

 Let U be a Hamel basis of R as a vector space over the field F. Then every
 i6R has a unique representation of the form x = Ylueu c*'ui where c„ € F for
 every u and cu = 0 for all but a finite number of u's. Let an element uo € U be
 selected, and let y(x) denote the coefficient of «o in the expansion of x. Then
 the function 7 : R - » F is additive, that is, it satisfies Cauchy's functional
 equation 7(x + y) = 7(2:) + 7(y). We put 6 = ^07; then 6 is also additive. Since
 the range of 6 is <1>(F) ^ R, it follows that 6 is not linear. As it is well-known,
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 this implies that 6 is not measurable and the set H = {x : 6(x) > 0} is also
 non-measurable.

 Let / denote the characteristic function of H. We shall prove that for every
 x G R either (9) or (10) holds. If c G F and yíR then 7 (cy) = c • 7 (y) by the
 definition of 7, and hence we have

 6(cy) = <j>(-y(cy)) = <f>{c)<f>{^{y)) = <f>(c)6(y).

 This gives

 (11) 6{x + bt) = ¿((1 - a)x + a(x + at)) = <j>( 1 - a)i(x) + <f>(a)6(x + at) =

 (1 - 5)¿(x) + s6(x + at).

 Suppose 0 < s < 1. It follows from (11) that

 1. 6(x + at) > 0 implies S(x + bt) > 0 whenever 6(x) > 0; that is, x + at G H
 implies x + bt 6 H if x G H, and

 2. 6(x + at) < 0 implies 6(x + bt) < 0 whenever 6(x) < 0; that is, x + at (£. H
 implies x + bt £ H if x ÍH.

 Hence, / satisfies (9) whenever x G H and (10) otherwise.
 If s = (f>(a) > 1, then <ļ>(lļa) = (f>(a/b) G (0,1) and hence, interchanging

 a and b we obtain (9) and (10) according to whether x (fc H or x G H holds.
 Finally, if s = (f>(a) = 1 then necessarily a = 1 and then both (9) and (10) are
 satisfied.

 The previous theorem shows that Uher's theorem cannot be generalized
 using (5) and (6) in an unrestricted way. However, it leaves open the possibility
 that such a generalization exists for some pairs (a, 6). In particular, if b/a is a
 negative rational number (as in Uher's case), there is some supporting evidence
 for this, as the following observation shows.

 Remark 4.3. Let a - b/a be a negative rational number, and suppose
 that / : R - + R satisfies either (9) or (10) at every x G R. Then f is constant.

 Indeed, we may assume that a and b are coprirne integers and a > 0 > b.
 If / satisfies (9) or (10) for every x then so does cif(cļx + C3) + C4 for every
 ci , . . . , C4 . Therefore, if / is not constant then we may suppose that /(0) = 0
 and /(1) = 1. Let A = {x : f(x) > 0}; then 1 G A and 0 ^ A. If x is such that
 (10) holds then x + bt G A implies x + at G A. Setting y = x + bt G A this
 implies x + j(y - x) G A for every y £ A. Therefore we have

 (12) (1-^+^CA
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 Similarly, if x satisfies (9) then we obtain

 (13) (1 - t)x a +^ACA. a a a

 If x G ~^ķA then the left hand side of (12) contains 0. Since 0 A, this implies
 that (12) cannot hold and hence (13) is satisfied for every x G ^zrļA. That is,
 we have

 (14) A + -A C A.
 a

 By considering x G ļ~^A, a similar argument shows

 (15) A+ 1A C A.
 0

 It easily follows from (14) and (15) that

 o , , b .
 A + n • tA , + k , • -A . C A

 b a

 holds for every n, k G N. By b < 0 < a this implies A - naA + kbA C A
 for every n, k G N. Since a and -b are positive and coprirne integers, the set
 {na - kb : n,k G N} contains every integer greater than |aò|. Therefore, by
 (na - kb)A C naA - kbA , we have A - m A C A for every m > |a6|. Let
 m > max(|a6|,2), then (1 - m)A C A - mA C A and hence (1 - m)2A C A.
 Since (1 - m)2 > m > |a6|, this implies (1 - m)2A - (1 - ni)2 A C A. Thus
 0 G A, which is impossible.
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