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Mean Value Properties for Symmetrically
Differentiable Functions

Section 1. Introduction and Notation

Functions considered in this note will be real valued functions defined on
the real line IR. Results obtained here will also apply to functions defined on
intervals. Such a function f : R — R is said to have a symmetric derivative,
f*(z), at the point z if

(@) = fim JEHR) =S =B

h—0t 2h

We say that f is symmetrically differentiable if f*(z) exists (infinite values
permitted) for each z € R, and say that a symmetrically differentiable func-
tion f possesses the Mean Value Property (MVP) if for each a < b, there
exists a £ € (a,b), such that

o= 101

One shortcoming of symmetric differentiation, when compared to ordi-
nary differentiation, is that continuous symmetrically differentiable functions
with finite symmetric derivatives need not possess the MVP, as evidenced by
the absolute value function. The purpose of this note is to observe some
conditions which may be placed on a symmetrically differentiable f under
which it will, at least, possess a weakened form of the MVP, and then to seek
additional requirements on f* which will guarantee that f has the MVP. In
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particular, we shall show (Corollary 1) that a symmetrically differentiable,
Baire 1, Darboux function f will possess the MVP if and only if f* possesses
what we shall call the weak Darboux property. We need to define a few more
terms and state some background results.

Recall that we say a function f : R — R is Darbouz (or f € D) if for every
a < b, and every C strictly between f(a) and f(b), there is a ¢ € (a,b) such
that f(c) = C. We shall say that a function f is strongly Darbouz (f € DY)
if f + 1 € D for every linear function {(z) = cz, ¢ € IR. Next, we shall say
that a function f is weakly Darbouz (f € D~) if for every a < b, every C
strictly between f(a) and f(b), and every § > 0, there is a ¢ € (a — 6,b+ 6)
such that f(c) = C. Further, we shall say that f is very weakly Darbouz
(f € D) if for each z € R,

lirtninff(t) < f(z) £ limsup f(¢).

—T toz

We pause to make the following simple observation.

Remark 1 The following strict inclusions hold:
DtrCcDCD CD .

Proof. Certainly, the only inclusion that might require verification is
the last. Assume that f € D~ and suppose there is a point z where f(z) <
liminf,,, f(¢). Let {t.} be a sequence of points converging to x for which
lim, f(tn) = L = liminf,, f(t). Without loss of generality we may
assume that each ¢, is greater than z. By the weak Darboux property we
know that for each n there is a point ¢, € (z—1/n,t,+1/n) for which f(c,) =
(f(x)+ f(tn))/2. Since {c,} converges to z and {f(cn)} converges to (f(z)+
L)/2 < L, we have reached a contradiction. Consequently, no such point
r exists. Similarly, there can be no point z where f(z) > limsup,_, f(t),
and hence f € D~~. Furthermore, the Baire 1 function g which assumes the
value 0 on (—00,0] and 1 on (0, 00) clearly belongs to D=~ \ D~.

In [2] A. M. Bruckner gives an example of a Baire 2 function f € D such
that f(z) + = ¢ D and hence f € D\ D*. Thus the first inclusion is strict.

Finally, the Baire 1 function g given by

1 ifz <0
g(z)=40 ifx=0
sin(l/z) ifz>0
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clearly belongs to D~ \ D.

As in [5], we say that a function f belongs to class M_; if it is measurable
and very weakly Darboux. This class M_; has previously found use in the
study of symmetric differentiation, in particular in monotonicity results. In
[10] C. E. Weil proved the following result, in which f°(x) denotes the lower
symmetric derivate of f at z; i.e.,

Theorem W Let f : R — R be a Baire 1, Darbouz function with f*(z) >0
for all z. Then f is nondecreasing.

Evans [5] extended this to the following:

Theorem E1 Let f : R — R be a function for which f*(x) > 0 for all x.
Then f is nondecreasing if and only if f € M_,.

A symmetrically differentiable function f will be said to possess the Quas:

Mean Value Property (QMVP) if for each a < b, there exist ¢; and &; in (a, b),
such that

(e < TO=T@ ¢ priey)

and will be said to possess the weak Quasz Mean Value Property (wWQMVP)
if for each a < b, there exist & and &; in [a, b], such that

ey < {820 < priey)

Section 2. Mean Value Results

We begin by stating the following two known results concerning mean
value type properties for symmetrically differentiable functions. The first is
due to C. E. Aull [1] and the second to Evans [5].
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Theorem A A continuous, symmetrically differentiable function possesses

the QMVP.

If no type of continuity condition is assumed, then we cannot expect to
get the QMVP or even the wQMVP as the characteristic function of the
origin demonstrates. We do have the following, however.

Theorem E2 A symmetrically differentiable function in class M_, possesses

the wQMVP.

Without additional hypotheses this latter result cannot be improved to
obtain the QMVP. For example, consider the function which is 0 for z < 0
and 1 for £ > 0, and let a = 0 and b = 1. However, if we assume that

the function in Theorem E2 has the strong Darboux property, then we can
recover the QMVP.

Theorem 1 A strongly Darbouz, symmetrically differentiable function pos-
sesses the QMVP.

Proof. Let a < b. We need to show the existence of ¢ and &; in (a,b),
such that

(e < TOZT@ ey

We shall establish the existence of {1 here and ¢; can be handled analogously.
Suppose that no such point ¢, € (a,b) exists. Then the function

F(z) = f(e) - 1O,

a)

is symmetrically differentiable with F*(z) > 0 for all = € (a,b), and F(a) =
F(b). This F is a Darboux function, being the sum of a strongly Darboux
function, a linear function, and a constant function. Furthermore, F' is mea-
surable. This follows from the result of J. Uher [9] that any symmetrically
differentiable function is measurable. (See also [8].) Theorem E1 may now
be employed to conclude that F is nondecreasing on (a, b) and since F' € D,
it must also be nondecreasing on [a,b]. However, since F(a) = F(b), this
means that F' is constant on [a, b], contradicting the premise that F*(z) > 0
for all z € (a,b). Hence, the point ¢, must exist and our proof is complete.
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We now look for a necessary and sufficient condition to place on the
symmetric derivative of the function f in the hypothesis of Theorem A or
Theorem 1 in order that QMVP can replaced by MVP in the conclusion. It
is fairly easy to see that requiring f* € M_,; is not enough, while requiring
f? € D is too strong. To see the former, notice that the function f(z) =
|z| has f* € M_,, yet f fails to have the MVP. For the latter, we shall
show the existence of a continuous function f which is finitely symmetrically
differentiable, possesses the MVP, and yet has a symmetric derivative which
fails to possess the Darboux property. To this end, let f be given by

if £ € (—00,0]
f(z) = { z?sin(1/z2) if z € (0, 00).

This f is differentiable everywhere except z = 0 where it is symmetrically
differentiable with symmetric derivative f*(0) = —1/2. It is easy to see that
this function has the MVP. Indeed, if the two points a < b satisfy ab > 0,
then we may apply the mean value theorem for ordinary derivatives; and if
a < 0 < b, then there are infinitely many choices for points ¢ € (0,b) such
that
2
f*(c) = f'(c) = 2esin(1/c?) — 2cos(cl/c ) _ f(bl)’ — af(a)'

However, f* clearly fails to have the Darboux property as f*(z) = —1 on
(—00,0), yet f2(0) = —1/2.

These observations, combined with Remark 1, make it seem plausible that
the weak Darboux property might be the condition we seek and, indeed, we
have the following theorem.

Theorem 2 If the symmetrically differentiable function f € D, then f
possesses the MVP if and only if f* € D~.

Proof. Let f € Dt be symmetrically differentiable, with f* € D—, and
let a < b. From Theorem 1 we know that there are ¢; and &; in (a,b), such
that

7(6) < TOT@ ¢ ey

Without loss of generality we assume that ¢ < &. Choose § such that
(& — 6,& + 6) C (a,b). Employing the weak Darboux property of f*, we
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know there is a £ € (&1 — 6, &2 + 6) such that

£(6) = f(b) f(a)

Hence f has the MVP.

Conversely, suppose that f € Dt is a symmetrically differentiable func-
tion which possesses the MVP. Let a < b and suppose that f*(a) < C <
f*(b). Define the function G by G(z) = f(z) — Cz. Then G is a Dar-
boux, symmetrically differentiable function which has the MVP. Further-
more, G*(a) < 0 and G*(b) > 0. Let § > 0. Since G*(a) and G*(b) have
opposite signs, G clearly fails to be monotone on (a — é,b+ §). This fact,
together with the fact that G is a Darboux function, implies that there exist
two points z; and z; in (a — 6,b + 8) such that G(z,) = G(z2). Applying
the MVP, we obtain a point ¢ € (z1, z2) such that G*(¢) = 0. Consequently,
f*(c) = C, and it follows that f* possesses the weak Darboux property.

Corollary 1 If f is a Baire 1, Darbouz, symmetrically differentiable func-
tion, then f possesses the MVP if and only if f* € D~.

Proof. If f € B,D, then f € Dt as it is well known that the sum of a
B; D function and a continuous function is B, D; e.g., see [2].

Corollary 2 If f is a Darbouz, finitely symmetrically differentiable function,
then f possesses the MVP if and only if f* € D~.

Proof. Z. Charzynski [3] showed that if a function has upper symmetric
derivate less than +o0o everywhere, then it is continuous at every point with
the exception of a scattered set, where a scattered set is a set having no dense
in itself subset. (See also [6].) Such a function must be a Baire 1 function
and we may now apply Corollary 1.

In light of the fact that a symmetrically differentiable function is differ-
entiable almost everywhere [9], it might be anticipated that the point ¢ of
the MVP in Theorem 2 or Corollaries 1 and 2-can always be chosen to be a
point of ordinary differentiability. However, this is not the case, even if f is
continuous and f* € D as the following construction shows.
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Remark 2 There is a continuous, symmetrically differentiable function f
with the following properties:

1. f*e€D.
2. f is even, i.e., f(z) = f(—z) for every z, and hence f*(0) = 0.
3. The ordinary derivative never assumes the value 0.

Proof. For each natural number n let I, = [1/(n+1),1/n]. Let g, .(z) =
n(z—1/(n+1))+1/(n +1), and gon(z) = (1/n)(z — 1/n) + 1/n; i.e., the
graph of ¢, is a straight line having slope n passing through the point
(1/(n+1),1/(n+1)) and the graph of gz is a straight line having slope 1/n
passing through the point (1/n,1/n). Define the function g by

T ifz>1
—_— min{glsn(z)’ g2,n($)} if T G In
9() = 0 fz=0
9(—=z) ifz <0.

This function g is not differentiable at the origin, having —1 as a left
derivate and 1 as a right derivate there. However, g is symmetrically differ-
entiable. Clearly, ¢°(0) = 0 and the only other places in (0, 00) where g fails
to be differentiable are at the endpoints of each I, and at the point z, € I,
where g1 n(zn) = g2,n(zs). At each of these points g has a finite left and right
derivative and hence a symmetric derivative. For every z > 0, ¢°(z) > 0
and in every open interval having 0 as a left endpoint ¢g* assumes arbitrarily
large and arbitrarily small positive values. The only shortcoming of g is that
g° ¢ D. We clearly may remedy this situation by “rounding” the corners
of the graph of g on each I,,, to obtain a differentiable function f on (0, 00)
with f'(z) > 0 for all z > 0. We set f(0) =0, and f(z) = f(—z) for z < 0.
Then f will have all the required properties.

Before concluding this paper, we wish to take note of the analogues of
the prior results in the situation where symmetric differentiation is replaced
by approximate symmetric differentiation. A function f : R — IR is said to
have a approrimate symmetric derivative, f;,(z), at the point z if

f(z+h)— f(z— k)
o+ .

:p(m) =ap-— hmh—» oh
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We say that f is approzimately symmetrically differentiable if f; () exists
(infinite values permitted) for each z € IR. H. Croft’s [4] familiar example
of a Baire 1, Darboux function which is zero almost everywhere, but not
identically zero , provides an example showing that the direct analogue of
Corollary 1 will not hold, as this function will clearly have approximate sym-
metric derivative zero everywhere. If, however, we strengthen the Baire 1,
Darboux condition to approximate continuity, then the following two theo-
rems result.

Theorem 3 If f is an approzimately continuous, approrimately symmetri-
cally differentiable function, then for each a < b, there exist & and & in

(a,b), such that
f(b) (a)

ap(€1) < < fap(&2)-

Proof. This result may be confirmed by following the proof given for
Theorem 1 except that instead of employing the monotonicity Theorem E1,
one should use the much deeper monotonicity result of C. Freiling and D.
Rinne [7], which states that if an approximately continuous function has a
non-negative lower approximate symmetric derivative everywhere, then the
function is non-decreasing.

Having made this observation, the next result follows precisely in the
same manner that Theorem 2 followed from Theorem 1.

Theorem 4 If f is an approzimately continuous, approrimately symmetri-
cally differentiable function, then the following are equivalent:

1 f3, €D .
2. For each a < b, there ezists a £ € (a,b), such that

+(6) = f(b) f(a)

Corresponding to Remark 2, we wish to observe that the point ¢ of the
previous theorem need not be a point of either approximate differentiability
or of symmetric differentiability.
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Remark 3 There is a continuous, approzimately symmetrically differen-
tiable function f with the following properties:

1. f2,€D.
2. There is a set S of positive numbers having right density one at 0 such

that f(z) = f(—=z) for all z € S, and hence f;,(0) =0.

3. Neither the approxzimate derivative nor the symmetric derivative of f
ever assumes the value 0.

Proof. If S is a set, we shall let —S = {z : —z € S}. For each
natural number n > 3 let J, = [2—,,14-1-, 21—"] = [an, e,). We divide J,, into two

subintervals, H, = [2—,,1;,-1-, s + 2117] = [an,dyn] and I, = [2,.—l+f + 3 2%] =
[dn, €n]). We set

o lH|_ 1
n = |Jn| ~ 9n-1’
| Ha| 1
3n - = Py
|I,.| 2n-1 _ 1

= 9l = (L4 o) ||
_|dn] — Ta)llInl _ g2n-2 _ on-1 _
= ol ol =2 2 1.
We label two interior points of H,, each close to an endpoint as b, = a, +
rn|Hyn| and ¢, = d, — rp|H,|. Note that a, < b, < ¢, < dy < ep.
We shall first define a function g. We set g(z) = 1/8 for all =z with
|z] > 1/8. We define g on each I, by

9(z) = su(T — ep) + €4,
and on each —I, by
9(z) = g(—=).

Since ;23 I, clearly has right density one at the origin, regardless how we
define g on {0} U U 3 Ha, g5,(0) = 0.
On H, we define g by

(z) = sn(z —ay) +an if z € [ap,cq),
BEVZN talz — dn) + €n — |Ho| if z € [cn, da),
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and on —H,, by

(z) = —su(z + dy) + en — |Hy| if z € [—dy, —by),
g\ = —tu(z + an) + an if z € [—bp, —ay].

Finally, we set g(0) = 0. On each J, and each —J,, g is a continuous,
piecewise linear function. On each open interval having the origin as a left
endpoint, ¢g* is positive and takes on arbitrarily large and arbitrarily small
positive values; and on every open interval having the origin as a right end-
point, g* is negative and takes on arbitrarily large and small negative values.
Since g;,(0) = 0 and g(z)/z > 1/2 for every z > 0, it follows that g is
not approximately differentiable at 0. To see that g is not symmetrically
differentiable at the origin, it will suffice to show that

. g(=cn) — g(cn)
T 70

Toward this end, note that
1 1 1 1 222 4 on-1

T g T T gniga T T a1
1 1 22 +1
g(cn) = ont1 + 93n-1 = 923n-1
and
_ 1 1 1 1 1 2mt_omlg
9(=cn) = 9n ~ 92n 9n-1 _ | 9n-192n > 23n-1 )
Hence,

g(c") - g(_cn) < 22n—3 — 22n-2 + 2n-2 + 1
20,, 22n-2 4 9n—-1 _ | ’

1
2

and since this latter fraction tends to —7 as n — oo, g is not symmetrically
differentiable at the origin.

This function g has all the properties mentioned in the statement of this
remark except g3, fails to have the Darboux property. This, however, is easily
remedied by rounding the corners of the graph of g on each J,, and —J, to
obtain a function f which is differentiable on both (—o00,0) and (0, c0). This

function f will then have all of the stated properties.
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