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 Abstract

 By similar methods as Calderón [1] and Stein [10], we prove some
 restriction theorems on weighted potential spaces when the weight
 satisfies Muckenhoupt's Ap condition. We then construct potential
 spaces of mixed norm and find that mixed norm potential spaces are
 indeed a natural object in the study of restriction theorems. With the
 help of mixed norm spaces, we obtain a better version of restriction
 theorem.

 § 1. Introduction

 In this paper, we discuss some restriction theorems on potential spaces.
 S will always denote the Schwartz space and C denotes various positive
 constants which may differ even in the same string of estimate. If 7 is a
 multi-index, 7 = (71,72, ••• ,7n) € we will denote £"=1 7 j by | 7 | and
 D 7 = (gfr)71 • • • By 7 > 7°, we mean 7,- > 7? for all 1 < j < n.
 Moreover we write 7 > 70 if 7 > 70 and 7 ^ 70. Let Q be a cube (or ball).
 Then CQ will always denote the cube (or ball) with same center as Q and
 C times its edgelength (or radius). If 1 < p < 00, we will let p' = p/(p - 1).
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 We write w Ç. Ap when w satisfies Muckenhoupt's Ap condition [7]. By
 / E ££,( Hn), we mean / is Lp integrable with respect to the measure wdx.
 Moreover, for 1 < p < oo, L^ fc(IRn) denotes the space of functions having
 weak derivatives of all order a, |a| < k and satisfying

 II /II*. ' E 11^/««,».,= S </K.l Vf I" du,)'" < oo ' o<H<fc o<W<*

 where D'1 f is the weak derivative of / of order 7.
 Following E.M. Stein [9], we define for each a > 0 and x G IRn,

 JT e-*WV'e-"4*«-<- )/2y . (1.1)

 We will write = Ga,n when there is no danger of ambiguity. For any
 a > 0 and / € i/J,(lRn), 1 < p < oo, w G Ap, we can define

 j.(/) =•'...(/) ={/°â{,=õ>0
 Next, following N. Miller [6], we have the following definition of weighted

 potential spaces.

 Definition 1.2 Let 1 < p < oo, w 6 Ap, a > 0. We write C?w i0((lRn) =
 Ja{Ll (lRn)) with norm ||/||£& a = if / = J<*9- 1
 Note that this definition is just the weighted version for potential spaces

 C?a ( see [9, Chapter V, section 3] or [1] ). A. P. Calderon [1] proved that
 Theorem A Let 1 < p < 2 and a > (n - m)/p. If f e ¿£(mn) and lRm
 is an m- dimensional subspace of IRn, then f coincides almost everywhere on
 IRm with a function in £jģ(IR,m) where ß = a - (n - m) / p. The restriction of
 f to IRm induces a continuous mapping o/£j(ïïln) to £^(lRm).
 Later, E.M. Stein improved Theorem A by showing that the restriction

 mapping is indeed a continuous mapping of ££(IRn) into certain subspace
 of £jģ(IR,m) (see [10]). Our purpose is to extend Theorem A to weighted
 potential spaces when the weight satisfies the Muckenhoupt Ap condition.
 First, we state some simple facts on weighted potential spaces in section 2.
 Then we prove some restriction theorems on weighted potential spaces in
 section 3. Finally, we establish potential spaces of mixed norm and discuss
 restriction problems on mixed norm potential spaces. With the help of these
 spaces, we improve results in section 3.

 One could also define weighted potential spaces when p = 1 and w € A' ' see [8].
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 § 2. Weighted potential spaces
 In this section, we collect some elementary facts for easy reference. Most of
 the fact stated in this section can be found in [8], [6] or [3].

 First, let us state some simple properties from [9] and [1].

 Proposition 2.1 For each a > 0,
 (a) Ga(x ) 6 L'Win),
 (b) Ga(x ) = (1 + 47r2|x|2)~0'/2 where Ga is the Fourier transform of Ga,
 (c) G a is radial and decreases as |x| increases,
 (d) |Ga(x)| < C/|x|n-a for all x 6 a < n,
 <y ^ + <<k|-n+") «»III - 0.
 Next, we will state a well-known lemma; see for example, Theorem 9.17

 in [12].

 Proposition 2.2 Let k(x) be nonnegative and integrable on lRn and suppose
 k(x) depends only on ' x ' and decreases as | x | increases. Then for all non-
 negative measurable functions f ,

 /.M*)<C||*IIŁ,

 with C independent of f and k. Here f* is the Hardy-Littlewood maximal
 function of f.

 It follows from these two propositions that Ja(f) is well-defined for / 6
 //^(IR") when 1 <p<oo,ie€ Ap , since

 lie?. » /11^ < Clini« < C||/||iE (2.3)

 by [11, Theorem IX.4.1]. Note that C is independent of a as ||Ga||¿1 = 1.
 Thus, indeed Ja(f) €

 Next, let us state a fact from [4] about singular integrals.

 Proposition 2.4 Let K be a real function which satisfies the following three
 properties:

 (a) IWL < C ( K is the Fourier transform of K .)
 ß) |/f(i)| < Cl'z'"
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 (c) I K(x) - K(x - y)' < C'y'/'x'n+l for |y| < |x|/2.
 If w € Ap and 1 < p < oo, then

 II* * /»«(W) S /<"• / 6 KW)-
 The following lemma is indeed a consequence of the proof of Lemma 2 in

 [9, Chapter V] . The reader can also find the details in [3].

 Lemma 2.5 There exists a finite measure fi on lRn such that its Fourier
 transform is

 A _ 2ir'x'
 (1 + 47T2|a?|2)1/2

 Moreover

 II/* * g''Lp < C''9Ì'lp ifl<p<ooandweAp.

 The next two facts can be found in [8] or [3].

 Proposition 2.6 Let 1 < p < oo, w G Ap and a > 1. If f £ £j,iCr(lRn) then

 f'ifj e jCw,«-i(E'B) for ałł J- Moreover,

 11/11*, 1 + Žll|flĻ. w,a-l < dl/II*, *^wta ■ ti/,a- 1 j=l UXj w,a-l *^wta

 Theorem 2.7 If k is a positive integer and 1 < p < oo, w € Ap, then
 ££,fc(IR,n) = L^ fc(lRn). Moreover, their norms are equivalent.

 § 3. Restriction theorems

 Let V* : IRn-1 -* 1R and ÍÍ = {(#,^(2:)) : x € IR"-1}. By a weight w , we
 mean a non-negative locally integrable function on IR". By abusing notation,
 we will also write w for the measure induced by w. Sometimes we write dw
 to denote wdx. Let iu be a weight in ïïtn_1. We denote L^{ÇÍ) to be the
 collection of all functions / on Í1 such that

 = (jjp-i 'f(^(x))'"w(x)dx)l/p < °°-
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 Moreover, let tļ> € Cfc(lRn_1) and Dyiļ> are Lipschitz continuous for all
 7, ļ7ļ < k - 1}. Then we said a locally integrable function f on il has a
 weak derivative of order 7, I7I < k, if there is a locally integrable function
 (denoted by V f) such that

 Jju n-1 = í-1)1**1
 for all <p € Cq( fi). Also, we let Lvw fc(f X) be the space of functions having
 weak derivatives of all order 7, I7I < k and satisfying

 0<|7|<fc f < ~ 0<|7|<fc

 Now, let us give a sufficient condition for restriction theorem on weighted
 potential spaces.

 Theorem 3.1 Let 1 < p < 00 and let w G -/4p(IR,n), wi G j4p(lRn_1). Sup-
 pose that ip : IRn_1 - ► IR is continuous. Furthermore, assume that there exist
 a, a* G IR, a < a* and Ci,Cļ > 0 such that for 6 > 0 and x,y G IR"-1,

 (/ W^y; ^1 'y) V >' ' J ) - l/(p - 1) (/ W^y; V >' ' ) d( < W2 + C2Sa'/2. (3.2) ^1 'y) J

 If f G £Pa(]Rn), a > max(l - p-,0), then f coincides almost everywhere on
 f Ì = {(x, ip(x)) : X G IRn_1} with a function in ¿^(17). The restriction of f
 to Ū induces a continuous mapping o/£{ļ,a(IRn) into 1^(0).

 Proof First note that by Minkowski's inequality and (3.2), we have

 (£ o.(, -
 < Q /°° e-*l®-»l2/«c-í/4T¿(or-n)/2/¿a/2p'
 ~ JO S

 = CGß,n-i(x - y) + CGß», n-i(x - y) (3.3)

 where ß = a - 1 + aļp' > 0 and ß* = a - 1 + a*¡pf > 0. Now, given
 / € *et 9 € £{¡/lR.n) such ^at f = G<x* g- Then

 f(x, tļ>(x)) = J f IT-1 J f Ga(x - y, iļ>{x) - i )g(y , £)d£dy, x G ]Rn_1. J IT-1 J -00
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 Now let G = Gß>n- 1 + Gß*<n-i. Note by Holder's inequality, (3.3) and (2.3),

 (/ «/lRn SÍ J]RTl~1 ií J G°(x -y>ý(x)- 0'9(y,0'dtdy)pwi(x)dx)1/p «/lRn J]RTl~1 J -oc

 ( J Ga(x - y, x¡)(x ) - ty' d£flv' dy}pw1(x)dx)ìlp

 È (jC ls(*-

 This concludes the proof of the theorem.
 Remark 3.4

 (a) The conclusion of Theorem 3.1 involves a but not a*. It shows that the
 behavior of the integral of (3.2) as 8 - ► 0 is more important. When
 6 -* oo, we need only to assume that the integral does not grow too
 fast. Indeed, we could even allow the integral to grow exponentially as
 S - ► oo; we could replace (3.2) by

 f°° e-*p''*(x)-i'V6 f W(y, fl ' < Cļ6a/ 2 + C2¿aV2eC3í
 j-oo ' w'{y) J

 for some C3 < j//4ir with a, a*, Ci, C2 as in (3.2).

 (b) (3.2) holds for some a < 1 when Ü = IRn-1 and w(x,y) = wi(x)w2{y),
 X € Rn_1,j/ G IR, Wļ G ¿4p(IR). For the details, see [3] or the proof of
 Lemma 4.20.

 (c) In the case w = w' = 1 and ii = ]Rn-1, we observe that a = 1 in
 the previous theorem, and hence the restriction of functions in ££(IRn)
 induces a continuous mapping of £g(lRn) into Lp(IRn-1) when a > 1/p.
 This is indeed just a partial result of Theorem A in the introduction.

 Unfortunately, under the assumptions of Theorem 3.1, we do not know

 whether the restriction of Q(lRn) functions is in a+0/p,_1(fì) as in the
 case when w = w' = 1. However, if a + o/p' - 1 > k for some k € IN, we
 have the following theorem.
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 Theorem 3.5 Under the assumptions of Theorem 3.1, assume further that
 a - k > max(l - a/p',0) for some k G IN andxf> G C*(lRn-1) with |D'V| M
 for all I7I < k. Then for f G a(IRn), / coincides almost everywhere on
 fi with a function in L^,ltk( fi). Moreover, the restriction of f to fî induces a
 continuous mapping from C*, a{ lRn) to L£,l fc(fl).

 Proof We will only prove the theorem for k = 1. Thus, suppose that
 a - 1 > max(l - a/p',0). Let us define the restriction of / G ££,,<,-1 (lR-n) by

 Rf(x) = f J- [ G a- i(x - y, rļ>(x) - ( )g(y , t)d£dy for x G IR"-1 JR"-1 J- 00

 where Ja-ig = f.
 Claim:

 ^ + %r-R&- for all 1 < i < n and / G C'WJ lRn). CsXi CJXļ C/Xj 'sXfi

 First note that the claim is clearly true when / G S. In general, if / G
 let us choose {/m} C S with fm f in ££, „(ET) and hence §ķ -►

 in £^ Q_i(IRn) by Proposition 2.6. Note that since G £^ a_i(IRn) and

 a - 1 > max(l - a/p',0 ), we have R§1- G I»J,1(lR.n-1) and R^j- - ► R§1¡ in
 (IRn) by Theorem 3.1. Note that is bounded by hypothesis, it is now

 easy to see that our claim holds.
 Hpnrp

 IIÄ/IU ,scE N<i '

 This completes the proof of the theorem.
 Remark 3.6 For the case w(x,y) = ioi(x) x w2(y),x G lRn-*,î/ G IR* such
 that Wļ G Ap(Hn-fc) and Wļ G Ap(IRfc), better results are obtained in the
 next section.

 § 4. Potential spaces of mixed norm
 In this section, we define Sobolev spaces of mixed norm. To simplify the
 notation, we will only define mixed norm with two variables. However, one
 can easily extend the ideas to mixed norm of I variables, / G IN.
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 Definition 4.1 Let p = (pi,/>2), k = (k^kļ) and let ñ = (ni,n2) with n =
 rii + riļ. Also let w(x) = wi(xi) X W2(xļ) x = (xi,xļ),xi G IR"1, £2 € IR"2.
 Then Z/ £_(]Rn) will denote the space of functions having weak derivatives
 of all order 7 = (71, • • • , 7 n) such that

 7i + * * * + 7ni < &1 j 7m +1 + * • • + 7n < kļ (4-2)

 and satisfying

 11/11 11 e = E ll^/ll , <00 11 Lp e . (Rn) ' *ri L£(]R.n) ^ , '
 ' 7er (*, a) L£(]R.n) ^ '

 where T(k,ñ) is the collection of all 7 which satisfies (4-2) and

 It follows from the proof of Theorem 3.1 in [2] that Co°(lRn) is dense in
 -Ł^,fc(IRn). We will now show that Co°(lRn) is also dense in Sobolev spaces of
 mixed norm.

 Proposition 4.3 Let p, k and ñ as above. Assume further that 1 < pi <
 00, w¡ G Apt( IR™'). Then Co°(lRn) is dense in Z/ - . (IRn).

 Proof Let / 6 LPw ^ .(]Rn), by repeated applications of Lebesgue's dominated
 convergence theorem, observe that given any e > 0, there exists a compact
 set K such that

 w,k,ny '

 Next, let xfp € such that Xk - ^ - XK, where K' = {x 6 IRn :
 dist(x,K ) < 1}. Moreover, let us assume 'D^ip' < M for all 7 6 T(k, ñ).
 Let po = max{pi,p2} and p0 = (poipo)- Now, let us choose <p G Cq° such
 that <f is radial, nonnegative, decreases as |a:| increases and /Rn (p = 1. Then
 by standard arguments (see for example [2]), we have

 ¥>«*/->/ in L™kh(K') as t -> 0

 where <pt = t~n<p(x/t). Hence there exists t > 0 such that

 II* •/-/!„. /-/I <e.
 w,k,ñK tv,k,ñ '
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 Hence for such i,

 < IK v, * /W> - /V-IĻ, + II/V» - /ll^
 w,k,ñ ' w,k,ñ '

 < CAfll^. , / - /II (k,)+CM||/|| ' X ' SC«. w,k,ñ ' tv,k,ñ X '

 This concludes the proof of this proposition.
 Let ã = (ax, atļ) and ñ = (riļ,n2). We define

 <3s,ñ(z) = Gaunì(xi)Gc,2,n2(x2) where x = (xi,x2),xi G Hni,a;2 € IT2.

 (See (1.1) for the definition of Gai<ni. )
 For simplicity, from now on, in most cases, we will assume n = 2, n' -

 n2 = ' and ã = (0*1,0:2). We now write Gã instead of Gã,n and define

 Gã * f{x) if ai, a2 > 0,
 j. f(x) - j. . t(x) _ < f(x) ^ «i = a2 = 0,

 fnGaiixi-yi)f(yuX2)dyi if OT2 = 0, > 0,
 > Ir GQ2(x2 - y2)f(xi,y2)dy2 if <*i = 0,of2 > 0.

 Next, let w = wi x w2, 1 < Pi,P2 < and W{ G APi(lR) for i = 1,2.
 Recall that by / G L£,(IR2), p - (pi,p2), we mean / is measurable on IR2 and

 H/H^ = (/(/!/(*., *a)r Wi(xi)dx')p2lpiw2{x2)dx2)1lip 2 < oo.

 The following lemma is an easy consequence of (2.3) and Minkowski's
 inequality.

 Lemma 4.4 Let ai,a2 > 0 and let Pi,Wi be as above. Then

 WW^ < C''f''LÍ v/ € Li(ì R2)

 where C is a constant independent of ã and f .

 Lemma 4.5 If f G Z/£,(IR2),1 < pt- < oo ,iü¿ G APi and (f G <S(IR2) then
 ftp e i'(]R2)-
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 Proof By Holders inequality, it suffices to show that S C L' when u =
 Ui X u2, with Uļ,Uļ doubling weights in 1R. First, note that there exists
 Co > 0 such that U{(2Q) < CqUí(Q) for all intervals Q in IR, i = 1,2. We
 now choose m such that Co < 2mpi for i = 1,2. Observe that if (p £ S, then
 there exists A > 0 such that

 |v?(a;i,X2)| < min(A, ^ , - - ¡-^ - ¡- , ^ ).
 |®x|m , |xi|m|x2|'n ¡- , 'x2'm

 Hence,

 < CÍ (/ A"du,)"'ndu, + C Í (/ , A"' du, )"*<■< du2
 V|r2|<l Ąri|<l J'x2'>l Ąn|<l , |x2|mpi

 + C f ( f - - ¡^-

 + C ( ( f ļ- ^
 J'*2'<i J'xi'>i ļ- |a;i|mpi '

 < oo.

 We will only show that

 I = / ļ - J - dUļ < oo.
 A* il>i ļ ki|mpi

 To see this, let Qi = {x € IR. : |x| < 1}. Then
 oo 1 r nk+ 1

 it

 ^ ^0^(2^7) «(9l)<00.
 Next, we also have

 Lemma 4.6 Ifgììg2 € £P(1R2),1 < p, < 00, to,- G APi and Jàgx = Jãg2 for
 some õl, then g' = g2 a. t..

 Proof First let <p',<p2 G <->(IR), observe that

 J J (Jagi(xi,x2))ipi(x1)<p2(x2)dx1dx2

 ~ J J 9i(xi,x2)JQl<pļ(xļ)Jai<p2(x2)dxidx2
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 and

 //< Jä92(xi,x2))<fi(xi)(p2(x2)dxidx2

 = J J 9t{.X')X2)Jax^P'{x')Ja2<P2(x2)dx'dXi.

 Hence for almost every x 2,

 J 9i{xi,x2)Jai<pi{xx)dx1 = J g2{xi,x2)Jaiv>x{xl)dxx

 since JQ2S{JR) = 5(H) (see for example [9]). Thus g' = g2 a.e..
 We can now define potential spaces of mixed norm.

 Definition 4.7 Let 1 < p,- < 00, tu,- G APi,oti > 0 for i - 1,2. We write
 = MLÍ(®?)) with norm ''f'',P = H^IIrP *ff =

 tu.ã

 Jag-

 Let us state some simple properties regarding mixed norm potential spaces.

 Proposition 4.8 Ifl < p¡ < 00 and W{ G APi for i = 1,2, ż/ien
 , C and ll/ll < 11/11 ř */<*, < ßi for all i,
 ' tü,ä tyj

 (b) Jß is an isomorphism of Cvw & to CPw _+^.

 Next, similar to Theorem 2.7, we have

 Theorem 4.9 If ki 6 2Z+,1 < p ,• < 00, to,- G APl /or i = 1,2, then =

 Z/ £. Moreover, their norms are equivalent.

 First, similar to Proposition 2.6, we have the following lemma. Note that
 the proof can be done in a similar way as [10, Lemma V.3], using the fact
 that the Riesz transform is bounded on if w G Ap and using Lemma 2.5,
 Minkowski's inequality and Propositions 2.4 and 4.3.

 Lemma 4.10 Let 1 < pi < 00, w G AVi. If f G ££,i<5(1R2), then G
 CÍ,(ai-i,a2) when <*i > 1 and§L e £«.(«, ,aa_i) when a2 > 1. Moreover,

 + ^o "*£2 sen/n IsXl u>,(aļ- 1,<*2) "*£2 tx;,(ai ,a2~l)
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 Proof of Theorem 4.9 Applying Lemma 4.10, we note by induction that

 it suffices to show that if / G iŻ ^ then / G and ||/|| ř < C||/||¿f. .
 w,k w,k

 Let us choose «1,52 G 2Ł+ such that A;, < 2s,- and let r,- = 2st- - k¡ for ¿ = 1,2.
 If r = (ri, T2), then

 II D' MIT f)^ W < C||£>VIIł( W < CII/IĻ for ß < f and 7 < k. (4.11) W W w,k

 Next if a,- < 2s j, let us choose ß < ř, 7 < k such that ß + 7 = a. We claim
 that = D^JĄD^f) (as distributions) for all / G The claim is
 clearly true when / G S. Since S is dense in LPw we can prove the claim by
 taking the limit and using (4.11).
 Next

 H«1

 < E Ca''D°Jff''
 ai<2si,a2<2s2 w

 < Ē ''D<>MDif)''Lf < CH/IĻ . (4.12)

 Finally, let us observe that if / G ■££,Jt(]Rn), then J¿( 1 - (§|¡-)2)ai(l -

 (g|j) )'2Jřf = f a.e.. This is clearly true if / G Cq°. In the general case, let

 us choose a sequence {/m} in Cq° such that fm - > / in Lw,k and /"»"*/ ae •
 Then by (4.12), the conclusion follows. This concludes the proof of Theorem
 4.9.

 It follows from Theorem 4.9 that Cvwkļ4rki C ££,,(*! ,fc2) w^en P = (PiP)
 and kļ^kļ G 7L+. Moreover, we also have the following theorem.

 Theorem 4.13 Let p = ( p,p),w = wi x w2 and 1 < p < 00, W{ G Ap for
 i = 1,2. Then CiiQl+0¡2 C ££,i(ai_eiiaj_ej) for any eue2 > 0.

 Proof Let / = Jai+a2g with g G S. Then

 f{x i,x2) = (1 + 47r2(|ii|2 + |®2|2))"(oi+0,2)/2^(®i,a:2)
 = (1 + 47r2|xiļ2)"^0,1_ei^2(l + 47r2|x2|2)~^°'2-£2^2 x

 644



 (i+^MV^i + î^fer-'x
 (1 +

 We now let

 *,(*.,*=) - (1 + + 1ffiļp)-'>,
 and

 ¿2(*„ X,) = (1 + + 1ffiilV"°'/ł-
 Then as in [1, pp 41-43], we have (note that we may assume ai,a2 < 2)

 Üfi(zi,z2) < Ce~|iC2|/2,r|x2|ei min(|x2|~2, ļxi|"2)

 and a similar estimate for K2. Thus if a = (ai - £i, a2 - e2),

 f = * (K2 * g)) VgeS.
 Let us note that

 ''Jã(K1*(K2*g))''Lt < C''K1*K2*g''Lt < C''K2*g''^ < C''g''Lp- (4.14)

 To see (4.14) holds, let us just demonstrate why ļļĀi * <?|| Lw <C||j||,,. Lm The Lw Lm

 rest of the proof of (4.14) are about the same. First observe that for each
 y2 , Hi(yi,y2) = e~^^2ir x|y2|ei min(|yi|~2, |y2|- 2) is radial, nonnegative and
 decreases as |yi| increases, we can apply Proposition 2.2 and Theorem IX.4.1
 in [11] to see that

 II J Ki(yi,y2)g(- - yi,x2 - y2)dyi''Lņ

 < C''Hx(',y2)''Ll ||^(', x2 - V2)''Ln

 < Ce-M'2*'y2'«-^g(-,x2-y2)''
 *->w'

 We now apply Minkowski's inequality and proceed as before,

 n*..3||lS

 - ~~ yi'X2 ~ y^)dyi''Ln dy2)P2w2(x2)dx2)1^pì
 < CM¡1
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 since / e lf2l/27rļj/2 ļc» 1dy2 < oo.

 But 5 is dense in L? and ''Ja(K i * K-ì * <7)|LP < CIMLp > ^ follows that
 L/% v ¿¿w

 f = Jq(Ki * Ki * 9) for all g G Lvw such that / = Ja^a2g- It is now easy to

 see that if / G CltQl+Q2 then / e £^(ai_ei aī_Ē2) for any ei,e2 > 0.

 Remark 4.15

 (a) Unfortunately, we are unable to show that C?w>a 1+0(2 C ££,(aiaz) al-
 though it seems very likely that it is true.

 (b) Although we have only studied the case n = 2 and ñ = k = (1, 1), it is
 easy to see that all results proved above holds for arbitrary ñ and k.

 Next, we also have Sobolev embedding theorem for mixed norm spaces.

 Theorem 4.16 Let ã > ß > 0, 1 < < 9« < °° and Wi G APi, u,- € Aqi for
 all i. Suppose further that for each i, there exists 0 < Si < a,- - /?,• such that

 JQ

 for all cubes Q in lRni . Then C . and

 II/IĻ < C''f''
 v,ß,n w.ã.n

 where C depends only on Ci, i = 1, • • • , /.

 Proof Let 6 = (61, • • • , S¡). It suffices to show that

 ll-WIL 2 CII/IL ■

 However, this follows from the fact

 'JsJ(x)' <C f - - dy ,

 Theorem 1 in [13] and the Minkowski inequality.
 We will now study restriction theorems on mixed norm potential spaces.
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 Theorem 4.17 Let 1 < p,- < oo and Wļ € -APl(lRni) for i = 1, •••,/,
 ñ = (ni, - • ' ,n¡). Assume further that GainAb ]' J - •) £ Z/^,(lRn>) for some ]' J Wj

 i

 b 6 IR"J where w'- = w- Pj . If f € then f coincides almost every-
 where on IRn-Tlj = IRaj X {6} X JRn_n>-°>, aj = J2i<jni> with a function
 in ì i(lRn-n'') where p = (pi, - • • ,Pj-i,Pj+i, - • • ,p¡) and w,ã,n are de-
 fined similarly . Moreover, the restriction of f to IRn-nj induces a continuous

 mapping of CpWt&>fi{ IRn) into £^,(lRn"nj)-

 Proof To simplify the notations, we will only prove a typical case: I =
 2 ,j = 2, then ñ = (ni,n2),ã = (ai ,a2),p = (pi,p2),w = w' x t/>2, and
 p = pi,w = u>i,ã = Qi. As before, let g G Z<2,(lRn) such that / = J„<7,
 observe that

 f{x,b) = */ i SI 2 JR f 1 Gai,ni{x - y)Ga2,ni{b - i)g{y,i)dydĻ */ SI 2 JR 1

 Let lis define the restriction Rf of / as above, i.e., Rf(x) = f(x,b). Then

 'm'Ln ŁJW' ŁJW'

 = ^ •/JR. /in, i I «/R Lni * J Ln ¡I l , ~ V)G<*2,nAh ~ MV, OdVdt I* («)d®)1/Pl •/JR. i «/R * J ¡I l ,

 ~ 1 Ga*<n^x ~ yiGa*™(b ~ &9(y>tidy'PlWl(x}dxy/Pldt
 by Minkowski's inequality

 < C Ga2,n2(b - 0(^ni 1 9{x, 0'piwi(x)dx)1/pidt

 < C''Ga2<n2(b--)'' IMĻ,,™ ¿u.(R ) (4-18) L 2((R"2) ¿u.(R )

 by Holder's inequality. Next, observe that

 RJã,n 9 = Jotļ,niRJ(p,a2),h9'

 It is now easy to see that our result holds.
 Remark 4.19 The assumption on G is optimal by the following reversed
 Holder's inequality:

 sup J J fg=''f'' J Ll>
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 where the supremum is taken over g € L*, with ||^|| TP < 1. (Just take
 Ltw TP

 sgnf'f'p> !pw' . .
 g =

 Lp' uff , uff ,

 Thus if Gaj,nj(b-') & Z^,(IRn-'), there exists a sequence {<7m} C (Hn),
 IkmILp = 1, such that ''RJaÇm'' , ->ooasm-+oo.

 w Lp ,(]Rn-nJ) ' wtny '

 Next let us give a sufficient condition for Ga>k(b - •) G /^(IR*).

 Lemma 4.20 Let v 6 j4p(IR*) and v G ADoiR*)» i-£-, there exists C > 0
 such that

 v(6B) < C6akv(B) for all balls B in IR* anáú//0<í<l.

 Then Gatk{b - •) € ££(]R*) for b 6 1R* when a > ¿(1 - ^).

 Proof First note that there exist C, A > 0 such that

 / c ' *p/2
 e-*Plťl V« < c V > Ay/6.

 Also, since v € Ap, we know v E Ar for some 1 < r < p (see for example,
 Theorem 5.5 and Proposition 4.5 in Chapter IX of [11]) and hence v(MB) <
 CMrkv(B) VM > 1 and all balls B where C is some constant > 1. Thus

 J*lk / e"^"6'2/5^)^ < C J't-b'>Ay/6 f r/2l0^ * + J't-b'<AVs / v(0¿í V ' J*lk J't-b'>Ay/6 - b'k? * + J't-b'<AVs v(0¿í V '
 °° t ( /> ' kp

 5 %L^sX^w) °° t ( /> ' -«« +<■<*>
 where Bl = {£ € IR* : |£ - b' < A>/6} .

 OO 1

 < CESh^(2'Í,)+»(B1)

 2 cŽ^af'viBO + rfB,)
 < Cv(Bl ) < C(Ska/2 + 6kpf 2)
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 by considering the case 8 < 1 and the case 6 > 1. Finally, note that by
 Minkowski's inequality,

 < C f°° e-s/4*6(a-k)/2(6ak/ 2p + 6k/2)Ę- < oo
 JO 0

 if a - ¿(1 - a/p ) and a > 0. However, a always < 1. This completes the
 proof of this lemma.

 Notation Let v4(lRn) and be two Sobolev spaces. By j4(IRn) 4
 B(IRm), we mean the restriction of functions in A(IRn) on ]Rm induces a
 continuous mapping of A(IRn) to ¿?(IRm).

 Corollary 4.21 Let w, p, ã, ñ, w, f>, ã, ñ be as in Theorem Ą.17 and w J1 ^Pl~^

 e RDa(R! fe), otj > A:(l-^-), k = 1 ij. Then £^á Â(IRn) 4 where
 jj ¡n-k _ ßa, x x JRn-fc-a^ ^ ^ flny & ç JR*

 Remark 4.22(a) Since wj g Ap^ .(IRfc), let us note that there exists
 0 < a < 1 such that G RDa{] Rk).
 (b) The assumption ay > k( 1 - A-) in Corollary 4.21 is optimal; when

 PJ

 ctj - k(l - p-), note that there may exist Ap weight Wj with w'- = w~1^Pj~1^ €

 RDa(]Rk) such that G0j,k & i/^/(IRfc). For example, one may take Wj = 1,

 then a = 1 and Gk/Pi,k & ¿^(IR^).
 (c) In particular, if p = (p, p), we have

 C,ai+02(lRn) c <(aiia2_e)t(n_M)(lRn) 4 £^.ai(lR"-fc)

 if oiļ > fc(l - p) and e > 0 is chosen so that - £ > ¿(1 - p) when
 w'2 e RDa( lRfc). Thus ClJBT) 4 ££,li/3(IRn-*) when a - ß > k( 1 - £).
 Moreover, note that when W{ = 1, for i = 1,2 , then a = 1 and hence

 ££(]Rn) 4 Cpß(Un-k) (4.23)
 if a - ß > K Unfortunately, we are unable to conclude that

 ^(JRn)4^ *(lRn-fc). (4.24)
 p
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 However (4.24) is true when 1 < p < 2 by [1, Theorem 11]. Nevertheless, we
 show that (4.23) is true for a larger space, i.e.,

 4o,»-fl,(»-t.*)(1Rn) 4 -cgCR»-*).

 Moreover, it is easy to see that if / 6 £{£)/9(IR.n-*), then there exists an

 extension Ef of / such that Ef 6 (a ^(IR") for any a > 0, p2 > 1 and
 u>2 € v4P2(IRfc). For example, we can take Ef(x,y ) = r¡(y)f(x), x G IR.n~*,
 y G IR*, where r¡ G C¿°(IR.fc) with í/(0) = 1.
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