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 SOME REMARKS ON SUP-MEASURABILITY

 Abstract. We give an example of a sup- measurable and non-measurable func-
 tion in the general case associated with products of <7-ideals. We show that any
 behaviour of a function F : R2 - ► R with respect to (L)- and (immeasurability,
 and ( L )- and (ß)-sup-measurability is possible. Continuum Hypothesis is replaced
 by weaker conditions. Finally, the notion of quasi-sup-measurability is considered.

 0. Introduction. A function F : R2 - » R (where R denotes the real line) is
 called Lebesgue sup-measurable (in short (L) -sup-measurable) if for each Lebesgue
 measurable function (abbr. (L)-measurable) f : R - ► R, the function 9(fj) '
 R - ► R given by g{F,j)(- *) = F(x,f(x)) is Lebesgue measurable (cf. [S], [GL], [G],
 [GG]). An analogous definition can be formulated when Lebesgue measurability is
 replaced by the possessing of the Baire property; we then use the phrases u(B)-sup-
 measurablen and " (B) -measurable" (cf. [GG]). The phrases "(Z)-measurable" and
 "( immeasurable" will also be used for sets in an obvious sense. It is easy to show
 that the ( immeasurability of F : R2 - » R need not imply its (iz)-sup-measurability
 and the analogous implication for (immeasurability and (ß)-sup-measurability
 need not hold. It suffices to consider the characteristic function of the graph of
 any Borei function / : R - ► R (e.g. f(x) = x) restricted to a non-(L)-measurable
 (respectively, non-(ß)-measurable) set in R (cf. [S], [G]). The converse implications
 are also false (see [GL], [GG]). The main idea of the proof contained in [GL] uses
 transfinite induction and supposes CH (Continuum Hypothesis). In Section 1 we
 observe that the scheme from [GL] can be extended to more general cases, and
 that CH can be replaced by another assumption which is implied by CH and
 turns out weaker than CH for ( immeasurability and (J9)-measurablity. It seems
 an open problem whether the statement "(i^-sup- measurability need not imply
 ( immeasurability" is provable within ZFC. Professor Harazišvili has informed
 me that the result of [GL] was obtained by him independently and published
 in one of Georgian journals (see [H], Exercise 3, p.82 and also Exercise 4 where
 some interesting application is presented). Our generalization uses Fubini products
 of (T-ideals. Finally, we present the recent result of M. Penconek from Warsaw
 University.
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 In Section 2 we choose k arbitrary properties (0 < k < 4) out of the following:
 (L)-measurability, (ß)-measurability, (L)-sup-measurability, (Z?)-sup-measura-
 bility. We prove the existence of an F : R2 - » R which has the chosen k properties
 and has not the remaining 4 - k ones. For some cases, the scheme from [GL] is
 used again.

 In Section 3 we introduce and study the notions of quasi-(Z/)-sup-measurability
 and quasi-(¿?)-sup-measurability.

 1. A General Case of Sup-Measurability. Throughout the paper, if X is
 an uncountable set, we consider only these <r-ideals of subsets of X, different from
 the power set V(X), which either contain all singletons or are equal to {0}. The
 <7-ideal of all countable subsets of R will be denoted by %.

 From now on we fix two arbitrary cr-ideals X and J of subsets of R. By
 we denote the family of all Borei sets in R2. Define (cf. e.g. [CKP])

 T®J = {EÇR2:(3Be B(2))(E ç R k {or € R : Bx (£ J) € X)}

 where Bx = {y G R : ( x,y ) € B}. Then X <g> J forms a <r-ideal of subsets of R2
 which is called the ( Fubini ) product of X and J . Define (see [F], p. 16)

 non(X) = min{|E| : E Ç R k EgT}

 where 'E' stands for the cardinality of E. Observe that non(X) < c (where c = |R|).
 We have non({0}) = 1 and non(X) > u>i for X ^ {0}.

 By S(T) we denote the <r-algebra generated by all Borei sets and all sets from
 X ; that symbol is also used when we deal with a a-ideal of sets in any topological
 space.

 We say that F : R2 - * R is S (X)- sup-measurable if, for each 5,(X)-meaáurable
 / : R -> R, the function g{Fj) given by g{F,/)(- *0 = ^(z>/(*)) is S^XJ-measurable.
 Observe that all ¿"(XJ-sup-measurable functions form a linear space.

 1.1. Lemma. A function F : R2 - ► R is S(T)-sup-measurab}e if and only if
 Ç(F,f) ts S(T)-measurable for each Borei f : R - » R.

 Proof. Necessity is self-evident. To show sufficiency, consider any S(T)-
 measurable h : R - ♦ R. There is a Borei / : R - * R such that {x € R : f(x) ^
 /i(x)} € X (cf. [F], lD(c)). Now, since g(F,f) is 5"(X)-measurable, so is g(F,h)- ®

 Now, let X be a separable and complete metric space. We say that H Ç X is a
 Bernstein set if H intersects each perfect (nonempty) subset of X and X ' H has
 the same property (for the construction of //, see e.g. [Kr], §40 I).
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 If each set of a <r-ideal Aí Ç V(X) has a Borei superset from Af, we say that
 A f has a Borei base.

 The following lemma results immediately from [I]:

 1.2. Lemma. If a cr -ideal Af Ç P(X) has a Borei base, then no Bernstein set
 is in S(AT). ■

 1.3. Lemma. There is an F : R2 - ► {0, 1} such that F_1[{1}] € {0} and
 F is non-S(T)-sup-measurable for any T with a Borei base.

 Proof. Fix a Borei function / : R - » R and a Bernstein set H Ç R. Let
 F : R2 - ► R be the characteristic function of the graph Gr(f'H). Observe that
 flf{Ft/)-1[{l}] = H, hence F is non- S ( 7* )-sup- measurable by virtue of Lemma 1.2.
 The rest follows from Gr(f'H) Ç Gr(f) € {0} <S>%. ■

 Since {0} <8>TqÇT ® J when % Ç J (i.e. J ^ {0}), we get

 1.4. Corollary. There is an F : R2 - » {0, 1} which is S(T ® J)- measurable
 and non-S(T)-sup-measurable for any T with a Borei base and J ^ {0}. ■

 The question arises when there exists an F : R2 - ► R which is 5(T)-sup-
 measurable and non-5(T ® ^-measurable.

 Let pr : R2 - » R denote the projection on the first coordinate.

 1.5. Proposition. The following conditions are equivalent:

 (1) there is an F : R2 - ► R which is S(T)-sup-measurable and non-S(T ® J)-
 measurable ,

 (2) there is an H Ç R2 such that H £ S(T <g> J) and pr[H D Gr(f)] € S(T) for
 each Borei f : R - * R,

 (3) there is an F : R2 - * {0, 1} which is S (T) -sup-measurable and non-S(T ®J)-
 measurable.

 Proof. (1) => (2) There is a € R such that H = F-1[(- oo,a)] ^ S(T <g> J).
 For any Borei / : R - » R, we have

 pr[H n Gr(f)} = {iER: F(xJ(x)) < a} G S(T)
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 since F is 5(T)-sup-measurable.
 (2) ^ (3) Define F as the characteristic function of H. Obviously, F is non-

 S(T <g> »7)-measurable. For any Borei / : R - »• R, the function g(F,f) maps R into
 {0, 1} and

 (W'K- 1}] =pr[ff nGr(/)] e 5(T).
 Thus F is 5'(T)-sup-measurable by Lemma 1.1.

 (3) =£• (1) is obvious. ■

 Now, we are going to adapt the ideas of [GL] to show that (1) holds when
 non(T) = c and J ^ {0}.

 1.6. Lemma. If the graph Gr(h) of a function h : E -* R, E Ç R, intersects
 each member of ßW '(T0® T0), then Gr(h) g S(T <g> J) for any T ^ {0} and

 Proof. By the assumption, we have % Ç T and % Ç J. Consequently,
 Tq®T0CT ®J and thus, 0<2> ' (T ® J) Ç ßW ' (T0 ® T0). Therefore Gr(h)
 intersects each member of ßW ' (T ®J). To get the assertion, let us first observe
 that Gr(h) £ T ® J. Indeed, if Gr(h) € T <8> J, choose a Borei D € T <g> J
 containing Gr(h). We have R2 ' D € ß ^ ' (T ® J) hence Gr(h ) meets R2 ' D, a
 contradiction. Now, it suffices to exclude the case Gr(h) € S(T ®J)'(T <g> J).
 If it holds, we get Gr(h) = (B ' A) U (A ' B) for some B € #(2) ' (T ® J) and
 A € T <g> J. Choose C € #(2) such that AÇC € T ®J. Then B'C <£T ®J.
 However, ( B ' C)x Ç (Gr(/ř))x 6 J for all x € R which together with B'C € B^
 gives B'C Ç.T ® J , a contradiction. ■

 1.7. Proposition. There are E Ç R and h : E - > R such that

 (a) Gr(h) intersects each member of ' (% <g> %),

 (b) |{x 6 E : h(x) = f{x)}' < c for each Borei f : R - ► R.

 Proof. Arrange all Borei functions from R into R in a 1 - 1 sequence {/0}a<c
 and all sets from #(2)'(7^(g>7¿)) - in a sequence {£<*}<>«:• Let us choose (x0, yo ) 6 E0.
 For any a < c, having all {xy,y~,}, 7 < a, defined, let us choose

 xa G ({x € R : {Ea)x g %) ' {x7 : 7 < a}.
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 The choice is possible since {x 6 R : {Ea)x £ % } is uncountable and analytic (see
 [Kr], p.496) hence is of cardinality c ([Kr], 39 I). Similarly, one can choose

 Va € ( Ea)xa ' {/-ví^or) • 7 ^

 since ( Ea)xa is Borei and uncountable hence of cardinality c. The induction gives
 us the sequence {(a;c„y0)}0<c. Put E = {xa : a < c} and A(xa) = ya for a < c.

 Now, (a) follows immediately from the construction. To get (b) observe that,
 for any /y, 7 < c, we have {x € E : h(x) = f^(x)} Ç {xa : a < 7}. ■

 1.8. Corollary. There is an F : R2 - ► {0, 1} such that

 (a) F is S(T)-sup-measurab]e for each T with non(T) = c,

 (b) F is non-S(T <g> J) -measurable for any T ^ {0} and J ^ {0}.

 Proof. Define F as the characteristic function of Gr(h) where h is taken from
 1.7. From non(T) = c and 1.7(b) we get assertion (a). Assertion (b) follows from
 1.6 and 1.7(a). ■

 Note that our notion of sup-measurability can be extended in an obvious way
 to the case of F : X x Y -* R where X and Y are uncountable Polish spaces. Then
 the respective versions of 1.1, 1.4 and 1.8 are true. Speaking about applications
 of 1.8 notice that, besides the <r-ideal of all sets of size < c, we know at least two
 interesting examples of <7-ideals with non ( ) = c: the Marczewski <r-ideal of (s°)
 sets ([W], Th. 2.1) and the Mycielski <7-ideal on 2W or u>w ([Ft], Th. 2.3).

 Corollary 1.7 can also be applied to the cases T = J = L and T = J = K
 where L and K stand for the ideals of Lebesgue null sets and of meager sets
 (i.e. those of the first category) in R, respectively. Following our notation from
 Section 0, instead of "S'(K)-(sup-)measurable" and "5(L)-(sup-)measurable" we
 write "(ß)-(sup-) measurable" and "(Z/)-(sup-)measurable'' We get

 1.9. Corollary, (a) If non (L) = c, there is an F : R2 {0,1} which is
 (L) -sup-measurable and non-(L) -measurable (cf. [GL], Th.2).

 (b) If non (K) = c, there is an F : R2 - ► {0, 1} which is (B) -sup-measurable
 and non-(B) -measurable (cf. [GG], Th.ll). ■

 Note that CH was assumed in [GL] and [GG]. Our results are sharper since CH
 evidently implies non (K) = non (L) = c and there are models of ZFC in which
 u>i < non (K) = c and Uļ < non (L) = c (see [M]). Also Martin's axiom implies
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 that non (K) = non (L) = c (cf. [Kn]). Let us stress that, due to Proposition 1.8,
 the same F satisfies (a) and (b) of 1.9 simultaneously.

 1.10. Problem. Can the existence of an (Z)-sup-measurable and non-(L)-
 measurable (resp. ( £?)-sup- measurable and non-( Immeasurable) function be
 proved within ZFC1

 Recently, some progress has been made by Marcin Penconek who proved the
 above-mentioned existence when non (L) = c/(c) < c (resp. non (K) = c/(c) < c.)

 1.11. Theorem (M. Penconek). (a) If non (L) = c/(c), there exists a non-
 (L)-measurable function which is ( L) -sup-measurable .

 (b) If non(K) = c/(c), there exists a non-(B) -measurable function which is
 (B)-sup-measurable.

 Proof. We shall show (a); the proof of (b) is analogous. Let k = c/(c). If
 k = c, we apply 1.9. So, assume that k < c. Since non (L) = k, there is a non -(im-
 measurable set X = {x0 : a < k} in R. Let {Z?0}a<K be an increasing sequence of
 subsets of c (we identify c with the set of its predecessors), such that |2?0| < c and
 Uo<x Ba = c. Consider a fixed enumeration {fa}a<c of all Borei functions from R
 to R. According to 1.5, it suffices to find a non-(L)-measurable A Ç R2 such that
 ■pr[A D Gr(f)] is ( immeasurable for each Borei / : R - ► R. By A2 we denote the
 plane Lebesgue measure. We define

 U (({*.} *«)' U {<*../.(*.))})•
 <*<* vÇ.Ba

 Observe that the inner plane measure of A is zero. Indeed, if it is not the case,
 there exists a closed B Ç A with A 2(B) > 0 and thus B* = {x 6 R : Bx<¿ L} is
 ( immeasurable of positive measure. Hence |#*| = c. Now, for x G B*'X, we have
 Ax = 0 (by the definition of ,4) and Ax ^ 0 (since 0 ^ Bx Ç Ax ), a contradiction.
 Suppose that Á2(¿4) = 0. Then, by the Fubini theorem, Ax G L for each x from
 a set E of full measure. Obviously, E meets X and, for x € X D E, x = xa , we
 have |R ' Ax' = |Uí/€Bo{/"(x)}I < c' which is impossible because Ax € L implies
 |R' Ax' = c. Since inner and outer measures of A differ, A is non-(L)-measurable.
 To end the proof, fix any Borei function f = f„. There is an c*o such that v G Ba
 for all a, Qo < a < k. Thus ( xa,f(xQ )) ^ A for a > «o consequently,
 pr[A D Gr{f)] Ç Ua<ao{®o} e L. ■

 Finally, note that (which I have learned from A.B. Harazišvili), if, for F :
 R2 -► R, the function ^(F./.g) : R R given by i>(F,s,g){x) = F(f(x),g(x)) is (im-
 measurable for any (Z)-measurable f,g : R - ► R, then F is ( immeasurable. This
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 follows from the fact that there is a bijection H : R2 - ► R such that both H and
 H~l map (L)-measurable sets onto ( immeasurable sets (the analogous facts hold
 for (Immeasurability).

 2. Comparing Measurability and Sup-Measurability for Measure and
 Category. For F : R2 - ► R, consider the following four properties:

 (1) F is (L)-measurable,

 (2) F is (immeasurable,

 (3) F is (L)-sup-measurable,

 (4) F is (ß)-sup-measurable.

 Define a sequence (¿1,12,1*3, ¿4) G {0, l}4 (depending on F) by

 f 1 if (it) is fulfilled,
 i/c - '

 I 0 otherwise for k = 1,2,3,4.

 We then say that F is of type (¿1,12,13, ¿4)-
 Our aim is to prove

 2.1. Theorem. For each (¿1,12,13,14) G {0, l}4, there exists an F : R2 - ►
 {0,1} of type (¿1, ¿2, ¿3,14) (in some cases we assume that non (K) = c or non
 (L) = c).

 We need the following

 2.2. Lemma (cf. [0], 1.6). There are an F„ set A € K and a Gs set B G L,
 such that A fi B = 0 and A U B = R. For any Bernstein set H in R, the sets C =
 H D A and D = H f~l B are meager non-(L)-measurable and non-(B)-measurable
 of measure zero, respectively. M

 Proof of Theorem 2.1. Fix Bernstein sets M and H in R2 and R, respectively.
 Let A , B , C and D have the meanings as in Lemma 2.2.

 The case of (1,1,1,1) is trivial (we put F(x) = 1 for all x). In the case of
 (0, 0, 0, 0) we define F as the characteristic function of M. To show that F is as
 desired, it is enough to use Lemma 1.2 and observe that the set

 {x G R : F(x,0) = 1} = {x G R : (#,0) G M }
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 forms a Bernstein set in R, hence <7(f,/> for / = 0 is neither ( immeasurable nor
 (Z?)-measurable.

 In the cases of (1, 1,0, 1), (1,1,1,0) and (1,1,0,0) we define F as the charac-
 teristic functions of C x {0}, D x {0} and H x {0}, respectively, and we look at
 g(F,f) for / = 0 by using Lemmas 1.2 and 2.2.

 In the cases of (0, 1,0, 1) and (1,0, 1,0) we define F as the characteristic func-
 tions of Mfl(ylxR) and MC'(Bx R), respectively. If we add our functions associated
 with (0,1,0,1) and (1,1,1,0) (respectively, with (1,0,1,0) and (1,1,0,1)), we get
 the function associated with (0,1,0,0) (respectively, with (1,0,0,0)).

 In the remaining cases we assume that non (K) = c or non (L) = c. In the
 case of (1,0, 1, 1) we assume that non (K) = c and define F as the function from
 1.8 multiplied by the characteristic function of B x R. Having assumed that non
 (K) = c, if we add the function associated with (1, 1,0, 1) (resp. with (0, 1,0, 1))
 to the F just defined, we obtain the function associated with (1, 0,0, 1) (resp. with
 (0,0,0,1)).

 In the case of (0, 1, 1, 1) we assume that non (L) = cand define F as the function
 from 1.8 multiplied by the characteristic function of A x R. Having assumed
 that non (L) = c, if we add the function associated with (1,1,1,0) (resp. with
 (1,0, 1,0)) to the F just defined, we obtain the function associated with (0, 1, 1,0)
 (resp. with (0,0,1,0)).

 In the case of (0,0, 1, 1) we assume that non (K) = non (L) = c and adding
 the functions associated with (1,0, 1, 1) and (0, 1,1,1) we get the desired F.

 By the disjointness of the respective sets, each addition considered above always
 yields a characteristic function. ■

 3. Quasi-Sup-Measurability. For several cases in Theorem 2.1, the question
 arises whether the assumptions non (K) = c and non (L) = c can be eliminated
 (compare Problem 1.10). Taking this into account, one can try to replace ( L )-
 sup-measurability and (7?)-sup-measurability by weaker conditions in order to get
 the analogue of 2.1 without assuming non (K) = c and non (L) = c. Now, we
 propose some conditions which are candidates to these roles. However we still
 cannot improve Theorem 2.1.

 For fixed F : R2 - ► R, / : R - ► R and y £ R we define <f>(F,f,y) '• R -* R by
 <f>{FJ,y)(x) = F(x>f(x) + y)i x G R. We say that F is quasi- (L)-sup-measurable,
 if for each Borei / : R - ► R there is a countable E Ç R such that <1>{F,f,y) is
 (Z/)-measurable for all y G R ' E. Obviously, each (L)-sup-measurable function is
 quasi-(Z-)-sup-measurable. As we shall prove, the converse is false. Similar remarks
 should be done for quasi- (B)-sup-measurability which we define analogously.
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 3.1. Proposition. There exists an F : R2 - ► {0, 1} which is

 (a) (L)- measurable,

 (b) (B)-measurable,

 (c) ( B)- sup-measurable ,

 (d) quasi-(L)-sup-measurable,

 (e) non-(L)-sup-measurable.

 Proof. Define F as the characteristic function of C x {0} where C is taken from
 Lemma 2.2. It suffices to check (d) (compare the case of (1, 1, 0, 1) in the proof of
 2.1). Consider any Borei / : R - ► R. Observe that E = {y € R : y}] ^ L}
 is countable since there is no uncountable disjoint family of Borei sets of positive
 measure. For each y & E, <f>(F,j,y) is the characteristic function of C D /-1[{- î/}]
 hence it equals 0 almost everywhere and, consequently, is (Z-)-measurable. ■

 In an analogous way we prove

 3.2. Proposition. There exists an F : R2 - * {0, 1} which is

 (a) (L) -measurable,

 (b) (B) -measurable,

 (c) ( L)- sup-measurable ,

 (d) quasi-(B)-sup-measurable,

 (e) non-(B)-sup-measurable. ■

 We say that a function F : R2 - ► R is of (q)-type (¿1,12^3^4) € {0, 1 }4 if

 ř 1 if (k') is fulfilled,
 ů = <

 [ 0 otherwise for k = 1,2,3,4

 where conditions (l'), (2') are the same as (1), (2) and (3') and (4') state that F
 is quasi-(L)-sup-measurable and quasi-(J3)-sup-measurable, respectively.
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 3.3. Theorem. For each ¿3,^1) € {0, l}4, there exists an F : R2 -»
 {0,1} of (q)-type (ii,Í2,Í3,ů); we assume non (K) = c and non (L) = c in the
 same cases where they were assumed in 2.1.

 Proof. Fix a Bernstein set H in R and let A, B,C , D have the meanings as in
 Lemma 2.2. Fix an uncountable P G K fi L.

 In the case of (1, 1,0, 1), (1, 1, 1,0) and (1, 1,0,0) we define F as the charac-
 teristic functions of C x P, D x P and II x P , respectively, and look at <t>(F,j,y) f°r
 / = 0 and y G P'E, where EC R is any countable set, by using Lemmas 1.2 and
 2.2.

 In the remaining cases we construct F in the same way as in the proof of 2.1.
 It is easy to verify that all additions used as for 2.1 lead to characteristic functions;
 this follows from the disjointness of the respective sets. I

 The definition of quasi-sup-mea.surability was inspired by the theorem of Paw-
 likowski who constructed in [P] a Borei set U Ç R2 such that all its vertical sections
 have measure zero and, for each Borei function / : R - > R for all but countably
 many y G R the set {a- € R : {x,f(x) +y) G U) is comeager. Our original proof of
 Proposition 3.2 was based on that fact but the present one is much simpler.

 The notion of quasi-sup-measurability can further be generalized as follows (let
 us show this, for instance, in the case of quasi-(L)-sup-measurability). Let T be a
 <7-ideal of subsets of R. We say that F : R2 - ► R is ( T)-quasi-(L)-sup-measurable
 if, for each Borei / : R - ► R, there is E G T such that 4>(F,j,y) is (L)-measurable
 for all y G R ' E. In particular, in the cases T = {0} and T = Tq we get
 the notions of (L)-sup-measurability and quasi-(Z<)-sup-measurability, respectively.
 Observe that, if quasi-(L)-sup-measurability and quasi-(l?)-sup-measurability are
 replaced by (7")-quasi-(Z,)-sup-measurability and (T)-quasi-(Z?)-sup-measurability
 in 3.1 and 3.2, respectively, we get the true statements, provided that T ^ {0}.
 Similarly, if K fl L ' T ^0, the proof of 3.3 works for the respective version using
 (T)-quasi-sup-measurability instead of quasi-sup-measurability.

 Finally, note that the (T)-quasi-(L)-sup-measurability of F : R2 - ► R is equiva-
 lent to its measurability with respect to the cr-field of all E Ç R2 admitting M € T
 such that {iéR: (x, f(x) + y) G E) is (Z,)-measurable for all Borei / : R - » R and
 all y G R ' M. The proof is immediate. A similar fact has already been observed
 in [S], Lemma 1, for an abstract case of sup-measurability. Since all functions F
 constructed in our paper take values 0 and 1 only, it is easy to formulate the results
 in the language of cr-fields.
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