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ON d-MEASURE AND Jd-DIMENSION

1. Introduction

Let G be the graph of the Weierstrass function W, (t) = 3 oo, b~"* cos b"t
with b an integer such that b > 2 and with 0 < a < 1. It is well-known that
the Hausdorff dimension of G, HD(G), is equal or less than 2 — a ([2]). But
it has not been proved whether HD(G) is exactly equal to 2 — a. In 1988, F.

Rezakhanlou observed that packmg dimension of G, PD(G), is 2 — a([7]). In
[11], HD(E') < Cap(E) < Cap(E') PD(E) for E C RY was shown, where
%( C ap) is a dimensional index induced by lower (upper) capacity Cap (Cap).

Naturally we are interested in the value of C/'a\p(g )- Investigating C/a\p, we find

that unlike HD or PD, C/'a\p has not been defined in terms of measure, and
this can present difficulties in its theoretical development. Hence, in this paper,
we define an outer measure, d-measure, whose dimensional index, d-dimension,
is equal to Cap We examine its properties and examples, some of which are

related to Hausdorff measure. On the other hand, we show Cap(g) is 2 — a,
although d-measure does not attribute directly to find its value. Further we
reprove that PD(G) is 2 — a by a different method from Rezakhanlou s (cf.
[7]), and show that packing dimension of the Kiesswetter’s curve is 3 (cf. [1]).

Finally we show that Cap(R) = PD(R) = 2 — a for the graph R of the sum of
Rademacher function (cf. [8]).

2. Preliminaries

For a > 0, we define a pre-measure D* of a bounded set F' in RY by
D(F) = liminf,_oN(F,r)r*, where N(F,r) is the minimum number of closed
balls in R9 with diameter r, needed to cover F. Then D*(¢) = 0, D*(F) =
Do(F) for a bounded set F, and D* is monotone.
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We employ Method I by Munroe to obtain an outer measure d* of E C R9:

[ <]
d*(E) = inf{z D°(E,): E C U2 ,E,, E, are bounded in R9}.

n=1

Henceforth, we call d* the a-dimensional d-measure.
We define a rarefaction index é of a bounded set F' by

6(F) = sup{a > 0: D(F) = oo}
= inf{a > 0: D*(F) = 0}.
Clearly 6 is monotone, but not o-stable in the sense of [11]. Asin [11], we define
a dimensional index induced by 6, §(E) = inf{sup, 6(E,) : E = UXX,E,, E,

are bounded } for any E C RY. Then 4 is clearly o-stable. We recall the
lower(upper) capacity Cap (Cap) of a bounded set F,

log N(F,r)

Q(_zB(F) = liminf,_ “Togr

(Cap(F) = lim sup,_,O% ) (cf. [6]).

For the lower(upper) capacity g@(aa—p), we define @)(C:m)) as above. We
also define a dimensional index, d-dimension of E, by
d — dim(E) = sup{a > 0 : d*(E) = oo}
= inf{a > 0:d°(E) = 0}.

We close this section by listing some notations.

‘H*(E); a-dimensional Hausdorff measure of E.
p“(E); a-dimensional packing measure of E.
|E|; the diameter of E.
T'; curve (i.e. the image of a continuous injection

of a closed interval).
L(T"); the length of a curve I'.

B(R9Y); the family of all bounded sets in R9.

3. Some properties of d—measure
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We now start to prove the following basic properties of our new outer
measure d®.

Theorem 1. d* is Borel regular. That is, for any set E C RY, there ezists
a Borel set B C RY such that E C B and d*(E) = d*(B).

Proof. Since N(F,r) = N(F,r), D*(F) = D*(F). Thus

d*(E) = inf{i DE,): E C U2 ,E,, E, € B(RY)).

n=1

For every integer n > 0, there exists a sequence of bounded sets {E, ;}$2, such
that E C UR,E,; and } 2, D*(E,;) < d*(E) + 1. Let B = N, UR,
E.i; Then E C B, and B C UR,E,; for every n. Therefore d*(B) <
S, D*(E,,;) for every n. Hence d*(B) < inf, 3.2, D*(E,,i) = d*(E). The
opposite inequality follows from monotonicity of d*.

Theorem 2. d® is a metric outer measure.

Proof. Plainly we have d*(A U B) < d*(A) + d*(B) by subadditivity of
de.

Suppose that dist (E, F) > 0 for E, F € B(RY). Then dist (E,F) > 2¢ >0
for some positive constant €. Noting N(EU F,e) = N(E,e) + N(F,¢), we have

D*(EUF)> D*(E)+ D*(F).
Hence, for A and B with dist (4, B) > 0,

d*(AUB) =inf{) D*(E,): AU B = UE,, E, € B(R)}
>inf{) D*(EnNA)+) D*(E.NB): AUB = UE,,
E,. € B(RY)}
>inf{) D*(EnNA): AUB = UE,, E, € BRY)}
+inf{) D*(E.N B): AUB = UE,, E, € B(RY)}
> d*(A) + d*(B).

Corollary 3. d® s a regular outer measure.

Proof. It is immediate from Theorems 1 and 2 because the family of all
measurable sets of a metric outer measure contains all Borel sets.

592



Theorem 4. H*(E) < d*(E) for every set E in R9.

Proof. H*(F) < D*(F) for any F € B(R9) from the definitions. By the
subadditivity of H* and the prior fact, we easily obtain the result.

Corollary 5. Suppose that for some a, there are numbers ¢ > 0 and
6 > 0 such that d*(ENU) < c|U|* for all convez sets U with [U| < 6. Then
H*(E) > d*(E)/c. In particular, for c = 1,H*(E) = d*(E).

Proof. It follows immediately from mass distribution principle 4.2 of [3].
When ¢ = 1, it is obvious from Theorem 4.

Example 6. Let C be the well-known Cantor ternary set. Then we
easily see that d*(C NU) < D*(C NU) < |U|* for all intervals U, where
a =log2/log3. Hence H*(C) = d*(C) from Corollary 5. (Compare this with
Example 10.)

Theorem 7. D(T') = L(T') for a curveT.

Proof. First, note that Theorem 4 and d'(T') < D!(T) give us H!(T") <
DY(T"). Thus L(T') < D¥(T') since H}(T') = L(T') (Lemma 3.2 of [2]).

Second, suppose that £(I') < co. Then we can dissect I" into n—parts with
the same arc length: I'y, I'z,---, and I'y,. Let z; be the midpoint of I'; for each
t =1,2,.--,n. Then each I'; is contained in the closed ball of center z; with
radius £(T')/2n. Thus N(T, L(T)/n)L(T)/n < n(L(T")/n) = L(T'). Therefore
liminf, N (T, L(T')/n)L(T)/n < L(T). Hence D}(T') < L(T).

Corollary 8. d}(T') = L(T') for a curve T.

Remark 9. Noting that a curve I is strongly regular (cf. Theorem 6.1
of [10]), we have £L(T') = H}(I') = d(I') = D}(T') = p!(T'). There are many
examples of E such that 0 < H*(E) = d*(E) < oo for some a > 0, and also
there are examples of E so that H*(E) < d*(E) for some E in R?. (Corollary
14 in this paper, and [11]).

Example 10. Let C be as in Example 6. Then H*(C) = d*(C) = D*(C) =
1, where s = log2/log3. Clearly N(C,37")(3"")* = 2"2~" = 1, implying
D*(C) £ 1. Noting that H*(C) = 1 (Theorem 1.14 of [2]) and H*(C) < d*(C)
(Theorem 4), we obtain the result.

Example 11. Let E be the product of same Cantor-like sets ; E =
{(:L‘, y);x '
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=Y ay =Yoo, b2, where an,bp, € {0,3}}. It was shown in [5] that

H!(E) = 2%. But D'(E) < liminf,—.ooN(E,2% 4")2% 4" = 23. Hence
H!(E) = d'(E) = D'(E) = 21.

4. Capacity and d—dimension

In this section, we prove @ = d — dim by showing Cap = é (hence
@=3) and é§ = d — dim.

Theorem 12.
§(F) = Cap(F) for F € B(RY)

Proof. Suppose that Cap(F) > 6(F) + ¢ for some ¢ > 0. Then there
exists p > 0 such that for any r < p, log N(F,r) > logr=[6(F)tel . e
N(F,r)r8(F)te > 1, Hence D*(F)+¢(F) > 1, which is a contradiction. There-
fore Cap(F) < 6(F) + € for any € > 0. Similarly we obtain Cap(F) > §(F) —¢
for any € > 0. T

Theorem 13. §(E) = d — dim(E) for any set E in R,

Proof. Suppose that §(E) < d—dim(E). Then there exists a € (§(E),d—
dim(E)). So there is a sequence { E,} of bounded subsets of E such that UE,, =
E and sup,, 6(E,) < a. Thus D*(E,) = 0 for any n, implying d*(E) = 0. It is
a contradiction. Now, suppose d — dim(E) < §(E). Then there is a such that
d — dim(E) < a < §(E). Thus d*(E) = 0. Therefore, there exists a sequence
{En} of bounded subsets of E such that E = U, E, and D*(E,) < oo for
every n, hence §( E,,) < a for every n. Thus §(E) < a. It is also a contradiction.

Corollary 14. Cap(E) = d — dim(E) for any E C R9.

Remark 15. (a) In Example 10, we have seen that H*(C) = d*(C) =
D*(C) = 1, where s = log2/log3. Hence, by Theorem 12 and Corollary 14,
Cap(C) = Cap = log 2/ log3. But there is another way to show Cap = Cap=s
without relying on the fact H*(C) = 1: d*(C) < D*(C) =1 and d*(C) = oo for
t < s =log2/log3, which can be seen easily from the Baire Category theorem.

(b) Let f : F — R™ satisfy a Holder condition |f(z) — f(y)| < c|z —
y|*(z,y € F). Then d=s(f(F)) < c=d*(F) because D= (f(E)) < ca D*(E) for
any bounded subset E of F. Hence Cap(= d — dim) is invariant under bi-
Lipschitz transformations. Besides, one could show many other properties of
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C/'a\p using d-measure.

On the other hand, we can obtain d-dim or PD of some sets using capacity.

Theorem 16. Let f : [0,1] — R, and let G be its graph. Suppose that
0 < a < 1. If there ezist positive constants Cy and Cy such that Cy|J|* <
sup, yes |f(z) — f(y)| < C2|J|* for any interval J in [0,1], then d — dim(G) =
PD(G)=2-a.

Proof. By Remark 9 of [6], Cap(G) = Cap(G) =2 — a. If G = UX,, E,,
then U2 | E, = U2, E, since G is a closed set in R2. Then, by the Baire Cat-
egory theorem, there exists E,, C G such that Intg(En) # 0, where Intg(Enm)
is the interior of E,, in G. Thus there exists » > 0 such that B.(2) NG C
Intg(E,) for a fixed z € Intg(Emm), where B,(z) is the open disc in R? with
center z and radius r. But there exists an interval J C [0,1] with very small
length such that Projy_,yis(2) € J, and sup, ,e;|f(z) — f(y)| < Co|J|* < §.
Thus Intg(Em) D {(a, f(a)) : a € J}. Hence Cap(IntG(Em)) > 2 — a. There-
fore @(G) > 2—a. By Corollary 14, d — dim(G) = @(G) > 2—a. Whence

2 —a <d-dim(G) < PD(G) = Cap(G) < Cap(G) < 2 — a [10].

Remark 17. Let f be a continuous function defined on [0,1] and let G,
be the graph of f over J C [0,1]. If f satisfies the property that Cap(Gs) = 8
(Cap(Gs) = PB) for any interval J C [0,1] and a fixed 1 < B < 2, then we easily
see that d — dim(G) = B (PD(G) = B) for G = Gjo,1) using the Baire Category
theorem (c.f., Corollary 11.2 of [3] as an example).

Example 18. Let G be the graph of the Weirstrass function Wy(t). Then
PD(G) = 2 — a since W,(t) satisfies the assumption of Theorem 16 (cf. [4],
[6]). Furthermore, d — dim(G) = 2 — « in the same manner.

Example 19. Let K be the Kiesswetter’s curve ([1]). Then d — dim(K) =
PD(K) = 3. This is because the Kiesswetter function « satisfies the assump-
tions of Theorem 16 ; |J|} < sup, yesl6(z) — £(y)| < 3|J|? for any interval
J C[0,1). (f. HD(K) = 2 in [1])

Example 20. Let 0 < o < 1 and fo(z) = Y 2-*'Ri(z), where R; is the
i-th Rademacher function and 0 < z < 1 ([6], [8]). Let G be its graph. Then
it follows essentially from Proposition 2[6] and Theorem 16 that d — dim(G) =
PD(G) = 2 — a. We note that HD(G) < d — dim(G) = PD(G) = 2 — « for
PV number 2* ([6]).
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