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 ON rf-MEASURE AND d-DIMEN SION

 1. Introduction

 Let Ģ be the graph of the Weierstrass function Wq(í) = b~not cos bnt
 with b an integer such that b > 2 and with 0 < a < 1. It is well-known that
 the Hausdorff dimension of Ģ, HD(Ģ), is equal or less than 2 - a ([2]). But
 it has not been proved whether HD(Ģ) is exactly equal to 2 - a. In 1988, F.
 Rezakhanlou observed that packing dimension of Q, PD(Ģ), is 2 - <*([7]). In

 [11], HD(E) < Cap(E) < Cap(E) = PD(E) for E C Rd was shown, where

 Cap{Cap) is a dimensional index induced by lower (upper) capacity Cap (Cap).

 Naturally we axe interested in the value of Cap(Q). Investigating Cap , we find

 that unlike HD or PD, Cap has not been defined in terms of measure, and
 this can present difficulties in its theoretical development. Hence, in this paper,
 we define an outer measure, A- measure, whose dimensional index, cř-dimension,
 is equal to Cap. We examine its properties and examples, some of which are

 related to Hausdorff measure. On the other hand, we show Cap(Ģ) is 2 - a,
 although ¿-measure does not attribute directly to find its value. Further we
 reprove that PD(Q ) is 2 - a by a different method from Rezakhanlou's (cf.
 [7]), and show that packing dimension of the Kiesswetter's curve is | (cf. [1]).
 Finally we show that Cap(7Z) = PD(TZ) = 2 - a for the graph 7 Z of the sum of
 Rademacher function (cf. [8]).

 2. Preliminaries

 For a > 0, we define a pre-measure Da of a bounded set F in Rd by
 Da(F ) = lim infr-o N(F, r)ra , where N(F , r) is the minimum number of closed
 balls in Rd with diameter r, needed to cover F. Then Da(<f>) = 0, Da(F ) =
 Da(F ) for a bounded set F, and Da is monotone.
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 We employ Method I by Munroe to obtain an outer measure da of E C Rd :

 OO

 da(E) = inf{^ Da(En) : E C U ™=lEn,En are bounded in Rd}.
 n=l

 Henceforth, we call d° the «-dimensional d-measure.
 We define a rarefaction index 6 of a bounded set F by

 6(F) = sup{a > 0 : D°(F ) = 00}
 = inf{a > 0 : Da(F) = 0}.

 Clearly 6 is monotone, but not <r-stable in the sense of [11]. As in [11], we define
 a dimensional index induced by 6, 6(E) = inf{supn 6(En) : E = En
 are bounded } for any E C Rd. Then 6 is clearly a-stable. We recall the
 lower(upper) capacity Cap (Cap) of a bounded set F,

 (Cāp(F) = lim supr_o ) (cf. [6]).

 For the lower(upper) capacity Cap (Cap), we define Cap (Cap) as above. We
 also define a dimensional index, (¿-dimension of E, by

 d - dim(i?) = sup{a > 0 : da(E) = 00}
 = inf{o > 0 : da(E) = 0}.

 We close this section by listing some notations.

 7ia(E ); a-dimensional Hausdorff measure of E.

 pa(E); a-dimensional packing measure of E.
 I JE71; the diameter of E.

 T; curve (i.e. the image of a continuous injection

 of a closed interval).

 £(r); the length of a curve T.

 B( Rd) ; the family of all bounded sets in Rd.

 3. Some properties of d- measure
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 We now start to prove the following basic properties of our new outer
 measure da.

 Theorem 1. da is Borei regular. That is, for any set E C Rd, there exists
 a Borei set B C Rd such that E C B and da(E ) = da(B).

 Proof. Since N(F,r) = N(F,r),DQ(F) = Da(F). Thus

 OO

 da(E) = inf {£lT(£n) : E C U ~=1En,En € B( Rd)}.
 n= 1

 For every integer n > 0, there exists a sequence of bounded sets such
 that E C U ZiEn,i and ££, Da(EnJ < d°(E) + Ì. Let B = h» ! Ugj
 En,i. Then E C B, and B C U~i£7„,j for every n. Therefore da(B ) <

 Da{En,i ) for every n. Hence dQ(B) < inf„ Da(En,i) = da(E). The
 opposite inequality follows from monotonicity of da.

 Theorem 2. da is a metric outer measure.

 Proof. Plainly we have da(A U B) < da(A) + da(B) by subadditivity of
 da.

 Suppose that dist ( E , F) > 0 for E, F E #(Rd). Then dist ( E , F) > 2e > 0
 for some positive constant e. Noting N(E U F, e) = N(E, e) + N(F, e), we have

 Da(E U F) > Da(E) + Da(F).

 Hence, for A and B with dist (.4, B) > 0,

 da(A U B) = inf{J^ Da(En) : A U B = U En, En G B( Rd)}

 > inf{J^ Da(En DA) + J2 Da(En n B) : A U B = UEn,

 En G B( Rd)}

 > inf {J2 Da{En D A) : A U B = U En, En € B( Rd)}

 + inf DQ(En H B) : Al) B = U En, En € ß(Rd)}

 > da(A) + da(B).

 Corollary 3. d° is a regular outer measure.

 Proof. It is immediate from Theorems 1 and 2 because the family of all
 measurable sets of a metric outer measure contains all Borei sets.
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 Theorem 4. 7ía(E) < da(E ) for every set E in Rd.

 Proof. Ha(F) < Da(F) for any F £ #(Rd) from the definitions. By the
 subadditivity of Ha and the prior fact, we easily obtain the result.

 Corollary 5. Suppose that for some a, there are numbers c > 0 and
 6 > 0 such that da(E C'U) < c'U'a for all convex sets U with |ř/| < 8. Then
 7ia(E) > da(E)/c. In particular, for c = 1 ,Ha(E) = d°(E).

 Proof. It follows immediately from mass distribution principle 4.2 of [3].
 When c = 1, it is obvious from Theorem 4.

 Example 6. Let C be the well-known Cantor ternary set. Then we
 easily see that da(C fl U) < Da{C H Í7) < |ř7|° for all intervals U, where
 a = log 2/ log 3. Hence Ha(C) = da{C) from Corollary 5. (Compare this with
 Example 10.)

 Theorem 7. D^r) = £(T) for a curve T.

 Proof. First, note that Theorem 4 and dł(r) < D^T) give us Hx(r) <
 r>x(r). Thus C(T) < D^T) since W*(r) = £(r) (Lemma 3.2 of [2]).

 Second, suppose that £(T) < oo. Then we can dissect T into n-parts with
 the same arc length: Tj , T2, • • - , and r„. Let x¿ be the midpoint of T, for each
 i = 1,2, • • • ,n. Then each T, is contained in the closed ball of center with
 radius £(r)/2n. Thus JV(r,£(r)/n)£(r)/n < n(C(T)/n) = £(r). Therefore
 liminf„_>00iV(r, C(T)/n)C(T)/n < C(T). Hence Dl(T) < C(T).

 Corollary 8. «^(r) = £(T) for a curve T.

 Remark 9. Noting that a curve T is strongly regular (cf. Theorem 6.1
 of [10]), we have £(r) = Tť^r) = ^(r) = ß1(r) = p^r). There are many
 examples of E such that 0 < Ha(E) = da(E) < oo for some a > 0, and also
 there are examples of E so that 7ia(E) < da{E) for some E in Rd. (Corollary
 14 in this paper, and [11]).

 Example 10. Let C be as in Example 6. Then HS(C) = d*(C) = DS(C ) =
 1, where s = log 2/ log 3. Clearly N(C,3~n)(3~n)a = 2n2-n = 1, implying
 D9(C) < 1. Noting that H9(C) = 1 (Theorem 1.14 of [2]) and H9(C) < d9(C)
 (Theorem 4), we obtain the result.

 Example 11. Let E be the product of same Cantor-like sets ; E =
 {(*,y);z
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 = E£=i f n,y = fe-' where an,fe„ G {0,3}}. It was shown in [5] that
 Hl(E) = 2t. But < liminfn-ooiV^^i 4~n)2^ 4"n = 2?. Hence

 = <P(E) = D'E) = 2ï.

 4. Capacity and d-dimension

 In this section, we prove Cap = d - dim by showing Cap = <5 (hence
 Cap = ¿) and 6 = d - dim.

 Theorem 12.

 6(F) = Cap(F) for F G B( Rd)

 Proof. Suppose that Cap(F ) > <5(F) + e for some e > 0. Then there
 exists p > 0 such that for any r < p, log N(F,r) > logr *")+*] ; i.e.
 N(F, r)rť(F)+c > 1. Hence Ds^F^+e(F) > 1, which is a contradiction. There-
 fore Cap(F) < S(F) + e for any e > 0. Similarly we obtain Cap(F) > 6(F) - e
 for any e > 0.

 Theorem 13. 6(E) = d - dim (E) for any set E in Rd.

 Proof. Suppose that 6(E) < d-dim(E). Then there exists a 6 (6(E), d -
 dim(JE7)). So there is a sequence {-En} of bounded subsets of E such that Ui£n =
 E and supn 6(En) < a. Thus Da(En) = 0 for any n, implying da(E) = 0. It is
 a contradiction. Now, suppose d - dim(¿£) < 6(E). Then there is a such that
 d - dim(J5) < a < 6(E). Thus da(E) = 0. Therefore, there exists a sequence
 {£?„} of bounded subsets of E such that E = and Da(En) < oo for
 every n, hence 6(E„) < a for every n. Thus 6(E) < a. It is also a contradiction.

 Corollary 14. Cap(E) = d - dim(£?) for any E C Rd.

 Remark 15. (a) In Example 10, we have seen that H*(C) = d"(C) =
 D*(C) = 1, where s = log 2/ log 3. Hence, by Theorem 12 and Corollary 14,
 Cap(C) = Cap = log 2/ log 3. But there is another way to show Cap = Cap = s
 without relying on the fact 7i'(C) = 1: ds(C) < Da(C) = 1 and dt(C) = oo for
 t < s = log 2/ log 3, which can be seen easily from the Baire Category theorem.

 (b) Let f : F -* Rm satisfy a Holder condition |/(x) - f(y)' < c'x -
 y'Q(x,y e F). Then di(f(F)) < c^da(F) because Di(f(E)) < c«Dš(E) for
 any bounded subset E of F. Hence Cap(= d - dim) is invariant under bi-
 Lipschitz transformations. Besides, one could show many other properties of
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 Cap using ¿-measure.

 On the other hand, we can obtain d-dim or PD of some sets using capacity.

 Theorem 16. Lei f : [0, 1] - ► R, and let G be iis graph. Suppose that
 0 < a < 1. If there exist positive constants C' and Cļ such that C''J'a <
 supx yçj |/(x) - f(y)' < C2I J'a for any interval J in [0, 1], then d - dim(G) =
 POCO) = 2- a.

 Proof. By Remark 9 of [6], Cap(G) = Cap(G ) -2 - a. If G = U^Ļj-E,,,
 then since G is a closed set in R2. Then, by the Baire Cat-
 egory theorem, there exists Em C G such that Intc?(.Em) ^ 0, where Into(Em)
 is the interior of Em in G. Thus there exists r > 0 such that Br(z) fi G C
 IntG(£m) for a fixed z € Intc(Em), where Br(z) is the open disc in R2 with
 center z and radius r. But there exists an interval J C [0, 1] with very small
 length such that Projx_ax¡s(z) € J, and supx ,6J|/W - /(»)l < ftW < f.
 Thus Intc(^m) D {(aìf(a)) '• a £ J}- Hence Cap(IntĢ(.Em)) >2 - a. There-
 fore Cap(G) >2 - a. By Corollary 14, d - dim(ćr) = Cap(G ) >2 - a. Whence

 2 - a < d - dim(G) < PD(G) = ťap(G) < C^(G) <2 -a [10].

 Remark 17. Let / be a continuous function defined on [0, 1] and let Gj
 be the graph of / over J C [0, 1]. If / satisfies the property that Cap(Gj ) = ß
 (Cap(Gj) = ß) for any interval J C [0, 1] and a fixed 1 < ß < 2, then we easily
 see that d - dim(G) = ß ( PD(G ) = ß) for G = G[o,i] using the Baire Category
 theorem (c.f., Corollary 11.2 of [3] as an example).

 Example 18. Let Q be the graph of the Weirstrass function WQ(i). Then
 PD(Q) = 2 - a since W0(ť) satisfies the assumption of Theorem 16 (cf. [4],
 [6]). Furthermore, d - dim(ö) = 2 - a in the same manner.

 Example 19. Let K be the Kiesswetter's curve ([1]). Then d - dim(£) =
 PD(K ) = |. This is because the Kiesswetter function k satisfies the assump-
 tions of Theorem 16 ; |J|» < supi yej |k(x) - n(y) ' < 3|«7| 2 for any interval
 JC [0,1]. (cf. HD{K) = § in [1])

 Example 20. Let 0 < a < 1 and /0(x) = ^2_a,i?,(z), where Ri is the
 i-th Rademacher function and 0 < x < 1 ([6], [8]). Let G be its graph. Then
 it follows essentially from Proposition 2[6] and Theorem 16 that d - dim(G) =
 PD(G ) = 2 - a. We note that HD{G) <d- dim(G) = PD(G) = 2 - a for
 PV number 2° ([6]).
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