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ON m-RINGS OF FUNCTIONS AND SOME
GENERALIZATIONS OF THE NOTION OF DENSITY
POINT

Abstract. In this paper we investigate properties of some rings and ideals of
real functions. Moreover we present some generalizations of the notion of density
point.

In 1985, there appeared a paper ([3]) by W. Poreda, E. Wagner-Bojakowska and
W. Wilczyriski in which a certain kind of density points was defined topologically.
This paper presented a new method of showing parallels between the o—ideals of
first category sets and sets of Lebesgue measure zero, i.e., was a successive study
of o-ideals of sets. Further explorations of these ideas can be found in many
interesting papers ([1],[4],[5],[6],[7])-

Along with ideals of sets, other small systems of sets were studied. In connec-
tion with this, small systems of functions were investigated. The first place we
encountered this notion was in a paper from 1972 by Prof. B. Riecan [8]. Studying
the results of investigations connected with these problems, one can observe that,
in many places, what is essential is the algebraic structure of the classes of the
transformations which are examined. Hence the themes of the present article con-
centrate around an algebraic approach to the problems of measurability, density
points and other questions connected with these problems. Such an approach to
the subject creates, on the one hand, new possibilities of discussing these problems
in more abstract spaces; on the other hand, a close connection with the problems
considered by, among others, the groups of Profs W. Wilczynski, B. Rie¢an or L.
Zajicek makes the facts presented here constitute, indeed, generalizations of the
earlier results.

Throughout the paper, we use the classical symbols and notations. By the
letters R and N we denote the real line and the set of all positive integers, resp.
The symbol x 4 stands for a characteristic function of the set A.

For an arbitrary function f defined on A C X we adopt

f(z) forz e A,
f*(x):{O() forz ¢ A.
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Given two sets A and B and a € B, the function const?? is the constant
function from A into B with value a. If we omit A and B in this notation, then
we assume that these sets are fixed beforehand.

We adopt Z(f) = {z : f(z) = 0} and for arbitrary {f.} we denote by
U fn) = {z : limyp—e fn(z) does not exist} (if, for example, lim, . fn(z) = +00
we understand that this limit does not exist either).

We adopt A A B = (A\B) U (B\A).

Moreover, assume the following definitions:

We say that a sequence of functions {fi} is cofinal with a sequence of sets of
functions {A,} if for every n € N there exists k£ € N such that fi € A,.

We say that a sequence of functions {fi} is *-cofinal with a sequence of sets of
functions {A,} if for every subsequence {f;, } of {fi} there exists a subsequence
{fs, } cofinal with {A,} and Xl(‘f“k) € A, foreveryn=1,2,... .

To begin with, we shall deal with special kinds of rings of functions and ideals
(in the algebraic sense) of these rings, and show a close connection between these
objects and the ideas of o—algebras of sets and set theoretic o-ideals (in the sense
of set theory).

DEFINITION. Let X be an arbitrary set. We say that a ring S with the
unit, of real functions defined on X is an m-ring if:

1. |[fl€ S and (%)' € S for every f € S;
2. if f = limy_00 frn, where {f,} C S, then f € S.

THEOREM 1. (a) Any m-ring S forms the family of all measurable functions
with respect to the o-algebra {A C X : xa € S}.

(b) Any family of all measurable functions with respect to some o—algebra is
m-ring.

Proof. (a) First we shall show that the family 4 = {A C X : x4 € S} is
o-algebra of sets.

Assume that A € A. This means that x4 € S and so —(x4 — const;) € S. On
the other hand xx\a = —(Xxa — const,) which means that X\ A € A.

Now, let {A,} C A. We shall show that US>, A, € A4, i.e.

(1) XU, 4. € 5

Notice that:
Xpug € S, for every P,Q € A.
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Therefore, it is not hard to check that:

(2) XU n € S for every positive integer k.

Notice that:
llm DX An = XUZ, An

From the above, by (2) and condition 2 of the definition of an m-ring, we may
infer that relationship (1) does take place.

We shall now show that S includes all measurable functions with respect to A.
Let us first observe that const, € S for every rational number q. Therefore, by
condition 2 of the definition of an m-ring, each constant function belongs to S. So,
by the definition of A, every simple measurable function belongs to S. Therefore,
in view of 2 of the definition of m-ring, every measurable function with respect to
A belongs to S.

To finish the proof (a), it suffices to demonstrate that every function f € S is
measurable with respect to A. Let o be an arbitrary real number. Note that:

1 *
X{z:f(z)>a} = (max (f(z) — consta(x),O)) max(f(z) — consts(z),0).

Thus, by the condition 1 of the definition of m-ring, the function on the right
side of the above equality belongs to S, and so {z : f(z) > a} € A which implies
that f is measurable.

Proof (b) is immediate.

REMARK. By A(S) we denote the o-algebra from (a) of the above Theorem
and by S(A) the m-ring of all functions measurable with respect to the fixed
o-algebra A ((b) of Theorem 1).

DEFINITION. Let X be an arbitrary set and let S be an m-ring of real
functions defined on X. We say that an ideal J of S is an m-ideal, if the following
conditions are fulfilled:

L. If f =limp,o frn, where {f,}2, C J, then f € J.
2. If |g| < |f], where f € J, then g € S.

THEOREM 2. (a) For every m-ideal J of the m-ring S the family J; =
{AC X :xa €T} isaoc-ideal of the o-algebra A(S) (we say that J7 is the o-ideal
generated by J ).
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(b) For every o-ideal J of sets belonging to the o-algebra A the family J; =
{f:X — R: X\Z(f) € J} is an m-ideal of the m-ring S(A) (we say that J; is
the m-ideal generated by J ).

Proof. (a) Let B € J7 and A C B. Then xp € J. Moreover |x4| < |xsl,
thus x4 € S. Therefore x4 = xa-xB € J-

Now let {A.} C J7. Weshall show that U2, As € Jy, ie. xy= 4, € J- The
method used to prove the above fact is analogous to the proof of Theorem 1(a).
Because J7 C A(S) the proof of (a) is finished.

(b) Remark that J; C S(A). Indeed, let f € J; and let « € R. Consider
{z : f(z) < a}. We may consider two cases:

1°. @ <0. Then {z: f(z) < a} € J C A,

2°. o > 0. Then {z : f(z) > o} € J C A and so {z : f(z) < a} =
X\{z: f(z) 2 a} € A.

From the above we may deduce that f € S(A).

Now, we shall show that J; is an m-ideal of S(A). It is easy to see that J;
is closed with respect to the addition of functions. So let f € S(A) and g € J;.
Then Z(f - g) D Z(g) and consequently X\Z(f - g) € J. Therefore J; is an ideal
of S(A).

Now let {f,.} € Js and f = limpne fn- Then Z(f) D NS, Z(fn) and so
X\Z(f) € J. Hence f € J.

To finish this proof it suffices to demonstrate that condition 2 of the definition
of an m-ideal takes place. Let f € J and g : X — R be a function such that
lg] < |f]- Thus Z(g) D Z(f) which means that X\Z(g) € J and consequently
g € Jj C S(A), which finally completes the proof.

Since the algebraic structure is evident within the classes of functions we have
considered, it is difficult to avoid asking about the algebraic structure of the m-
ideals. For example, it is not hard to see that any m-ideal J of any m-ring S is
a linear space (if the product a - f — where @ € R and f € J - is interpreted as
const, - f). Consequently, it is interesting to ask about the dimension of this space.
The answer to this question is included in the following theorem.

THEOREM 3. Let J be an arbitrary m-ideal of some m-ring S. Then the
following conditions are equivalent:

(i) dim J = oo,

(i1) J contains some function which assumes infinitely many values,
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(11i) for o-ideal J7 generated by J; card J7 > No.

Proof. (i) = (ii). Let z; be a point such that, there exists some function
f €J, that f(z;) #0. Hence x(;,} € J.

Assume that we have pairwise distinct points zi,...,Zn_1 such that iy} €
J. Then the collection {z- x(s,} :¢=1,...,n — 1} is linearly independent. Since
dim J = oo, then there exists A € J such that h, x(z,},2 X{z}s- - -» (P — 1) X{zn_s}
is linearly independent. This means that there exists z, € {z1,...,2,-1} and
h(z») # 0. It is not hard to check that n - x{;,} € J.

Continuing this procedure we obtain infinite sequence {n- x(,}} € J such that
z, # z; for 1 # j. Hence

Zi-x{,i} € J forevery n=1,2,....

=1

This means that lim,_oo >0, % X{z} € J, but

f=lm 3 i x( =

=1

1 forz=z;(:=1,2,...),
0 forz & {z1,z,,...},

and consequently, J fulfills (ii).

(ii) = (iii). Let f € J assume infinitely many values. Then A = {z : f(z) # 0}
is an infinite set and we may remark that

X{z} € J for every z € A,
which means that {z} € J, for every z € A.

(iii) = (i). From the assumption we have made, it follows that there exists an
infinite set A such that A € J7. Let ay,ay,... be a sequence of pairwise distinct
point of A. Thus X{a,}, X{as}--- IS @ sequence of functions belonging to J and
this collection is linearly independent.

With many considerations carried out in the sequel, it is more advantageous
to apply, instead of m-ideal of functions, some sequence of sets of functions whose
intersection will be the given m-ideal. This situation resembles a connection of
o-ideals of sets and small systems of sets ([2]).

DEFINITION. Let S be an arbitrary m-ring of functions. A family F =
{F. : n = 1,2,...} of subsets of S is called an m-system of the m-ring S, if
{F.}32, is a decreasing sequence satisfying the following conditions:
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) Iffie Fi=n,n+1,...,n+r), then Y} fi € Foey.

=n

(ii) If {fx}2, is cofinal with {F,}2,, then g - (limi_o fi)* € Fhy, for every
function g € S and for every n € N.

(i) If for a function g there exists a sequence {fix} cofinal with {F,} such that
lg] < |fe| (for k =1,2,...) and £(fi) C Z(g), then g € S.

(iv) f fe F,, g€ S, and |g| < |f|, then g € F,, (forn =1,2,...).

The idea of the above definition is connected with the definition of a small
system of functions ([8]).

THEOREM 4. Let {F,:n =1,2,...} be an m-system of the m-ring S. Then
T =TJ{F,:n=12,...}) =N, Fnis an m-ideal of the m-ring S (we say that
{F,:n=1,2,...} generates J({Fn:n =1,2,...})).

Proof. Let f,g € J. Then f,g € F, (for n = 1,2,...) and according to (i),
f+ge€F, (for n =1,2,...) which means that J is closed with respect to the
addition of functions.

Now let f € J and g € S. Condition (ii) implies that g- f € J and so J is an
ideal of S. Since conditions 1 and 2 of the definition of m-ideal immediately follow
from (ii) and (iii), then this proof is finished.

It is easy to see that if J is a fixed — m-ideal of functions of some m-ring S,
then, putting F,, = J (forn = 1,2,...), we obtain an m-system {F, : n = 1,2,...}
such that N, F, = J. Such an m-system is called a trivial m-system generating
J. If S is an m-ring and J = S is an m-ideal of the m-ring S, then the only
m-system generating J is, of course, a trivial m-system. However, it turns out
that, for an m-ideal J # S, there always exist non-trivial m-systems generating
this m-ideal.

LEMMA 1. Let f be an arbitrary function belonging to the m-ideal J of the
m-ring S and g be a function such that {z : g(z) # f(z))} € J5. Theng€ J.

Proof. Infer that g € S. Let T = {z : f(z) # g(z) A f(z) = 0}. Of course
T € J7. Thus xr € J and f + xr € J and moreover (f + xr)(z) # 0 for every x
such that f(z) # g(z). Consequently

1 *
g=g(f+XT> (f+xr)€eJ.
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THEOREM 5. Let J be an m-ideal of the m-ring S such that J # S. Then
there exists a non-trivial m-system {F, :n = 1,2,...} of the m-ring S generating

J.
Proof. Let X be a domain of functions from S. Put:

F,.={feS: 13 sup_ |f(z) — g(z)| < 5%} for n=1,2,....
geETJ e X

We shall first prove that {F, :n =1,2,...} is an m-system. One can see that
{Fo}32, is a decreasing sequence of subsets of S. We shall now prove the veracity
of (i) of the definition of m-system.

Let f; € Fi (i = n,n+1,...,n +r). This means that there exist g; € J
(t=mn,n+1,...,n+r) such that

1 .
sup |fi(z) — gi(z)| < = (1= n,n+1,...,n+r).
reX 2‘

Hence 3347 g; € J and moreover

n+r n+r 1
i - i < )
:gglgf(w) ;g @) < 5

so Y™ f.e F,_,.

=n
To verify (ii) from the definition of an m-system, assume that {f;}$, is cofinal
with {F,}%2,. We shall now prove that

(1) (lim /i) €J.
Let gr, € J (n =1,2,...) be a function such that

1
S — < —.
sup fea(2) = gra(2)] < 7

It is evident that
(2) U fr,) = Ugr,)

and
Aim fi,(z) = lim gy, (z) for = & {(fx,) = €(gr.)-
Put (forn =1,2,...)
{ gka(2) ifz & £(fr) = £(gkn),
he, (z) = _
0 ifx € £(f,) = €(gk,)-
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Since |k, (z)| < |gk. ()| (n = 1,2,...) then ki, € S and so hy, = hkn'(é:—)*'g"" €
J (n=1,2,...) and the following limit exists

Jim hx, = (Jim, )"

By (2),
(im fi,)® = (lim gi,)" = lim ke, € .
Infer that
|(im fi)*| < {(lim fr.)"l,

which means that (1) is satisfied.
By virtue of (1), we may infer that

g-(kl_i_'n;lofk)*GJCFn (n=1,2,...) for every g € S.

Assume that the assumptions of (iii) are true. We shall show that
(3) lgl < |(lim fi)*].

Indeed, if z € Z(g), then the inequality |g(z)| < |(limg~oo fx)*(z)]| is evident.
Suppose that z € Z(g). Then there exists limk_ fi(z) and by the assumption:
lg(z)| < |fi(z)| for £ =1,2,..., we obtain |g(z)| < |limg—e f(z)|- This ends the
proof of (3).

From the above reasoning (limg—o fk)* € J and so |(limgoo fi)*| =

|(limg—eo fx)*| - ((—;um — )* - (limg—oo f)* € J, which together with (3), and
the fact that J is an m-ideal of the m-ring S gives g € S.
We shall now show that the condition (iv) from the definition of an m-system

holds.
Letn € N, f € F,, g € S and |g| < |f|- Then there exists h € J such that
sup,ex |f(z) — h(z)| < 5= Put

N L ORCELZ(O!
1o for z € Z(g).

Then |h'| < |k| and so A’ € S. Moreover h' = h’- (%)* -heJ. Put

ey | 90) for o 2 Z00)
7o for z € Z(h").
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Hence, according to Lemma 1, h; € J. It is not difficult to notice that
sup,ex |9(z) — h1(z)| < 5%, which means that g € F;,.

Infer now that {F, : n = 1,2,...} generates J. Of course J C N, F,.. So
let f € N2, Fn. This means that for every n € N there exists g, € J such that
sup,ex |f(z) — gn(z)| < 5. Consequently lim,_,co g» = f and f € J.

We have presented a proof of the fact that {F, : n =1,2,...} is an m-system
generating J. We shall show that this m-system is non-trivial.

Let h € J be a bounded function belonging to S. Thus |h(z)| < M for every
z € X. Consider the following function:

1

Fo= 2o

-h for every n € N.

Then |fu(z)| < 5 for every z € X, n € N and so f, € F,\J for everyn € N.
This ends the proof of Theorem 5.

DEFINITION. Let S be some m-ring of functions and let J be an m-ideal

of S. We say that a sequence {fi} C S, J-tends to a function f € S (we write
J — limg_o fi = f)a if
(klirg fi)—feJd.

THEOREM 6. Let S be some m-ring of functions and let F be an m-system
of S and J = J(F), then
(1) If {fe — f}2, is cofinal with F and XerNz(f) € T, then T —limg_o, fi = f.
(i) If T = limgeoo fi = f, then (limoo(fx — f))* € T
Proof. (i) From the assumptions we may infer that (limy_oo(fi — f))* € J.
Since Xe(f\2(f) € J, then
{a : (lim (fi — £))"() # (Jim fu)* - N(@)} € I,

which, according to Lemma 1, means that (limy . fi)* — f € J.
(1) First we shall remark that

(%) ((klirg i) = f)(x) #£0, for every x € £(fi)\Z(f).

Put now

h(z) = { ((limeroo fi) = £)(2) for = € LSNZ(S),
0 for = € £(fi)\Z(f).
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Then h € J:and by condition (*), h(z) # 0 for every z € £(fi)\Z(f). Moreover

Xunnz() = (;;) hed,
which means that £(f,)\Z(f) € J7. Because
{o: (Jim (e — HY(@) # ((fim 5" — 1))} C LANZ),

Lemma 1 yields (limg—oo(fc — f))* € J.
Simple examples show that the implications in Theorem 6 cannot be reversed.

We shall now aim at defining a density point of a set on the basis of the
properties of real functions and the algebraic properties of the classes of functions
distinguished here, without referring to the structure and properties of the sets
under consideration. Thanks to that, it will be possible to consider, among other
things, the density topology in more abstract spaces. (For example, a space in
which neither topology nor measure is preassigned.) However, as will be pointed
out below, our definition can be considered a generalization of both a density point
in the case of measure and a J-density point in the case of category on, for example,
the real line.

Let X be an arbitrary set, S be an m-ring of real functions defined on X and let
J be an m-ideal of S. For each z € X let us assign a set B, such that xg, € S\J
(the set B, is called (S,J) - large for z). By the symbol Bg 7 we denote the family
of all (S,J) - large sets. For each z € X let a mapping ¢, : A(S) x N — A(S)
satisfying the following conditions:

1. pz(A,n)Npz(X\A,n) = ¢, for every A € A(S) and n € N.

2. 9z (AUB,n) = pz(A,n) U p(B,n), for every A, B € A(S) such that ANB =
¢ and n € N.

3. vz(A,n) € Jz, for every A € Jy and n € N.
4. p(A,n)Npz(B,n) =z (AN B,n) for A,B € A(S) and n € N.
5. pz(X,n) = X, forn € N.

By the symbol ®s we denote the family {¢, : ¢ € X}.

DEFINITION. Let X be an arbitrary set, S — be an m-ring of real function
defined on X and let J be an m-ideal of S. Let zo € X, By, — (S, J)-large set for

559



zo and p,, € &5. We say that zg is a (Bs,7, ®s)-density point of a set A € A(S),
if for every strictly increasing sequence of the positive integers {¢x}%2; there exists
a subsequence {s, }32, of {tx}$2, such that

J - klif?o Xz (A, 84,) N By, = XBzy-

By the symbol Lp; , ¢:(A) we denote the set of all (Bs,7, ®s)-density points of A
(if Bs,7,®s are fixed, then we short write L(A)).

It is not hard to verify that the above definition is a generalization of the notion
of density point on the real line and I-density point in the sense of category. It is
sufficient to put B, = [—1,1] and ¢,(A,n) =n-(A—z),forz € Rand n € N.

To simplify the notation, assume from now on that X is a fixed set and S is
the m-ring of real functions defined on X. Let J be a fixed m-ideal of S and F
be an m-system generating J. Moreover, we assume that for a fixed point zo, B,
always denotes the set (S, J)-large for zo and by ¢,, we understand the function
from ®g corresponding with z,.

LEMMA 2. Let A and B be disjoint sets such that x4 € S and xg € J.
Then, if zo is a (Bs,7, ®s)-density point of AU B, then z, is a (Bs,7, ®s)-density
point of A.

Proof. From the disjointness of A and B we deduce that X¢2o(AUBK)NBzy, =
X#z0(AK)NBzy T X2y (B.K)NBs, for k € N. Since xo, (B4)nB., € J, then

(1) {2 : Xgug(aUB)NB., (T) # Xpuy(ak)nBs, (2)} € J7

for k€ N.
Let {tx} be an arbitrary increasing sequence of positive integers and let {s,, }
be a sequence of {t;} such that

(klirg X‘P:O(A U B,Stk) N Bzo)‘ — XBg, eJ.

Then, by (1), {z : (ik—oo Xpny (A U B, 54,) N Bay)*(z) # (liMssoo Xeony (As 53,) N
B:,)*(z)} € J7 and consequently

(klipr{.]é X¢10(A1’tk )ano )* - XB.‘KO G \7,
which ends the proof.

LEMMA 3. Let A C B be sets such that xa,xg € S. If 2o is a (Bs,7,®s)-
density point of A, then z¢ is a (Bs,7,®s)-density point of B.
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Proof. Let {tx} be an arbitrary increasing sequence of positive integers and
{s.} be a subsequence of {tx} such that

(klirg X@zq(A,8¢, )NBxg ) — XB., € J.

Of course, | liMi—soo Xpsy(Brot,)nBay)” — XBagl < 1(iMkmsoo Xopsq (Arse, )nBag)” — XBig
and so (limy_,o X @2(By9t,)NBag )* — XB., € J, which ends the proof.

LEMMA 4. If z¢ is a (Bs,y,®s)-density point of A, then z¢ is not a
(Bs,7,®s)—-density point of X\ A.

Proof. Let {tx} be an arbitrary increasing sequence of positive integers and
{st.} be a subsequence of {t;} such that

(1) (kll»I?o X“”o(Av-"k)ano)* — XB;, € J.

Of course, {s; } is an increasing sequence of positive integers. Suppose, to the
contrary, that z¢ is a (Bs,s,®s)-density point of X\ A. Hence there exists a
subsequence {z,,, } of {s;,} such that

f= (kllglo Xspgo(X\A,z.tk)nB,o)* — XBs, € J.

Denote by
P={z: klirglo X@20(X\A,zs,, )NBi, (z) #1}

(all points, for which above limit does not exist, belongs to P). Then |xp| < |f|
and so xp € J.
Remark that |(limk—co X, ( szlgk)ano)*l < |xp|, consequently

(2) (M Xo.y(4,2,,)0B2)" € T -
By (1), it is not hard to check that:
(3) (kli{g Xezq(Arzsy, )NBzy)" — XBsy € T -
In virtue of (2) and (3), we may infer that
XBzy = (1M Xo.o (4,20, )0B20)" = [(HD Xoug(a,20,, )0Bay)" — XBo ] € T
which is impossible because B,, € Bs,y. This contradiction ends the proof.

It is not difficult to verify that, in the general case, the analogue of the theorem
on density points does not have to hold. Therefore, in this case, it is essential to
seek sufficient conditions under which such a theorem may be proved.
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THEOREM 7. Let S,J,F7 satisfy the following condition:

if xr € S\J, then there exists a function g € J
such that (xt + g)(X) C {0,1} and for each
(*) zo € (xT + 9)"1(1) N T there exists a sequence of sets
{T:} C A(S) such that By, C ¢z,(T:,1)(3 € N) and the sequence
{X 0o (Tisi)\0uo (xr+5)-2(1),))} 18 * —cofinal with Fy.

Then X aar(a) € J, for every A € A(S). (It is not hard to verify that in the case
of measure theory the assumption (*) is fulfilled.)

Proof. Let A € A(S). First we shall show that

(1) xa\L(4) € J.

In the case if x4 € J the condition (1) is evident. So, we may assume that
x4 € S\J. Let g € J be a function fulfilling the condition (*).

Let us adopt Dy = (x4+9¢)~*(1) and A, = g~!(a), where « is a value assumed
by g. It is easy to see that

(2) XA_1nA (S J
Remark that
(3) A= (A-;NA)U (D, N A).

If xp, € J, then xp,na € J, and consequently (according to (3)) xa =
XA-1nA + XDina € J, which means, that (in this case) (1) is true.

Now, we assume that xp,  J. We shall show that D; N A C L(A). First, we
remark that:

(4) Dy = (Ao A) U (A;\A).

Let zo € Dy N A, then ((4)) zo € Ao N A. According to our assumptions there
exists a sequence {T;} C .A(S) such that B;, C ¢, (T;,i) (for i € N) and the
sequence {Xq,,(T:.i\w=,(D1,i)} 18 *-cofinal with Fz.

Let {p;} be an arbitrary strictly increasing sequence of positive integers. There
exists a subsequence {sp, } of {p;} such that { X020 (Tep,; 139 \0o(D1,85,) } 18 cofinal with
F7 and

X[(lezo(Tlp'. 18p; )\O’:o(Dl,lpi)) € "7'

Then, according to (ii) of the definition of m-system,

f = ('E% X‘P:o(Tnp‘ ,3p.')\‘P:co(D1,3p,~))* € J’
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and so
X{z:f(z)20} € T -

Let us now adopt

Zl = {IB : f(.’l') # 0} U e(X(on(Tap.- ,-’p.-)\V’:o(Dlv’P.'))

and Z = B;,\Z,.
Thus xz, € J.
It is not difficult to check that

lim X‘p’O(T'P.'"’P.‘)\‘P-‘to(D!v’pl')(x) = 0’ for TE Z'

1—00
Infer that there exists ig € N, such that for each i > ig, = € @pz,(D1, sp;), which
means that
'l_l.lg Xzo(D11sp;)(T) =1, for z € Z.

Put b = (limi—co Xz, (D1.0p;)Bxy)* — X Bxo- Hence |h| < |xz | and so b € S. Conse-
quently h € J. Thus

;7 - 11_13'2 X(p,o(Dl,s,..)nBZO = XB:(,,

which means that zo € L(D,). However, x4, € J and so x4,\4 € J and, according
to Lemma 2 (by (4)), we have that zo € L(Ag N A). According to Lemma 3,
zo € L(A). Thus we have really proved that

Dy N AC L(A).

From the above and (3) we may infer that A\L(A) C A_; N A. Consequently,
according to (2), we deduce that (1) is true.
We shall now prove that

XrL(apa € J.
Infer that

(4) L(AN\A C (X\A)\L(X\A).

Indeed, let z € L(A)\A. This means that £ € X\A and sincez € L(A), by Lemma
4, z ¢ L(X\A).
On the first part of this proof: x(x\4)\z(x\4) € J. From the above and accord-
ing to (4) we have
IxLeanal < Ixvancxnal
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and so xr(a)\4 € J. Finally remark:

XAAL(A) = XA\L(4) T XL(aNa € T,
which ends the proof.
THEOREM 8. Let S, J satisfy the following condition:

if xt € S\J, then there exists a function g € J
such that (xT + g)(X) C {0,1} and for each

() zo € (xT + 9)71(1) there exists ko € N such that
fO’I" every k > kOa B:co C ‘P::o((XT + g)—1(1)7 k)

Then xaara) € J, for every A € A(S). (It is not difficult to show that in the
case of category (cf. [3]) the assumption (**) is fulfilled).

Proof. We shall first prove that x a\r4) € J. If x4 € J this fact is evident.
Assume that x4 ¢ J. This means that there exists a function ¢ € J such that
the condition (**) is fulfilled.

Let D; = (x4 +9)7'(1) and A, = g7!(a), where a is a value assumed by g. It
is easy to see that

(1) XA_inA € j

Now, we shall show that

(2) Dy N A C L(A).
Infer that

Let now zo € D1NA, and let ko be a positive integer such that B,, C ¢Yzo(D1, k),
for each k > ko. This means that limg_, o Xzo(D1,k)NBzy = XB., and so zo € L(Dy).
Infer that x4,\4 € J and by (3) and Lemma 2, zo € L(Ap N A), which means,
according to Lemma 3, that zo € L(A). Thus condition (2) is true.

It is not difficult to verify that

A=(A_;1NA)U (D, N A)

and so ((2)) A\L(A) C A_; N A. Consequently |xa\r(a)| < |x4_,nal- From the
above and according to (1) we deduce that x AL €J.
The second part of the proof is similar to the proof of Theorem 7.
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Now we present the fundamental properties of a (Bs, s, ®s)-density points.

Let S be some m-ring and J an m-ideal of S.

THEOREM 9. the following conditions are fulfilled:
(1) If xa,xB € S and xaaB € J, then L(A) = L(B).
(2) If xa,xB € S, then L(AN B) = L(A)N L(B).
(3) L(#) = ¢, L(X)=X.
Proof. It is evident that the conditions (1) and (3) are fulfilled.
We shall show that condition (2) takes place. Let us observe that, by Lemma

3,
L(AN B) c L(A)N L(B).

Let now zo € L(A) N L(B) and {tx} be an arbitrary strictly increasing sequence
of positive integers. There exists a subsequence {s¢, } of {tx} such that:

J - kl-i-.lg va,o(A,s.k)nB,o = XB::O
and there exists a subsequence {z,, } of {s,} such that

J - klgg Xez0(Bizag, )NBay = XBay
It is not difficult to see that

\7 - klirg X‘P:ro(Ayzlgk )nBzo = XBzo'

Put

A= {z: im Xy, (4,2, 0B, () = 1}
and

B, = {x : klibr{.t) X‘on(B-zlgk)nB:ro (z) = 1}'

Hence B;,\(A’'N B’) € J7, which implies that
Bzo\{x : kl_lfl;) X‘PJO(Ayzatk )n‘P:o(B,zagk)nBzo (z) = 1} € JJ

and so
(klirg X(p,o(AnB,z,,k)nB,o)* — XBs, €J.
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Consequently, from the arbitrary choice of {¢;}, we may infer that zo, €
L(AN B).

The theory built so far allows one to expect that relatively simple constructions
will lead to the building of some topology. However, in order to make its creation
possible, it is necessary to introduce additional assumptions. To avoid dispensable
complications, we shall accept, as our assumption, a comparatively simple (and
self-evident) condition — up to the end of the article we shall constantly assume
(this assumption also concerns the case of the notion of a “weak density point”
introduced further) that we consider exclusively spaces X, operators ®s (and v5),
m-algebras S, m-ideals J and families Bs 7, such that the following condition is
satisfied:

if {Ax}xea is a family of sets such that x4, € S and

Ay C LBs,Jy‘I’s(A) for each A € A, then XUAeA Ax €5

THEOREM 10. Let X be an arbitrary set. Then the family
T={A€ A(S): AC Lp; ,3:(A)}
is a topology in X. (We say that T is a (Bs,7,®s)-density topology).

We say that the density theorem takes place if x AALpg ,e4(4) € J, for every
A € A(S).

LEMMA 5. If the density theorem takes place, then XLsg ,05(4) € S, for
every A such that x4 € S. ’

Proof. Since AN Lp, ,0:(A) = A\(A\Lp; ,05(A)) and XA\Lgg 05(4) €T C
S then XANLgg ,.85(4) € S. Consequently

XLgpg ;85(4) = XLpg ,05(ANA T XAnLp, ;o 5(4) € S.

THEOREM 11. If the density theorem takes place, then V is open in a
(Bs,7,®s)-density topology if and only if V = Lgs ;85(A)\B, for some A and B
such that x4 € S and xg € J.

The theory presented above gives a method to define density points in more
abstract spaces. We have examples applying this theory in the case of second
countable m-dimensional manifolds. The methods of construction are connected
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with topology, measure theory and algebra. The density topologies obtained pos-
sess many interesting properties. Since the constructions are long, we omit these
examples.

Many of the considerations (but not all) are true if instead of condition 2 of
the definition of the family ®s we write:

2'. If A,B € A(S) and A C B, then ¢z(A,n) C ¢z(B,n) for n = 1,2,...
(z € X) and if C is a set such that x¢ € J, then ¢(X\C,n) = X\¢(C,n)
forn=1,2,... (z € X).

The family ®s for which condition 2’ is fulfilled, we shall denote by 5. We
say that a (Bs,7,vs)—density point is a weak density point (if Bs 7, %s are fixed).
Let us adopt as L. (A) the set of all weak density points of the set A. Then
L, : A(S) — 2% we shall call weak density operator.

We shall now investigate some properties of these objects.

LEMMA 6. The operator L,, possesses the following fundamental properties:
(1) If xa,xB € S and A C B, then L,(A) C Ly(B).
(2) If xa,xB € S, then L,(AN B) = L,(A) N Ly(B).
(3) Lu(é) = ¢ and L, (X) = X.

THEOREM 12. Let X be an arbitrary set. Then the family
T,={A€ A(S): AC L,(A)}
is a topology in X. (We call T,, the weak density topology.)

Remark. Since every family ®¢ fulfills condition 2'., every (Bs,7, ®s)-density
topology is a weak density topology.

THEOREM 13. Every set A such that x4 € J is boundary and closed in a
weak density topology.

Proof. We shall first prove that A is boundary. If A = ¢, then this fact is
obvious. Let A # ¢. We shall show that any non-empty open set, in a weak
density topology, does not include in A. Indeed, let ¢ # B C A. Then B € Js.
This means that

(1) ¢z(B,n)N By € J7, forevery z€ X and n€ N
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To prove the boundary of A it suffices to demonstrate that L,,(B) = ¢.
Let zo € X and let {¢x} be an arbitrary strictly increasing sequence of positive
integers and {s;, } a subsequence of {tx}. According to (1) we have

(lim Xy, (B,n)nB.,)" € J-

n—oo

If zo € Ly(B) then J — limp 0 Xy, (Bn)nB:, = XB., and so xp,, € J which
is impossible, because By, is (S, J)-large set. The obtained contradiction proves
that L,(B) = ¢.

To finish, let us notice that X\A € T, i.e.

(2) X\A C L (X\A).

In fact, let £ € X\A and {t;} be a strictly increasing sequence of positive
integers. Assume that {s; } = {tx}. Thus

vz(X\A, sy,) N B, = B;\pz(A,ss,), for every k € N.

From the above equality it follows that
BAUw=(4,54) C {2 : im Xg,(x\a00,)n8.(2) = 1}
k

and so
(M Xeu(x\4,00,)0B.)" = XB.| < XU, pu(dssey) -

This means that z € L,(X\A) and so from the arbitrary choice of z we obtain

(2).

COROLLARY 1. IfJ includes all characteristic functions of singletons,
then (X, T,) is a Ty-space.

COROLLARY 2. IfJ includes all characteristic functions of singletons,
then (X,T,) is not a separable space (we assume that in X there exists at least

one (S, J)-large set).

In monograph [1] and in the paper [7] a lower density operator and an abstract
density operator are considered.

The following theorem is true with the additional assumption that the o-algebra
contains all singletons.

THEOREM 14. Let X be an arbitrary set. Then every lower density operator
is a weak density operator. (Precisely, for a lower density operator L there ezists
S,J ,%s and Bgs g such that L = L,,).
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Proof. Suppose that ¥ is a o-algebra of subsets of X and L : ¥ — ¥ is a lower
density operator. Let S be the family of all functions measurable with respect to
Y. (Then A(S) = X). Moreover let J = {consto} be the m-ideal of the m-ring S.
Let us adopt B; = {z} as a set (S, J)-large (for ¢ € X). Put ¢,(A4,n) = L(A)
forze X, A€ A(S)and n € N.

Thus ¢, : A(S) x N — A(S) and ¢, fulfills the conditions 1,2’,3,4,5 for ¥s.

Now, we shall show that for every A € A(S) =X

)

(1) L(A) = Lu(A).

Indeed, let z € L(A). Then ¢ (A,n) N B, = {z}, for n = 1,2,.... Consider an
arbitrary strictly increasing sequence {t} of positive integers and put {s;, } = {#x}.
Then

Jim Xy, (4,0,)0B. = XB.
and so
J — im Xe.(4,0,)0B. = XB.
which means that z € L, (A).
Now let z € L, (A) and assume z ¢ L(A). Let {t;} be an arbitrary sequence,

strictly increasing of positive integers and {s;,} an arbitrary subsequence of {#;}.
Hence

Xos(Awi,)nBs = consto (for k =1,2,...),
this means that
(klllg X(PI(A,«SU‘)r"B.-z)l.l — XB: = _X{""'} ¢ ‘7;

which contradicts the fact that z € L, (A). This contradiction shows that (1) is
true and consequently the theorem has been proved.
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