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Heredity of Density Points?
For t € (0,1] let QF =

{z = (21,...,8a) ER ™ : for each i € Nz; > 0 and [z = (X 27)""* < 1)

1

and let g be a Lebesgue measurable real function defined on Q" = Q}, strictly
positive almost everywhere and with the property that g(rz) < g(z) ifr < 1.
We assume further that g is bounded and g(z) — 0 as ¢ — 0. Let F,, denote
the set of such functions. If S C O, then SN Q} is denoted by S;. Let A be
a Lebesgue measurable subset of 2™ such that 0 is a density point of A; that
is, llg—:',lr — 1 as t — 0, where |Q7| = K,t". Our aim is to study the density
of A at 0 with respect to the measure py,(E) = [z g. We show that generally
0 is not a density point of A with respect to y, in the usual sense. If g in
F, satisfies an additional condition, always valid in the case n = 1, then we
prove that 0 is an upper p,-density point of A; that is, lim sup% =1
as t — 0. Stronger and necessary conditions on both A and g for 0 to be a
pg-density point of A are examined.

Given a function g € F, and r, s € (0,1), welet M(g,r,s) = ess sup g(z)
and m(g,r,s) = ess inf g(z) where z € Q7 \ Q7. :

Theorem 1 Let 0 be a density point of a set A C Q" and let g € F,.
Assume further that there is an a > 0 and a strictly decreasing sequence {t;}
with t; = 1 and ty — 0 such that —ﬁ{f < a, where My = M(g,tk+1,t) and
my = m(t, tk41,tk). Then 0 is an upper density point of A with respect to u,.

1These authors were partially supported by the Consejo de Investigaciones Cientificas
y Tecnolégicas de la Provincia de Cérdoba.

Ams subject classification: 28A10.

Key words: Lebesgue measurable set, density point, radial monotonic function, upper
density point.

2Dedicated to the memory of Jorge Smith

945



Proof. If the Theorem is not true, then there is an € > 0 and a j such
that pg(QF \ A) > epg(Q7) for all ¢t € (0,¢;]. Therefore for k > j
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which is a contradiction. O

The following example shows that the additional condition on ¢ is an
essential hypotheses in Theorem 1 for n > 2.

Example.

Let ty = ¢ and A(k) = {re? : 7 € (0,1], 0 € [0,F — %]} n [Q \Qt,‘ﬂ]
and let A = U, A(k). It follows immediately that 0 is a density point of A.
Let B=0%\ Aand B(k) =B [0 \ Q2 |. We define

z if z € B(k)
glz)=9 :
sy i« € A(k)

It is clear that g € F; and py(A:) < py(B:) for any ¢t € (0,1).

On the other hand the condition of Theorem 1 is fulfilled in the one
dimensional case. Indeed take t; = 1, t, = inf{z € Q! : g(t‘) < g(z) <

g(t7)} and generally txy; = inf{z € Q' : g(t" < g(z) < g(tk)} < t. Since

g(ty) < 9“1) , it follows that g(tk) — 0 as k — oo whence due to the form of
g, ty — 0 as k — 00. Besides Xk <2 for any k.

Theorem 2 Let 0 be a density point of A C Q™. A necessary and sufficient

condition for 0 to be a pg-density point of A for any g € F, is that |A,| = |Q7|
for t small enough.
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Proof. The condition is obvious sufficient. To prove the necessary part,
assume that |B;| > 0 for all ¢, where B = Q" \ A. Then B; has density
points in the interior of Q}. Let V; be a (ry,t;)-radial neighborhood of a
density point of B in the interior of QF; that is, if z € V4, thenry < ||z|| < t;
and Az € W, "3" <A< ngﬂ,whereO<r1 < t; < 1. It is easy to see
that we can also take V; in such a way that |[BNW| - |AN V| = ¢ >

0, Vil < |92 \ Q7 \ Vi|. We now apply a recurrent procedure to construct
radial neifhborhoods V; assuming that V;,...,V,;_; are given,7 = 2,.... For

8; = min %, r,-_l) let V; be a (r;, t;)-radial neighborhood of a density point of
B in the interior of Q7 where t; < s; and |[BNV;|—|ANV)|=¢;>0, |Vi| <
122 \ Q7 \Vi|l. Next a function g € F,, will be defined. For z € (Q;‘ \ Q;‘l) )%
let g(z) = 1. Forz € (Q" \ QF,, \V,) UVigr, fori =1,2,..., let g(z) =

(ljz_-l"J_) 1—1 I(Q" \ Qp i \ V)| 1 . So it is easy to see that the function

g is in F, and to see that pu, (Aﬂ [Q" \Qt“]) < pg (B N [Q" \ Q +1]) for
all 2. Hence 0 is not a pg-densmy point of A.O

A function g € F, is said to be of slow increase at the origin if there
exists an @ > 0 and a A € (0,1) such that % < a for any t € (0,1].

Theorem 3 a) Let g be a function of slow increase at the origin. Then for
any measurable set A with density 1 at the origin, 0 is a pgy-density point of

A.

b) In the one dimensional case the condition of slow increase at the origin is
also necessary to obtain this result.

Proof. of a) Let A € (0,1). Since A has density 1 at 0, for ¢ small enough

AN 07\ ) > 2L Ths

L m(g, At t
hol ) > (1 - |y ALY,

On the other hand, since g(rz) < g(z) for all r € (0,1), ess sup g(z) <
M(g,At,t) for z € Q7 \ A and hence

ro(7 \ A) < Q7 \ A|M(g, A, 1),

whence“"“i—‘)?—»ﬂast—»O )
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Proof. of b) Let A, = ;%7 for v = 1,2,... . If g does not satisfy the
condition of slow increase at the origin, then we can obtain, by an iterative
procedure, a sequence {z,} with z; = 1,0 < z,41 < % and gg/{f‘;:uil > .
Let

g(/\uzu+l) Ty+1
v = /\u v+l ™ v 1 - /\u S 2 -
b e 9(zv41) + @t ) v+1

Then
po([Tvt1,Tus1 + 8]) 2 g(z041)6, >
ﬂy([oa /\uxu+1]) + /‘y([’\vxuﬂ, zu+1]) = /‘g([ov $u+l])'
Let B = U3, [Zy41, Zu41+6,]. By the above estimate B does not have density

0 at the origin with respect to p,. On the other hand we show now that B
has density 0 at the origin. Indeed for » > k we have §, < %;}g Then

36, < okt
= k+1
Pick t € (0,1). If zx41 + 6k < t < z, then
| By| _ 2ok by < 4
t t kE+1
If Tpp1 <t < Tgy1 + Ok, then

|Be] 32,6, 4
< 2= ,
: t S F+l

whence “3—"—»03,3 t— 0.0

For n > 2 we introduce polar coordinates (r,z’) to express the points z
of 0"\ {0}. Weset r = ||z||,and 2’ = Z. Let £ = {y € Q" : ||y|| = 1}.

Theorem 4 Let g € F,, and set ¢(r) = [ g(rz')do. Then ¢ € Fy. More-
over ¢ is of slow increase at the origin if for each measurable set A with
density 1 at the origin, 0 is a p,-density point of A.

Proof. It is easy to show that ¢ € F;. Assume that #(r) is not of slow
increase at the origin. Then neither is the function (in ;) r"~1¢(r), whence
by Theorem 3 b) there is a set B in ! with density 0 at the origin such that

[, " 1é(r)dr
Jirian dr
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If B= {z € Q" : ||z|| = r for some r € B}, then |By| = wp_1 tyn—1(B;), where
wp_1 is the surface area of ¥. Since the function r*~! is of slow increase at
the origin, it follows from Theorem 3 a) that

|L~?,| pirn=1 (By)

= —0ast—0.

Iﬂil /‘r"—l([(), t])

fB rm=1¢(r)dr

On the other hand ﬁ%{%% = JS rm—1¢(r)d
H orn— r)ar

does not tend to 0 as t — 0.0.
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